22 research outputs found

    An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change

    Get PDF
    Earth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assumptions regarding the biological cycling of iron, which is the main limiting resource for NPP over large parts of the ocean. In this study, we show that the climate change trends in NPP and the biomass of upper trophic levels are strongly affected by modifying assumptions associated with phytoplankton iron uptake. Using a suite of model experiments, we find 21st century climate change impacts on regional NPP range from −12.3% to +2.4% under a high emissions climate change scenario. This wide range arises from variations in the efficiency of iron retention in the upper ocean in the eastern equatorial Pacific across different scenarios of biological iron uptake, which affect the strength of regional iron limitation. Those scenarios where nitrogen limitation replaced iron limitation showed the largest projected NPP declines, while those where iron limitation was more resilient displayed little future change. All model scenarios have similar skill in reproducing past inter‐annual variations in regional ocean NPP, largely due to limited change in the historical period. Ultimately, projections of end of century upper trophic level biomass change are altered by 50%–80% across all plausible scenarios. Overall, we find that uncertainties in the biological iron cycle cascade through open ocean pelagic ecosystems, from plankton to fish, affecting their evolution under climate change. This highlights additional challenges to developing effective conservation and fisheries management policies under climate change

    Climate change considerations are fundamental to management of deep‐sea resource extraction

    Get PDF
    Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth‐System Model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2020 The Authors. Global Change Biology published by John Wiley & Sons Lt

    Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma

    Get PDF
    Background: Neuroblastoma (NB) tumours have the highest incidence of spontaneous remission, especially among the stage 4s NB subgroup affecting infants. Clinical distinction of stage 4s from lethal stage 4 can be difficult, but critical for therapeutic decisions. The aim of this study was to investigate chromosomal alterations and differential gene expression amongst infant disseminated NB subgroups. Methods: Thirty-five NB tumours from patients diagnosed at < 18 months (25 stage 4 and 10 stage 4s), were evaluated by allelic and gene expression analyses. Results: All stage 4s patients underwent spontaneous remission, only 48% stage 4 patients survived despite combined modality therapy. Stage 4 tumours were 90% near-diploid/tetraploid, 44% MYCN amplified, 77% had 1p LOH (50% 1p36), 23% 11q and/or 14q LOH (27%) and 47% had 17q gain. Stage 4s were 90% near-triploid, none MYCN amplified and LOH was restricted to 11q. Initial comparison analyses between stage 4s and 4 < 12 months tumours revealed distinct gene expression profiles. A significant portion of genes mapped to chromosome 1 (P < 0.0001), 90% with higher expression in stage 4s, and chromosome 11 (P = 0.0054), 91% with higher expression in stage 4. Less definite expression profiles were observed between stage 4s and 4 < 18m, yet, association with chromosomes 1 (P < 0.0001) and 11 (P = 0.005) was maintained. Distinct gene expression profiles but no significant association with specific chromosomal region localization was observed between stage 4s and stage 4 < 18 months without MYCN amplification. Conclusion: Specific chromosomal aberrations are associated with distinct gene expression profiles which characterize spontaneously regressing or aggressive infant NB, providing the biological basis for the distinct clinical behaviour

    Timing and magnitude of climate-driven range shifts in transboundary fish stocks challenge their management

    Get PDF
    Climate change is shifting the distribution of shared fish stocks between neighboring countries’ Exclusive Economic Zones (EEZs) and the high seas. The timescale of these transboundary shifts determines how climate change will affect international fisheries governance. Here, we explore this timescale by coupling a large ensemble simulation of an Earth system model under a high emission climate change scenario to a dynamic population model. We show that by 2030, 23% of transboundary stocks will have shifted and 78% of the world's EEZs will have experienced at least one shifting stock. By the end of this century, projections show a total of 45% of stocks shifting globally and 81% of EEZs waters with at least one shifting stock. The magnitude of such shifts is reflected in changes in catch proportion between EEZs sharing a transboundary stock. By 2030, global EEZs are projected to experience an average change of 59% in catch proportion of transboundary stocks. Many countries that are highly dependent on fisheries for livelihood and food security emerge as hotspots for transboundary shifts. These hotspots are characterized by early shifts in the distribution of an important number of transboundary stocks. Existing international fisheries agreements need to be assessed for their capacity to address the social–ecological implications of climate-change-driven transboundary shifts. Some of these agreements will need to be adjusted to limit potential conflict between the parties of interest. Meanwhile, new agreements will need to be anticipatory and consider these concerns and their associated uncertainties to be resilient to global change
    corecore