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Abstract 15 

Humans have acted as vectors for species and expanded their ranges since at least the dawn 

of agriculture. While relatively well characterized for macrofauna and macroflora, the extent and 

dynamics of human-aided microbial dispersal is poorly described. We studied the role which 

humans have played in manipulating the distribution of Saccharomyces cerevisiae, one of the 

world’s most important microbes, using whole genome sequencing. We include 52 strains 20 

representative of the diversity in New Zealand to the global set of genomes for this species. 

Phylogenomic approaches show an exclusively European origin of the New Zealand population, 

with a minimum of ten founder events mostly taking place over the last 1,000 years. Our results 

show that humans have expanded the range of S. cerevisiae and transported it to New Zealand 

where it was not previously present, where it has now become established in vineyards, but 25 

radiation to native forests appears limited.  

 

 

One sentence summary: Genome sequencing shows that humans have unwittingly 

transported wine yeast to the other side of the planet, where this species has become 30 

established in vineyards. 
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Introduction 

Humans have transported other species beyond their natural ranges for thousands of years, 35 

both intentionally for agricultural purposes (Diamond, 2002) and unintentionally as a 

consequence of human migration (Wichmann et al., 2009). Other than disease agents, whose 

effects are apparent once transposed (Mazzaglia et al., 2012), the extent to which humans have 

manipulated the species ranges of microbes is poorly characterized (Litchman, 2010). Previous 

studies suggested microbes have virtually limitless dispersal abilities (de Wit & Bouvier, 2006). 40 

However, while some microbes, such as marine bacteria, appear globally distributed (Pedrós-

Alió, 2006), others, such as hot spring communities, are certainly not (Martiny et al., 2006; 

Valverde et al., 2012; Almeida et al., 2014; Talbot et al., 2014; Taylor et al., 2014; Tripathi et al., 

2014), and the forces which give rise to these microbial patterns are not clear (Hanson et al., 

2012; Morrison-Whittle & Goddard, 2015). Microbes are key components of both natural and 45 

agricultural ecosystems, but we are generally ignorant of the means by which microbes might 

be dispersed, let alone the degree to which humans influence microbial species ranges (Talbot 

et al., 2014; Tripathi et al., 2014).  

 

Phylogeography is the primary method used to study the distributions of organisms in relation to 50 

their genetic diversity (Avise et al., 1987), and allows inference of movements and speciation 

events. Phylogenomics follows this approach but utilizes large portions of genomes, as opposed 

to a few markers (Delsuc et al., 2005). To date phylogenomic studies have mainly been applied 

to plant and animal species (del Campo et al., 2014). While a vast array of robust biogeography 

studies have examined the variance in microbial species distributions (reviewed in Hanson et 55 

al., 2012), there are relatively few that have employed a phylogeographic approach, and those 
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that exist have largely used mtDNA, microsatellite or single-locus genetic markers which can be 

biased or lack adequate resolution (Beheregaray, 2008). However, recent studies have 

examined the population genomics of Saccharomyces yeast species to infer their origin and 

signals for domestication (Almeida et al., 2014; 2015; Barbosa et al. 2016; Ludlow et al., 2016). 60 

The Saccharomyces genus is composed of seven species and originated 10-20 million years 

ago (Hittinger, 2013). All species have complete genomes available and have been used for 

numerous functional (Skelly et al., 2013; Bergstrom et al., 2014), phylogenetic (Drummond et 

al., 2006; Scannell et al., 2011), biochemical (Piskur et al., 2006) and evolutionary (Novo et al., 

2009) studies. S. cerevisiae was the first eukaryote sequenced in its entirety due to its small 65 

12Mb genome. Since then, it has become the best annotated eukaryotic genome (Cherry et al., 

2011) and remains a cornerstone of the genomics community with over well 200 genomes 

available that are being added to consistently (Cherry et al., 2011; Skelly et al., 2013; Bergstrom 

et al., 2014; Almeida et al., 2015; Strope et al., 2015, reviewed in Peter & Schacherer 2016), 

and a further 37 available for its sister species S. paradoxus (Liti et al., 2009; Bergstrom et al., 70 

2014).  

 

The global distribution of S. cerevisiae is becoming increasingly well characterized, as 

demonstrated by the recent revelation of major basal clades in China (Wang et al., 2012), 

discovery of an ancient European population (Almeida et al., 2015), the discovery of hybrid 75 

populations associated with coffee and coca (Ludlow et al., 2016) and novel linages in Brazil 

(Barbosa et al. 2016). One pattern consistently found in all studies to date is the close 

relatedness and short divergence time of a "Wine/European" group (Liti et al., 2009; Schacherer 

et al., 2009; Wang et al., 2012; Cromie et al., 2013). This group includes commercial 

winemaking strains, strains sampled in vineyards and wineries worldwide, as well as strains 80 
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from European forests, and the proposed ancestral European group inhabiting Mediterranean 

oak (Almeida et al., 2015). Using micro-satellite profiles, it has been suggested that dispersal 

from Europe by humans in association with the global spread of viticulture and winemaking 

explains this pattern (Legras et al., 2007). Together this suggests that S. cerevisiae is a species 

with some clades that are closely associated with and dispersed by humans, but there are other 85 

clades present in natural environments and probably dispersed only locally by other means, 

such as insects (Stefanini et al., 2012; Buser et al., 2014), or not at all. A very recent study 

described genetically distinct populations of S. cerevisiae associated with coffee and cocoa in 

Africa and South America (Ludlow et al., 2016); intriguingly these do not contain novel alleles, 

but are inferred to have been created by the mixing of existing populations associated with 90 

European vineyards, American oak trees and the ancestral seat of this species in Far East Asia. 

Ludlow et al. (2016) reasonably suggests that the movement of these strains, and thus creation 

of these populations, was facilitated by humans. Similarly, the recently discovery of a novel 

lineage in Brazil shows it was formed in part by hybridization of migrants from the 

European/wine group with endemic S. paradoxus, which presumably then facilitated the 95 

colonization of native Brazilian trees (Barbosa et al. 2016); it also seems reasonable to infer that 

humans facilitated this radiation event. 

