159 research outputs found

    Gradient Enhanced Surrogate Modeling Methods for NDE Applications

    Get PDF
    Over the past 15 years, there has been significant interest in the NDE community in surrogate modeling applied to both uncertainty propagation (UP) as well as inverse uncertainty quantification (UQ). There has been a general acceptance in the value of surrogates due to the quick model evaluations that can be made during an inverse problem or for fast Monte Carlo sampling, evidenced by the fact that surrogate modeling techniques now appear in multiple commercial NDE simulation tools. Many techniques have been explored such as regular grid methods, polynomial chaos, sparse grids, response surfaces, and Kriging models, among others. While these techniques all offer reduced computational burden for UP and inverse applications, they are still somewhat computationally expensive and require a significant amount of model evaluations. To overcome this, many other communities have adopted a gradient-enhanced approach to surrogate modeling. In many cases, when sensitivities (i.e. gradients with respect to parameters) are included in building a surrogatemodel, convergence of the surrogate can be greatly enhanced. In this presentation, several different gradient-enhanced methods will be presented as applied to NDE models. The convergence of the surrogates will be shown relative to the non- gradient-enhanced surrogate models, and the surrogates will be applied to both UP and inverse problems

    Determining a Core Curriculum in Surgical Infections for Fellowship Training in Acute Care Surgery Using the Delphi Technique

    Full text link
    Background: Recent data highlight the educational, financial, and healthcare benefits of acute care surgery (ACS). These data serve as the impetus to create ACS fellowships, which now are accredited by the American Association for the Surgery of Trauma. However, the core components of a curriculum fundamental for ACS training and that yield competence and proficiency have yet to be determined. Methods: Experts in ACS from the United States (n=86) were asked to propose topics in surgical infectious diseases of potential importance in developing a core curriculum for ACS fellowship training. They were then required to rank these topics in order of importance to identify those considered most fundamental. Results: Thirty-one filters ranking in the highest tertile are proposed as topics of surgical infectious diseases that are fundamental to any curriculum of ACS fellowship training. The majority pertains to aspects of thoracic infections (n=8), although topics of soft tissue infections (n=5) comprised four of the top 10 (40%) filters. Abdominal infections (n=6), the biology of sepsis (n=6), and risk, prevention, and prophylaxis (n=6) completed the list. Conclusion: This study identifies the most important topics of surgical infectious disease that merit consideration for incorporation into a core curriculum of ACS training. Hopefully, this information will assist in the development of ACS fellowships that optimize the training of future ACS surgeons.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140213/1/sur.2012.202.pd

    European derived Saccharomyces cerevisiae colonization of New Zealand vineyards aided by humans

    Get PDF
    Humans have acted as vectors for species and expanded their ranges since at least the dawn of agriculture. While relatively well characterized for macrofauna and macroflora, the extent and dynamics of human-aided microbial dispersal is poorly described. We studied the role which humans have played in manipulating the distribution of Saccharomyces cerevisiae, one of the world’s most important microbes, using whole genome sequencing. We include 52 strains representative of the diversity in New Zealand to the global set of genomes for this species. Phylogenomic approaches show an exclusively European origin of the New Zealand population, with a minimum of ten founder events mostly taking place over the last 1,000 years. Our results show that humans have expanded the range of S. cerevisiae and transported it to New Zealand where it was not previously present, where it has now become established in vineyards, but radiation to native forests appears limited

