373 research outputs found

    Dark energy domination in the Virgocentric flow

    Full text link
    The standard \LambdaCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we focus now on the Virgo Cluster and the flow of expansion around it. We interpret the Hubble diagram, from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Our conclusions are: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances \ga 15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, due to the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.Comment: 7 pages, 2 figures, Astronomy and Astrophysics (accepted

    The Hall instability of weakly ionized, radially stratified, rotating disks

    Get PDF
    Cool weakly ionized gaseous rotating disk, are considered by many models as the origin of the evolution of protoplanetary clouds. Instabilities against perturbations in such disks play an important role in the theory of the formation of stars and planets. Thus, a hierarchy of successive fragmentations into smaller and smaller pieces as a part of the Kant-Laplace theory of formation of the planetary system remains valid also for contemporary cosmogony. Traditionally, axisymmetric magnetohydrodynamic (MHD), and recently Hall-MHD instabilities have been thoroughly studied as providers of an efficient mechanism for radial transfer of angular momentum, and of density radial stratification. In the current work, the Hall instability against nonaxisymmetric perturbations in compressible rotating fluids in external magnetic field is proposed as a viable mechanism for the azimuthal fragmentation of the protoplanetary disk and thus perhaps initiating the road to planet formation. The Hall instability is excited due to the combined effect of the radial stratification of the disk and the Hall electric field, and its growth rate is of the order of the rotation period.Comment: 15 pages, 2 figure

    Sources of Radiation in the Early Universe: The Equation of Radiative Transfer and Optical Distances

    Full text link
    We have derived the radiative-transfer equation for a point source with a specified intensity and spectrum, originating in the early Universe between the epochs of annihilation and recombination, at redshifts z_\s =10^8\div 10^4. The direct radiation of the source is separated from the diffuse radiation it produces. Optical distances from the source for Thomson scattering and bremsstrahlung absorption at the maximum of the thermal background radiation are calculated as a function of the redshift z.The distances grow sharply with decreasing z, approaching asymptotic values, the absorption distance increasing more slowly and reaching their limiting values at lower z. For the adopted z values, the optical parameters of the Universe can be described in a flat model with dusty material and radiation, and radiative transfer can be treated in a grey approximation.Comment: 14 pages, 2 figure

    Polygonal Structures in the Gaseous Disk: Numerical Simulations

    Full text link
    The results of numerical simulations of a gaseous disk in the potential of a stellar spiral density wave are presented. The conditions under which straightened spiral arm segments (rows) form in the gas component are studied. These features of the spiral structure were identified in a series of works by A.D. Chernin with coauthors. Gas-dynamic simulations have been performed for a wide range of model parameters: the pitch angle of the spiral pattern, the amplitude of the stellar spiral density wave, the disk rotation speed, and the temperature of the gas component. The results of 2D- and 3D-disk simulations are compared. The rows in the numerical simulations are shown to be an essentially nonstationary phenomenon. A statistical analysis of the distribution of geometric parameters for spiral patterns with rows in the observed galaxies and the constructed hydrodynamic models shows good agreement. In particular, the numerical simulations and observations of galaxies give ≃120∘\simeq 120^\circ for the average angles between straight segments.Comment: 22 pages, 10 figure

    Collapse of cycloidal electron flows induced by misalignments in a magnetically insulated diode

    Full text link
    The effect of a slight misalignment in the magnetic field on a magnetically insulated diode is investigated. It is found that a slight tilt in the magnetic field, with a minute component along the dc electric field, completely destabilizes the cycloidal electron flow in the crossed-field gap. The final state consists of the classical Brillouin flow superimposed by a turbulent background, together with a slow electron drift across the gap. This disruption of the cycloidal flow is quite insensitive to the emission current density, and is due to the accumulation of space charge in the gap caused by the magnetic misalignment. This result was obtained from a one-dimensional simulation code. It reinforces the notion that the turbulent, near Brillouin-like states are generic in ALL vacuum crossed-field devices. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69778/2/PHPAEN-5-6-2447-1.pd

    The very local Hubble flow: computer simulations of dynamical history

    Full text link
    The phenomenon of the very local (≀3\le3 Mpc) Hubble flow is studied on the basis of the data of recent precision observations. A set of computer simulations is performed to trace the trajectories of the flow galaxies back in time to the epoch of the formation of the Local Group. It is found that the `initial conditions' of the flow are drastically different from the linear velocity-distance relation. The simulations enable also to recognize the major trends of the flow evolution and identify the dynamical role of universal antigravity produced by cosmic vacuum.Comment: LaTeX, 10 pages, 4 figures, accepted for publication in A&

    Resistive destabilization of cycloidal electron flow and universality of (near‐) Brillouin flow in a crossed‐field gap

    Full text link
    It is shown that a small amount of dissipation, caused by current flow in a lossy external circuit, can produce a disruption of steady‐state cycloidal electron flow in a crossed‐field gap, leading to the establishment of a turbulent steady state that is close to, but not exactly, Brillouin flow. This disruption, which has nothing to do with a diocotron or cyclotron instability, is fundamentally caused by the failure of a subset of the emitted electrons to return to the cathode surface as a result of resistive dissipation. This mechanism was revealed in particle simulations, and was confirmed by an analytic theory. These near‐Brillouin states differ in several interesting respects from classic Brillouin flow, the most important of which is the presence of a microsheath and a time‐varying potential minimum very close to the cathode surface. They are essentially identical to that produced when (i) injected current exceeds a certain critical value [P. J. Christenson and Y. Y. Lau, Phys. Plasmas 1, 3725 (1994)] or (ii) a small rf electric field is applied to the gap [P. J. Christenson and Y. Y. Lau, Phys. Rev. Lett. 76, 3324 (1996)]. It is speculated that such near‐Brillouin states are generic in vacuum crossed‐field devices, due to the ease with which the cycloidal equilibrium can be disrupted. Another novel aspect of this paper is the introduction of transformations by which the nonlinear, coupled partial differential equations in the Eulerian description (equation of motion, continuity equation, Poisson equation, and the circuit equation) are reduced to an equivalent system of very simple linear ordinary differential equations. © 1996 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71350/2/PHPAEN-3-12-4455-1.pd
    • 

    corecore