 

New Zealand (NZ) is the last major landmass colonized by humans ~1,000 years ago (Hurles et 

al., 2003) and represents a unique environment to investigate questions concerning species 100 

range expansion. Māori were the first humans to settle in New Zealand, and Europeans did not 

arrive until Captain Cook’s voyage of 1769 (though Abel Tasman sighted NZ in 1642). 

Viticulture was introduced into NZ around 1800. Many of NZ's endemic macroscopic flora and 

fauna have been studied (Wallis & Trewick, 2009); however, extremely limited work has been 
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conducted on the biogeography of microbial species in NZ. Previous analyses, based in 105 

microsatellite profiles and RAD-seq, suggest that NZ harbours a diverse and globally genetically 

distinct metapopulation of S. cerevisiae, with some geographically distinct localized populations 

that are also connected by various levels of gene flow (Goddard et al., 2010; Gayevskiy & 

Goddard, 2011; Cromie et al., 2013; Knight & Goddard, 2015). Strains have been isolated from 

vineyard and winemaking associated niches (Goddard et al., 2010; Knight & Goddard, 2015), 110 

oak trees planted by European migrants (Zhang et al., 2010), and from native NZ forests and 

fruiting trees (Knight & Goddard, 2015; Gayevskiy & Goddard, 2016). While small in terms of 

global production, the New Zealand wine industry commands a strong position in the premium 

market and this sector is significant to the NZ economy. Saccharomyces yeast play a role in the 

production of wine, including potentially being part of the process that geographically 115 

differentiates wines (Knight et al. 2015). Along-side the academic interest in Saccharomyces 

ecology and population biology (Goddard & Grieg, 2015) their role in winemaking adds 

economic interest to understand the origin of Saccharomyces cerevisiae populations. One 

recent study suggests the presence of an ancient population of the yeast Saccharomyces 

uvarum in Australasia, but this species is certainly not endemic to NZ, nor is there evidence for 120 

an NZ-specific population (Almeida et al., 2014). Another study only recently reported the 

presence of Saccharomyces eubayanus and Saccharomyces arboricola in New Zealand, but 

the age and origin of these species is uncertain (Gayevskiy & Goddard, 2016).  

 

 Here we ask why S. cerevisiae is present in New Zealand, and use phylogenomic methods to 125 

evaluate its history and range expansion. Two extremes present themselves, either: 1) there 

was an ancient S. cerevisiae population present in NZ prior to humans arriving under 1,000 

years ago; or 2) that this species was transported to NZ by humans with winemaking who 
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unwittingly expand this species’ range along with exotic fruit bearing plants and trees. Of course 

some mix of the two is also possible.  130 

 

 

Materials and Methods 

Strain Selection and Sequencing 

The K-means clustering algorithm used to identify maximally divergent genotypes was 135 

implemented in R (R Development Core Team, 2011). Sulfite tolerance was assayed by plating 

onto YPD with either 10, 15 mM or 20 mM sodium metabisulfite in triplicate and scoring the 

growth of colonies as full, partial or none after 2 days at 28 °C. Each strain was propagated in 

YPD and high molecular weight genomic DNA was extracted using the Qiagen™ Blood & Cell 

Culture DNA Kit. Libraries were constructed using the Illumina TruSeq Nano DNA Sample Prep 140 

Kit with 550 bp insert size. Sequencing was carried out at the Beijing Genomics Institute (China) 

on a single 150 bp paired-end lane of an Illumina HiSeq 2000. 

 

Genome Mapping and Quality Control 

Each sequenced genome was treated identically using a custom bioinformatics pipeline written 145 

in Perl. This pipeline is outlined below. 

 

Quality Control and Trimming FASTQC (v0.10.1; Andrews, 2012) was used for quality control 

of each library and to determine optimal trimming parameters. Trimming was conducted with 

Trimmomatic (v0.25; Lohse et al., 2012) using the following parameters: "LEADING:3 150 
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TRAILING:3 SLIDINGWINDOW:3:20 MINLEN:30". Following trimming, FASTQC was executed 

on the trimmed reads for comparison with the initial reports. 

 

Mapping and Variant Calling All trimmed reads were mapped against the S. cerevisiae 

reference strain S288C using Bowtie2 (v0.12.7; Langmead & Salzberg, 2012). Following 155 

mapping, samtools (v0.1.18; Li et al., 2009) was used for alignment conversion, sorting and 

indexing. A variant call file was produced using the mpileup command within samtools with the 

"-Bu" parameters. The variant call file was used to create a consensus genome without the 

reference to allow for INDELs using the vcf2fq Perl script within samtools. Putative 

heterozygous positions were conservatively called as ‘N’ as the phylogenetics and population 160 

genetics methods utilized do not support ambiguous calls. Heterozygous positions were 

quantified with a custom Perl script which filtered out positions with a sequencing depth below 

10 or above 100 and a genotype quality below 20. 

 

Data Availability We have made our raw sequence data and consensus genomes aligned to 165 

S288C (Goffeau et al., 1996; EBI:GCA_000146045.2) publicly available at SRA: SRP042301 

and BioProject: PRJNA247448. 

 

Sequence Extraction from Sequenced and International Genomes 

In addition to the 52 genomes sequenced here, a further 72 S. cerevisiae and 37 S. paradoxus 170 

genomes were obtained from the Saccharomyces Genome Database (http://yeastgenome.org), 

NCBI, the Saccharomyces Genome Resequencing Project 

(https://sanger.ac.uk/research/projects/genomeinformatics/sgrp.html) and from Huang et al., 
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(2014) in the form of consensus genomes and/or raw data. To obtain an accurate estimation of 

the relatedness of the genomes, we extracted the well-known set of 106 orthologous loci spread 175 

through the genome of S. cerevisiae and present in all Saccharomyces species (Rokas et al., 

2003). The sequences of these 106 loci were extracted by searching the S288C sequence for 

each locus against each consensus genome using the BLAST algorithm. Only genomes with 

complete sets of 106 loci were retained for phylogenetic analysis. 