    Directing Experimental Biology: A Case Study in Mitochondrial Biogenesis

    Get PDF
    Computational approaches have promised to organize collections of functional genomics data into testable predictions of gene and protein involvement in biological processes and pathways. However, few such predictions have been experimentally validated on a large scale, leaving many bioinformatic methods unproven and underutilized in the biology community. Further, it remains unclear what biological concerns should be taken into account when using computational methods to drive real-world experimental efforts. To investigate these concerns and to establish the utility of computational predictions of gene function, we experimentally tested hundreds of predictions generated from an ensemble of three complementary methods for the process of mitochondrial organization and biogenesis in Saccharomyces cerevisiae. The biological data with respect to the mitochondria are presented in a companion manuscript published in PLoS Genetics (doi:10.1371/journal.pgen.1000407). Here we analyze and explore the results of this study that are broadly applicable for computationalists applying gene function prediction techniques, including a new experimental comparison with 48 genes representing the genomic background. Our study leads to several conclusions that are important to consider when driving laboratory investigations using computational prediction approaches. While most genes in yeast are already known to participate in at least one biological process, we confirm that genes with known functions can still be strong candidates for annotation of additional gene functions. We find that different analysis techniques and different underlying data can both greatly affect the types of functional predictions produced by computational methods. This diversity allows an ensemble of techniques to substantially broaden the biological scope and breadth of predictions. We also find that performing prediction and validation steps iteratively allows us to more completely characterize a biological area of interest. While this study focused on a specific functional area in yeast, many of these observations may be useful in the contexts of other processes and organisms

    Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches

    Full text link
    The following article appeared in Applied Physics Letters 103.16 (2013): 164105 and may be found at http://scitation.aip.org/content/aip/journal/apl/100/26/10.1063/1.4729825The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two 210 Pb sources producing ∼130 beta decays/hr. In ∼800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10βˆ’5 at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.This work is supported in part by the National Science Foundation (Grant Nos. AST-9978911, NSF-0847342, PHY-1102795,NSF-1151869, PHY-0542066, PHY-0503729, PHY-0503629, PHY-0503641, PHY-0504224, PHY-0705052,PHY-0801708, PHY-0801712, PHY-0802575, PHY-0847342, PHY-0855299, PHY-0855525, and PHY-1205898), by the Department of Energy (Contract Nos. DE-AC03-76SF00098, DE-FG02-92ER40701, DE-FG02-94ER40823,DE-FG03-90ER40569, DE-FG03-91ER40618, and DESC0004022),by NSERC Canada (Grant Nos. SAPIN 341314 and SAPPJ 386399), and by MULTIDARK CSD2009-00064 and FPA2012-34694. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359, while SLAC is operated under Contract No. DE-AC02-76SF00515 with the United States Department of Energy

    Visualization and Identification of IL-7 Producing Cells in Reporter Mice

    Get PDF
    Interleukin-7 (IL-7) is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC) transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein ) accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging

    Visualization and Identification of IL-7 Producing Cells in Reporter Mice

    Get PDF
    Interleukin-7 (IL-7) is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC) transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein ) accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging

    Thrombospondin-1 Contributes to Mortality in Murine Sepsis through Effects on Innate Immunity

    Get PDF
    BACKGROUND:Thrombospondin-1 (TSP-1) is involved in many biological processes, including immune and tissue injury response, but its role in sepsis is unknown. Cell surface expression of TSP-1 on platelets is increased in sepsis and could activate the anti-inflammatory cytokine transforming growth factor beta (TGFΞ²1) affecting outcome. Because of these observations we sought to determine the importance of TSP-1 in sepsis. METHODOLOGY/PRINCIPAL FINDINGS:We performed studies on TSP-1 null and wild type (WT) C57BL/6J mice to determine the importance of TSP-1 in sepsis. We utilized the cecal ligation puncture (CLP) and intraperitoneal E. coli injection (i.p. E. coli) models of peritoneal sepsis. Additionally, bone-marrow-derived macrophages (BMMs) were used to determine phagocytic activity. TSP-1-/- animals experienced lower mortality than WT mice after CLP. Tissue and peritoneal lavage TGFΞ²1 levels were unchanged between animals of each genotype. In addition, there is no difference between the levels of major innate cytokines between the two groups of animals. PLF from WT mice contained a greater bacterial load than TSP-1-/- mice after CLP. The survival advantage for TSP-1-/- animals persisted when i.p. E. coli injections were performed. TSP-1-/- BMMs had increased phagocytic capacity compared to WT. CONCLUSIONS:TSP-1 deficiency was protective in two murine models of peritoneal sepsis, independent of TGFΞ²1 activation. Our studies suggest TSP-1 expression is associated with decreased phagocytosis and possibly bacterial clearance, leading to increased peritoneal inflammation and mortality in WT mice. These data support the contention that TSP-1 should be more fully explored in the human condition
    • …
    corecore