 180 

All sets of 106 loci were subjected to a multiple sequence alignment using clustalw (v.2.1; Larkin 

et al., 2007) within Geneious (v6; Biomatters Ltd., 2012). Alignments were manually curated 

within Geneious due to the frequent homopolymer indels present in some of the genomes due 

to older sequencing technology. We created a second dataset comprising 13 loci sequenced 

from 99 S. cerevisiae strains isolated in China (Wang et al., 2012). Only these loci were 185 

sequenced from these Chinese strains with no overlap with our main dataset. The consensus 

sequence for each of these loci was used to search against all available genomes outlined 

above. Genomes with complete sets of all 13 loci were retained for phylogenetic analysis. We 

used five S. paradoxus genomes as an outgroup, although four of the loci include intergenic 

regions and the S. paradoxus genomes did not yield these loci. The remaining nine loci were 190 

sufficient for phylogenetic analysis. Multiple sequence alignments were carried out in the same 

way as for the 106 loci dataset. 

 

Phylogenetics 

Phylogenetic analyses were conducted using BEAST (v1.7.5; Drummond & Rambaut, 2007) on 195 

the finalized sequence alignments for both data sets. A number of scenarios were run to explore 
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the relationships between genomes and to determine the stability of inferred relationships by 

locus and dataset. 

 

Substitution and clock models were unlinked for all loci in all analyses to facilitate their 200 

independent estimation. Trees were linked to obtain a consensus tree using all loci. All 

substitution model and rate options were left on default due to the large increase in processing 

time observed when any were changed. A lognormal relaxed clock (uncorrelated) was used with 

an exponential distribution of mean 0.3. All runs were conducted with 1 billion iterations due to 

the size of the data sets. We verified MCMC convergence by examining the effective sample 205 

sizes of all parameters in each analysis and with visual inspection of the traces. 10 to 40% of 

each run was discarded as burn-in depending on the convergence of the MCMC trace. 

Separate phylogenetic analyses were conducted for the two clades found housing NZ strains in 

the 106 loci dataset. These used S288C as the outgroup to determine high-resolution structure 

within these clades. Parsimony analyses including permutations of NZ and Europe terminal taxa 210 

status, and calculations of the minimum change of this state over these phylogenies, were 

conducted in Mesquite (Maddison & Maddison, 2014).  

 

We used the published divergence date estimates between S. cerevisiae and its sister species 

S. paradoxus as a calibration point for the divergences of clades within our phylogenies (Liti et 215 

al., 2006). Divergences between clades within phylogenies are typically estimated using 

molecular clocks and/or by calibration time points of established species divergences using 

fossils. Molecular clocks for S. cerevisiae are not in wide use due to the difficulty of estimating 

clock-like rates of evolution in a species with unknown generation times in its natural 

environment and high rates of inbreeding. The time of the common ancestor of S. cerevisiae 220 
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and S. paradoxus has been estimated at 0.4 to 3.4 mya (Liti et al., 2006). The molecular 

substitution rate observed between the split of the S. cerevisiae and S. paradoxus genomes 

was assumed to correspond to this time period. To estimate the divergence date of a particular 

clade, the proportional substitution rate for the clade was calculated against the calibration point 

to give a date estimate. 225 

 

Population Metrics and Structure 

We utilized ANGSD (v0.588; Nielsen et al., 2012) to generate population genomic metrics. 

ANGSD operates on short read alignment bam files which affords statistical robustness in 

calculating the site frequency spectrum in comparison with traditional tools operating on a set 230 

genotype. Given this requirement, we could only use genomes with raw data available from 

Illumina sequencing technology. This was aided by the recent resequencing of diverse 

worldwide strains (Bergstrom et al., 2014). We thus created three superset subsets: the NZ 

strains (52), the previous and the Wine/European strains (66) and the previous with all 

remaining strains (75). The number of sites and the number of segregating sites for each 235 

population was determined from the Mean Allele Frequency calculations in ANGSD with the 

minInd parameter set to the number of strains per population and the minMaf alternatively set to 

0 and 0.01. Only high quality data were used (minQ=20 and minMapQ=30). Watterson’s 

Estimator (θ) (Watterson, 1975), Tajima’s Pi (π) (Tajima, 1989) and Tajima’s D (Tajima, 1989) 

were calculated by first calculating the site allele frequency likelihood, then the maximum 240 

likelihood estimate of the SFS, then the thetas per site and finally summarized with the thetaStat 

utility in ANGSD. 
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Tests for admixture within the S. cerevisiae genomes were conducted with Structure (Pritchard 

et al., 2000) due to the haploid nature of some of the genomes in our dataset. We chose to 245 

include all strains of S. cerevisiae where a consensus genome consisting of entire 

chromosomes was available to capture entire genomic diversity. The chromosomes of the 93 

strains that met these criteria were aligned using Mauve (v2.3.1; Darling et al., 2004) within 

Geneious (v6; Biomatters Ltd., 2012) and any nucleotide positions where either all strains 

showed no variation or at least one gap was present were removed. The remaining positions 250 

were run through Structure using the admixture model with 10,000 iterations of burn in followed 

by 20,000 iterations of analysis. K values between 2 and 20 were used with 3 replicate chains 

for each value of K to check for convergence, and the optimal number of sub-populations 

inferred using the Evanno method (Evanno et al., 2005). Population classifications were not 

used for the prior. Resulting ancestry profiles were objectively analyzed using ObStruct 255 

(Gayevskiy et al., 2014) to determine the extent that geographic origin, niche of isolation and 

our phylogenomic analysis explains inferred population structure.  

 

Results 

Strain Selection  260 

We collated data from six recent studies that have surveyed for S. cerevisiae across New 

Zealand (Table 1; Serjeant et al. 2008; Goddard et al. 2010; Zhang et al. 2010; Gayevskiy & 

Goddard 2012; Knight & Goddard 2015; Gayevskiy & Goddard 2016). S. cerevisiae has been 

isolated from over 99% of spontaneous ferment samples, 10% of vineyard samples and only 1% 

of forest/tree samples. The order of magnitude difference in recovery of this species is not due 265 
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to differential sampling effort as most effort was spent sampling native forests, then vineyards 

and least for spontaneous ferments (Table 1). Just six genotypes (characterized at 9 

microsatellite loci; Richards et al., 2009) have been recovered from trees/forests – one of these 

was from an exotic oak tree (Zhang et al. 2010), but microsatellite profiling showed this to be 

very closely related to DBVPG1106 – a strain isolated from Australian vineyards which clusters 270 

with the wine/European group for which whole genome sequence is already available, and is 

included in this study (Zhang et al. 2010). Population genetic analyses of the remaining five 

genotypes isolated from native NZ forests show these to be homogeneous with their regional 

vineyard and spontaneous ferment populations: there is no evidence for genetic differentiation 

between strains isolated from native forests and their vineyard counterparts (Knight & Goddard, 275 

2015). Thus, it is clear that S. cerevisiae is very common in NZ spontaneous ferments, and at 

reasonable abundance in vineyard habitats, but rare in NZ native forests. This observation, and 

the fact that S. cerevisiae populations in these three habitats are connected within each region 

of NZ (Knight & Goddard, 2015), means the most likely explanation is that there is just one S. 

cerevisiae meta-population in NZ closely associated with vineyards and ferments, but members 280 

of this population are transposed to native habitats at some low rate. There is no evidence that 

NZ harbours another genetically distinct S. cerevisiae population that is not primarily associated 

with ferments and vineyards.  The question we ask here concerns the origin of this group. To 

address this question we need data from a set of genomes that best reflects the genetic 

diversity in this population: this is the most pertinent parameter relevant to elucidating the origin 285 

of this species in NZ. We thus identified a set of 52 maximally divergent S. cerevisiae genotypes 

from the of 724 in our database using k-means clustering of microsatellite profiles; these are 

detailed in Table S1.  
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Sequencing and Mapping 290 

Sequencing of genomes derived from clonally expanded diploid populations yielded an average 

of 5.1 million 150bp paired-end reads per strain for a total of 39.8Gbp of data. An average 

mapping rate of 97.16% was obtained for all genomes using the S288C genome as a reference, 

with an average coverage of 61X, and mapping quality of 38.78 (Phred score). An average of 

52,421 (SE=532) SNPs and 4,915 (SE=36) INDELs were obtained for each genome. This 295 

number of SNPs is entirely consistent with other S. cerevisiae strains sequenced on the same 

platform from a diversity of international locations and niches (e.g. Bergstrom et al., 2014). The 

average number of heterozygous SNPs per strain was 7,274 (SE=805) which is consistent with 

that found for other vineyard isolates (Magwene et al., 2011), but heterozygosity levels ranged 

from ~3,000 to ~31,000 (6% to 43% of all SNPs) across the 52 NZ genomes. Cursory analyses 300 

of large-scale copy number variations indicate the genome of 6-Sol7-2 contains three copies of 

chromosome 4 and 27-WI_S_JASA_13 contains three copies of the first half of chromosome 7. 

Further, 37 of the 52 NZ genomes show large copy numbers (1.5-50X) of locus YGR201C 

(unknown function) on chromosome 7. We stress that the main hypothesis under test is the 

phylogeography of S. cerevisiae, and thus we do not concentrate on the details of fine-scale 305 

differences between genomes any further here.  

 

Population Genomic Statistics 

First we compared the NZ derived genomes to one another and then to 14 previously published 

genomes that either derived from Europe or are associated with winemaking, which form a tight 310 

clade, and finally to a further nine genomes derived from a diversity of locations and niches 

(Table S2). Only genomes with high quality data (Illumina sequencing with ~30X or greater 
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coverage) were included in this analysis. We only included sites that had high quality read data 

for all genomes, and thus the number of comparable homologous sites reduced as more 

genomes were added due to the increase in missing data for some of the existing genomes. 315 

The number of segregating sites is proportionately similar between the Wine/European group 

and the NZ population, but nearly doubles when the other genomes are added, indicating their 

relative divergence  (Table 2). Pi is a measure of nucleotide diversity (Tajima, 1989) and the NZ 

and Wine/Europe populations appear identical in terms of nucleotide diversity, but again the 

inclusion of the non-wine/Europe genomes leads to a 30% increase in this statistic. This 320 

suggests the NZ derived genomes are more similar to the genomes deriving from Europe or 

associated with winemaking than to genomes derived from elsewhere. It is tempting to further 

investigate comparative population genetics, but since the international samples are not random 

representatives of a population this defies many of the assumptions underlying population 

genetic calculations, and so we have not pursued this here. 325 

 

Phylogenomic Approaches 

First we employed phylogenomic methods to evaluate long-term within-species population 

structure. Initially we chose a comprehensive set of 106 orthologous loci compiled by Rokas et 

al. (2003) for analyses due to their distribution across the genome, presence in all 330 

Saccharomyces species, and their proven capability to provide a robust phylogenetic signal. We 

did not use the entirety of the genomic data due to potential problems with identifying orthologs 

and paralogs. Of the existing 72 S. cerevisiae and 37 S. paradoxus genomes, 60 and 36 

respectively contained these 106 loci; the remaining genomes had insufficient or low quality 
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sequencing coverage for at least some of the loci (Table S2). All 52 NZ genomes contained 335 

complete sets of these 106 loci. 

 

Rampant recombination among these genomes, which would be indicated by more of network-

like than tree-like relationships, would significantly decrease the validity of using a phylogenetic 

approach for the analyses of these genomes due to its assumptions regarding bifurcating 340 

relationships. Neighbour-net (Huson & Bryant, 2006) analysis (Figure S1) reveals a topology 

that to a first approximation shows a more tree-like than network-like structure, suggesting little 

recombination between major groups, and thus lends greater confidence for the use of 

phylogenetic approaches to evaluate some of the relationships between these genomes. To 

place the NZ population in a global context, we reconstructed a phylogeny using Bayesian 345 

approaches and included the 36 S. paradoxus genomes for calibration and rooting purposes 

(Figure 1). The inclusion of NZ genomes reproduces an overall global topology that is 

comparable to earlier analyses (Liti et al., 2009; Schacherer et al., 2009). Strikingly, 85% of the 

NZ strains, including the strain isolated from a native forest, are interspersed within the 

Wine/European clade (Figure 1). The resolution within this clade is extremely poor, suggesting 350 

this comprises a contemporaneous population experiencing gene flow and recombination, and 

the relatively short branch lengths show little time since divergence. This represents the first 

piece of evidence that the S. cerevisiae in NZ have a significant portion of ancestry, and thus 

derive from, and are in fact part of, the European population. Not all NZ strains fall within this 

Wine/European group however. The remaining 15% of NZ strains form a sister clade to the 355 

Wine/European group, with the inclusion of I14 and Y55, which are two soil isolates from 

Europe. Resistance to sulphite is a key defining phenotype of the S. cerevisiae lineage 

associated with viticulture and winemaking as sulphur is and has been used as an anti-microbial 
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in both vineyards and wineries (Pretorius, 2000; Aa et al., 2006). To evaluate whether this 

smaller group might represent a population not associated with wine, we tested the sensitivity of 360 

these to sulphite. There is no significant difference in resistance to 10, 15 and 20 mM sulphite 

between the NZ and European groups as determined by plate assays (F[1,105] 1.59, 0.53, 0.00  

respectively and all P<0.21), but these two groups are significantly more tolerant to 10, 15 and 

20 mM sulphite than the rest of the non-wine associated strains (F[2,129] 54.3, 20.9, 8.9 

respectively and all P>0.0002); Figure 2. 365 

 

Previously identified clades (Liti et al., 2009; Schacherer et al., 2009) are reconstructed and 

expanded with our analyses due to the inclusion of further recently sequenced genomes. The 

North American clade includes additional strains sampled from Missouri (T7) and Bahamas 

(UWOPS83_787_3), the West African clade contains the PW5 strain sampled from Nigerian 370 

palm wine and the Sake clade contains an additional three strains (UC5, Kyokai7 and ZTW1). 

Several new clades are present for laboratory and bioethanol strains. Apart from the Sake 

clade, the ordering of the clades in relation to the S. paradoxus outgroup places strains isolated 

from non-agricultural niches as basal while agricultural and biotechnological associated strains 

are relatively derived indicating their more recent formation. Strains not residing in these clades 375 

are interspersed through the tree and tend to be positioned at the ends of longer branches and 

could indicate the presence of further under-sampled populations or represent chimeric strains 

with ancestry in multiple clades. 

 

Recently, a large novel diversity within S. cerevisiae was revealed by the sequencing of 13 loci 380 

from 99 strains isolated in China, leading to suggestions this species originated on the Asian 

continent (Wang et al., 2012). We extracted these loci from all available whole genomes, 
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resulting in 214 S. cerevisiae comprising: 99 Chinese strains, 52 NZ strains, 60 strains used in 

the first analysis, and a further three international strains containing these six loci (Table S2). 

We reconstructed a phylogeny with these 13 loci (Figure S2). Posterior probabilities for all 385 

labelled clades shown in Figure S2 were >0.92 indicating adequate resolution, but the posterior 

probabilities for relationships of individuals within these clades, particularly within the 

Wine/European/NZ clade, was very poor, likely due to gene tree incongruence. Broadly, our 

analyses agree with earlier findings, and all eight Chinese lineages previously identified (Wang 

et al., 2012) were reconstructed. The tree features a large split between strains that have been 390 

sampled from non-agricultural environments regardless of sampling location, and those that are 

closely associated with human activity. The exception to this is the Sake clade which tends to 

cluster with non-agricultural strains due to a hypothesized secondary domestication event (Fay 

& Benavides, 2005). The genetic diversity (branch lengths) within the human-associated clades 

are significantly lower than for the other clades, which, taken with low posterior probabilities, 395 

implies incomplete lineage sorting and/or high rates of admixture for human-associated strains. 

 

 

Population Genetic Approaches 

S. cerevisiae is a sexual eukaryote, and along with the reasonable rates of heterozygosity 400 

revealed here, previous analyses show that while it tends to inbreed, there is clearly a 

reasonable amount of outcrossed recombination and gene-flow between sub-populations 

occurring in the NZ population (Goddard et al., 2010; Gayevskiy & Goddard, 2011; Knight & 

Goddard, 2015), and the inference of recombination and hybridisation in global studies suggest 

this may well be the case at larger scales (Liti et al., 2009; Cromie et al. 2013; Barbosa et al. 405 
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2016; Ludlow et al. 2016). The degree to which phylogenomic methods are able recover any 

signal when there is diffuse population structure is not clear: i.e. when some population 

differentiation is present but with reasonable gene flow and recombination between sub-

populations. To enable us to analyse a spectrum of possible population structures, from 

completely homogenized through to highly structured due to ancient divergences, we use 410 

complementary Bayesian-based population genetic methods capable of inferring finer degrees 

of population structure that account for recombination implemented in STRUCTURE (Pritchard et 

al., 2000), and the subsequent analyses of ancestry profiles by OBSTRUCT (Gayevskiy et al., 

2014). From the 11,059,143 nucleotide positions in the 93 aligned concatenated genomes, any 

which were uninformative or had missing data were conservatively removed leaving a total 415 

66,316 robustly informative positions for population structure analysis. We employed Bayesian 

population structure approaches that account for and incorporate recombination (admixture) 

between strains. These population genetic approaches infer the presence of four populations 

using the Evanno method (Evanno et al., 2005) as implemented in Structure Harvester (Earl & 

vonHoldt, 2011). Figure 3 shows the resulting ancestry profiles: each vertical column represents 420 

a strain and the colours show the proportion of ancestry of each strain to each of the four 

inferred populations. Strains that have different degrees of ancestry in different sub-populations 

are a result of mating and recombination between strains (or their ancestors) originating from 

different sub-populations. There is a progressive and gradual increase in ancestry to the orange 

inferred population as one moves from the assumed ‘natural’ strains on the left to the 425 

increasingly ‘human-associated’ strains on the right. Again, the NZ strains fall together and with 

the European strains, but with varying degrees of ancestry. It is clear that these various 

populations are not discrete: there are signals for some gene flow and genetic mixing among 

the species as a whole. 
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 430 

We went on to analyse the inferred ancestry profiles (Gayevskiy et al., 2014) to determine 

whether geographic origin or niche of isolation might correlate most strongly with population 

structure. This analysis shows that variance in genetic structure in the NZ population correlated 

with niche of isolation (R2=0.51, P<0.0001) only marginally more than geographic origin 

(R2=0.45, P<0.0001). Unsurprisingly, the amount of genetic variance explained (R2) is greater 435 

(R2=0.74, P<0.0001) when ancestries are compared to those groups revealed from the 

independent phylogenetic analyses shown in Figure 1, rather than simply geographic origin or 

niche of isolation. This shows that neither geographic location nor niche/‘use’ alone is sufficient 

to describe the observed population structure, and is exactly in line with the recent conclusion of 

Almeida et al. (2015) who examined the global population but included European oak 440 

population. Thus, the most accurate picture is one of a global metapopulation of connected sub-

populations inhabiting various places and niches, and recapitulates the picture seen at national 

levels (Knight & Goddard, 2015).  

 

No evidence for hybridization with other Saccharomyces species 445 

Barbosa et al (2016) recently reported novel S. cerevisiae lineages in Brazil that are related to 

Japanese and North American lineages, but the Brazilian populations also contain signals for 

mating and introgression with the wine/European group, as well as hybridization and 

introgression with American S. paradoxus. This hybridization and subsequent introgression 

conceivably provided novel genetic combinations better adapted to inhabit Brazilian native 450 

biomes. Ludlow et al (2016) reported lineages associated with coffee and cocoa were created 

by the hybridization of genomes from the European/wine with north American and Chinese 
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populations. Might the NZ S. cerevisiae have undergone a similar process – where hybridization 

with an endemic Saccharomyces, or some other Saccharomyces cerevisiae population, 

provided an opportunity for more effective adaptive radiation in New Zealand? For the 455 

Saccharomyces species know to be present in NZ, S. paradoxus has been inferred to have 

recently migrated from Europe with oak trees (Zhang et al, 2010). The single representative of 

S. eubayanus is also inferred to have recently arrived from South America (Gayevskiy & 

Goddard 2016). However, there is evidence to suggest that S. uvarum and S. arboricola may 

have more ancient populations in NZ (Almeida et al., 2015; Gayevskiy & Goddard 2016). 460 

Following Gayevskiy and Goddard (2016), alignment for all 52 NZ S. cerevisiae genomes to 

reference genomes for the other Saccharomyces species show that all align best to S. 

cerevisiae, with an average of 97.2%, and a minimum of 93.2% (Table S3). The two 

Saccharomyces species to which the NZ S. cerevisiae align the poorest are the two candidates 

for potential endemic NZ species, with a maximum of just 43%. Further, there is no evidence for 465 

large blocks of NZ S. cerevisiae genomes to be more greatly related to any species other that S. 

cerevisiae (Table S3). Together, this provides no evidence for recent hybridization or 

introgression event in the NZ S. cerevisiae group from other species. Thus, given the data 

available, it appears the NZ S. cerevisiae population derive exclusively from the European/wine 

group. Further, the earlier ancestry profile analysis shows most of the NZ strains have the 470 

majority of their ancestry in the wine/European group – i.e. most NZ strains are ‘clean’ 

wine/European strains. 

 

 

Number and Timing of NZ Incursion Events 475 
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It is clear that the NZ S. cerevisiae population derived from Europe. But how many times might 

strains have been transferred from one side of the planet to the other, and when did this occur? 

We define incursion events as transfers to NZ that have become established enough for us to 

detect strains, or related lineages deriving from such strains, which are thus founder events. 

The theoretical number of incursion events ranges from just one to approximately 2,000 as this 480 

represents the best estimate for the number of different S. cerevisiae genotypes currently 

present in NZ (Knight & Goddard, 2015). First we evaluate whether there is any evidence to 

support a single founder event, versus multiple incursions given these data. A single founder 

event would mean that all current NZ S. cerevisiae would coalesce to a single ancestor. One 

signal for this would be the presence of shared fixed alleles in the NZ but not European 485 

population. Of the 66,316 SNPs none are fixed in the NZ genomes, providing no strong 

evidence for a single founder event. 

 

We acknowledge the tentative nature of this analyses given the relatively few strains for which 

we have sequences, but wished to estimate the likely minimum number of incursion events 490 

given our data to provide a lower bound to this rate, and appropriately used a maximum 

parsimony approach to analyse this. Under this minimal change parsimony framework, the best 

explanation for clades entirely comprised of NZ derived genomes is that the ancestor of this 

clade was transported to NZ from Europe. Thus, we modelled the minimum possible incursion 

events into NZ by minimizing the change from ‘Wine/European’ to ‘NZ’ strain status over the 495 

phylogeny (Figure 4). The minimum number of transfer events inferred by this analysis is ten 

(one and nine in each of the two clades where NZ isolates are present). By comparisons to null 

distributions, this observed number of incursion events is significantly less than we would expect 

to see by chance (P=0.0116 and P< 0.0001 for each clade given 10,000 permutations of 
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terminal taxa status) given these phylogenies and proportions of NZ and European derived 500 

genomes. As an alternate approach, strains that survived transport to and establishment in NZ 

might tend to sire independent lineages, and this signal might be revealed by the presence of 

separate sub-populations in NZ. To test this we analysed the population structure in these 

genomes using STRUCTURE (Pritchard et al., 2000), and the optimal number of inferred sub-

populations is 11 across the two clades that harbour NZ derived genomes. The inferred number 505 

of sub-populations is in line with the number of incursion events suggested by parsimony 

analyses. 

 

It appears the movement of S. cerevisiae from Europe to NZ is thus not only detectable but also 

constrained. The question under scrutiny here is the extent to which humans have expanded 510 

microbial species ranges. Just because we infer at least ten incursion events from Europe, this 

does not necessarily prove that humans were the agents of transfer; S. cerevisiae might have 

been moved by other means and been present before humans arrived. Humans only arrived in 

NZ about 1,000 years ago, and winemaking only in the last ~200 years (Hurles et al., 2003), so 

next we attempted to estimate the ages of the NZ clades. Again, under a parsimony framework, 515 

these potentially represent the ages of lineages and populations that have expanded since their 

ancestors arrived in NZ. Given our data, the substitution rate between S. paradoxus and S. 

cerevisiae is 0.3366. Dating microbial phylogenies is difficult, and the time to the common 

ancestor of S. cerevisiae and S. paradoxus has been estimated between 0.4 and 3.4 mya (Liti 

et al., 2006). If the molecular substitution rate is assumed to be constant across this time period, 520 

then the potential ages of these ten clades may be simply estimated by calculating the 

proportional distance of the relevant nodes compared to the node defining the S. paradoxus/S. 

cerevisiae split. With this approach the lower bound timing estimates of S. cerevisiae incursions 
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into NZ from Europe spans from approximately 60 to 5,000 years ago (Figure 4). However, we 

note that large confidence limits around the timing of the S. paradoxus and S. cerevisiae split 525 

(Liti et al., 2006) clearly translate into large limits around the estimates for incursions into NZ. 

Without wanting to overly extrapolate these tentative timings, it is interesting to note that most 

inferred incursion events are just above or well below the 1,000 year cut-off, and just one is 

substantially older. This one ‘older’ event is the inferred incursion event from the smaller sister 

clade to the Wine/European group, where eight NZ derived genomes cluster with soil isolates 530 

from Europe (Figure 4). Given the uncertain nature of the dating of this phylogeny combined 

with the assumptions of constant substitution rates, apart from one possible exception, there is 

no compelling evidence to suggest that S. cerevisiae has been in NZ significantly longer than 

humans have. Thus, human introduction appears the most likely explanation for S. cerevisiae’s 

presence in NZ. 535 

 

Lastly, we estimated the node containing the entire Wine/European/NZ group to be between 

4,635-39,394 years old. This estimate overlaps with the earliest evidence for humans producing 

fermented drinks some 9,000 years ago in China (McGovern et al., 2004), and this places all the 

S. cerevisiae found in NZ in the group that expanded along with the human passion for 540 

viticulture and winemaking. 
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Discussion 545 

These data reveal that the S. cerevisiae inhabiting NZ originated from Europe. We estimate a 

minimum of ten incursion events founded the NZ population. It appears that this species has 

been transported to NZ and has become successfully established in vineyards, but that 

radiation to native forest habitats is rare, but detectable. This may be due to low rates of 

movement or that this S. cerevisiae population is poorly adapted to NZ native forest niches, or 550 

both. S. arboricola inhabits NZ native forests, but unlike S. cerevisiae populations in habiting 

Brazilian native forests, which hybridized with endemic S. paradoxus, there is no evidence that 

the NZ S. cerevisiae have hybridized with endemic S. arboricola. Due to the very recent arrival 

of S. cerevisiae to NZ, perhaps this is occurring currently, or will do soon. 

 555 

Permutation analyses suggest the rate of incursion into NZ is not rampant. However, analyses 

estimating the number of incursions might produce an erroneous result not necessarily due to 

analytical reasons, but mostly due to the unequal number of samples deriving from NZ and 

European populations. Recall the NZ strains were deliberately chosen to represent the genetic 

diversity in NZ based on surveys from both vineyard and native forest habitats, but it might well 560 

be that with increased sampling in the European wine group one finds strains that interdigitate 

among NZ strains in various clades. This would elevate the number of estimated transitions 

from Europe. However, additional data may not show this pattern; either way, here we estimate 

the minimum number of incursion events given the data available. Under the assumption that 

the largest NZ clade was founded by a single strain, which has then radiated in NZ, one can 565 

compare metrics that might provide insights into the evolution of S. cerevisiae since arriving in 

NZ. The largest NZ clade (defined by node 2 in Figure 4) has values of π = 1909, θw = 2114, 



 26 

and Tajima’s D = -0.41. This compares to π = 1155, θw = 1305, and Tajima’s D = -0.43 for a set 

of 10 Wine/European Genomes, and implies possibly greater genetic diversity, but no more 

compelling signal for selection, in this NZ clade compared to the Wine/European group 570 

generally.  

 

The estimates concerning timings of these incursion events are less certain. This is due to the 

problems associated with dating microbial phylogenies in general, owing to the lack of fossils, 

and then extrapolating the uncertain estimates we have to relatively recent divergence events. 575 

Whilst the mutation rate of S. cerevisiae has been estimated (Lang & Murray, 2008), this has 

been deduced using a few strains under laboratory conditions. A further complication is that we 

have very little idea of absolute mitotic and meiotic generation times in nature, making 

calibrations of absolute timings using mutation rates a fruitless way forward (Goddard & Grieg, 

2015). Here we make assumptions about the constancy of the rates of molecular evolution. 580 

Given these caveats, we estimate the likely timings of these incursions, and their lower bounds 

are not greatly above, and indeed are mostly below 1,000 years ago (Figure 4). Another 

possible reason for an inaccurate inference in terms of transfer timings also stems from a lack of 

sampling: strains might have migrated only very recently to NZ even though their last common 

ancestor with a European strain occurred thousands of years ago. 585 

 

Previous analyses, using repeat regions, showed the NZ S. cerevisiae population as 

internationally genetically distinct (Goddard et al., 2010). The analysis of whole genomes here 

does not agree with this. This discrepancy might be explained by the fact that repeat loci evolve 

rapidly and thus are capable of resolving finer levels of population differentiation than average 590 

signals from whole genomes (or many loci) can. Significant signals for differentiation revealed 
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by analyses using repeat regions would occur if rates of gene-flow (incursion events) between 

Europe and NZ are relatively low, and less than the rates of evolution at these repeat regions: 

analysis here suggests the number of incursion events into NZ have not been that great, and 

thus correlates with this idea. The sequencing of diploid genomes here allows rates of 595 

heterozygosity to be calculated, and these are on average similar to those previously estimated 

(Magwene et al., 2011); however, the variance in rates of heterozygosity in the NZ genomes is 

substantial (from 6% to 43% of SNPs). Such rates of heterozygosity may be explained, at least 

in the NZ group, by the inference that ~20% of mating events are outbred combined with 

reasonable levels of gene-flow between sub-populations (Knight & Goddard, 2015), and that the 600 

European/ wine group more generally have elevated outcrossing rates (Peter & Schacherer, 

2016). 

 

Together, these estimates of origins and timings strongly suggest that humans introduced S. 

cerevisiae into NZ recently, and thus expanded the range of this species. This pattern correlates 605 

with the previous observation of S. cerevisiae presence in new oak barrels from Europe once 

arrived in NZ (Goddard et al., 2010). The signals provided by these phylogenomic analyses are 

also in line with work showing trends in S. cerevisiae population division that correlates with the 

expansion of viticulture globally (Legras et al., 2007). This extent of human mediated movement 

is also consistent with the analyses of cocoa and coffee populations in Africa and Europe, 610 

where approximately three significant movements from Europe, North America and Asia to 

Africa and South America were inferred, and migration of wine strains to Brazil which hybridized 

with S. paradoxus. 	However, there were no estimations regarding the timing of either the Brazil 

or cocoa and coffee strain movements (Barbosa et al., 2016; Ludlow et al., 2016). In addition, 

analysis of a handful of S. paradoxus isolates from NZ also infer transfer from Europe to NZ 615 
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associated with the movement of another plant species by humans: Quercus (oak trees) (Zhang 

et al., 2010). It is interesting to note that and S. uvarum is inferred to have been present in 

Australasia, and possibly S. arboricola in NZ, well before humans might have been, and so it 

seems that the ranges, modes and ages of dispersal of these sister taxa differ. 

 620 

The earliest evidence for the human use of S. cerevisiae for fermentation has been dated to 

approximately 9,000 years ago and comes from pottery jars in China (McGovern et al., 2004). 

The earliest evidence for wine production comes from Iran approximately 7,400 years ago and 

seeds of domesticated grapes have been found in Georgia and Turkey and dated to 

approximately 8,000 years ago (This et al., 2006). Winemaking then spread to adjacent areas 625 

and around the Mediterranean approximately 5,000-5,500 years ago (This et al., 2006). Our 

results show strains associated with winemaking are closely related to one another regardless 

of geographic location. The archaeological dates allow another way to calibrate the dating on 

this phylogeny and indicate that the split between S. cerevisiae and S. paradoxus is closer to 

the lower bound of 0.4 mya than the upper of 3.4 mya. 630 

 

Overall the analyses conducted here add further support to the concept that humans have 

facilitated the global transfer of this microbial species through our agricultural activities, and thus 

have significantly expanded this species’ range. In doing so, it appears humans have provided 

an opportunity for one lineage of S. cerevisiae to radiate to and become established in areas 635 

well beyond the ancestral range for this species. Not only has the transfer of this species 

provided an opportunity for it to become established in New Zealand’s agricultural ecosystems, 

but it is now also found in natural forest ecosystems. Whether S. cerevisiae has or may become 

established in NZ native forest ecosystems is debatable as the low rate of recovery may simply 
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reflect rare transposition events, by humans or insects perhaps (Buser et al. 2014), that will 640 

perhaps ultimately fail to seed successful lineages in that inhabit. Indeed, we do not have a 

good understanding of the niches to which S. cerevisiae is adapted, if any at all (Goddard & 

Grieg 2015). Alternatively, it is possible that S. cerevisiae may become established in native 

habitats. New Zealand has a list of human introduced invasive species that has decimated 

portions of endemic ecosystems – stoats and rats destroying native NZ birds as a prime 645 

example (Norton 2009). The interesting question is whether S. cerevisiae is classed as an 

invasive species in NZ: while this species has been introduced by humans, at the moment its 

invasion is primarily restricted to agricultural ecosystems, where it arguably adds value.  
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Habitat	 Samples	 Colonies	
analysed	

Samples	
yielding	Sc	

Number	of	
Genotypes	

Recovery	
rate	(%)	

Exotic	oak	 190	 1140	 2	 1	 1.05	
Native	forest	 523	 7522	 5	 5	 0.96	
Vineyard	 360	 10833	 39	 62	 10.83	
Ferment	 160	 11590	 159	 656	 99.38	
Total	 1233	 31085	 205	 724	 	

	
Table	1.	The	collated	sampling	effort	and	recovery	of	Saccharomyces	cerevisiae	(Sc)	from	six	
recent	studies	in	New	Zealand	(Serjeant	et	al.,	2008;	Goddard	et	al.,	2010;	Zhang	et	al.,	
2010;	Gayevskiy	&	Goddard	2012;	Knight	&	Goddard	2015;	Gayevskiy	&	Goddard	2016).	
Native	forest	samples	derived	from	soil,	honeydew	and	fruits	of	native	trees	(Serjeant	et	al.,	
2008;	Knight	&	Goddard	2015;	Gayevskiy	&	Goddard	2016);	vineyard	samples	derived	from	
soil,	fruit	and	flowers	(Goddard	et	al.,	2010;	Gayevskiy	&	Goddard	2012;	Knight	&	Goddard	
2015);	ferment	samples	derived	from	spontaneous	ferments	of	Sauvignon	blanc,	
Chardonnay	and	Syrah	(Goddard	et	al.,	2010;	Gayevskiy	&	Goddard	2012;	Knight	&	Goddard	
2015).	



Population Sitesa Segregating Sitesb θ (x 1,000) π (x 1,000) Tajima’s D 

NZ (52) 11,084,457 124,566 (1.1%) 3.3 2.3 -1.27 
Wine/Europe/NZ 
(66) 6,505,396 91,543 (1.4%) 3.8 2.3 -1.65 

All Available (75) 6,397,673 134,386 (2.1%) 5.2 3 -1.77 

 	 	
 

 

Table 2: Nucleotide diversity in three superset populations of S. cerevisiae. a Sites 

where all genomes have at least one high quality read; b Sites where all genomes 

have at least one high quality read and at least one genome differs from the rest, 

percentage in brackets is from the total number of sites. 
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