182 research outputs found

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004

    Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV

    Get PDF
    The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures modified, but data the same. However, in Fig. 35 the hydro calculations are corrected in this version. The data tables are available at http://www.star.bnl.gov/central/publications/ by searching for "flow" and then this pape

    Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV

    Full text link
    We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y|<0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.Comment: 4 pages, 3 figures, 1 table, submitted to PR

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Structural Insights from Binding Poses of CCR2 and CCR5 with Clinically Important Antagonists: A Combined In Silico Study

    Get PDF
    Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both CCR2 and CCR5 can be a useful strategy. Owing to the importance of these receptors, information regarding the binding site is of prime importance. Structural studies have been hampered due to the lack of X-ray crystal structures, and templates with close homologs for comparative modeling. Most of the previous models were based on the bovine rhodopsin and β2-adrenergic receptor. In this study, based on a closer homolog with higher resolution (CXCR4, PDB code: 3ODU 2.5 Å), we constructed three-dimensional models. The main aim of this study was to provide relevant information on binding sites of these receptors. Molecular dynamics simulation was done to refine the homology models and PROCHECK results indicated that the models were reasonable. Here, binding poses were checked with some established inhibitors of high pharmaceutical importance against the modeled receptors. Analysis of interaction modes gave an integrated interpretation with detailed structural information. The binding poses confirmed that the acidic residues Glu291 (CCR2) and Glu283 (CCR5) are important, and we also found some additional residues. Comparisons of binding sites of CCR2/CCR5 were done sequentially and also by docking a potent dual antagonist. Our results can be a starting point for further structure-based drug design

    Ecological networks: Pursuing the shortest path, however narrow and crooked

    Get PDF
    International audienceRepresenting data as networks cuts across all sub-disciplines in ecology and evolutionary biology. Besides providing a compact representation of the interconnections between agents, network analysis allows the identification of especially important nodes, according to various metrics that often rely on the calculation of the shortest paths connecting any two nodes. While the interpretation of a shortest paths is straightforward in binary, unweighted networks, whenever weights are reported, the calculation could yield unexpected results. We analyzed 129 studies of ecological networks published in the last decade that use shortest paths, and discovered a methodological inaccuracy related to the edge weights used to calculate shortest paths (and related centrality measures), particularly in interaction networks. Specifically, 49% of the studies do not report sufficient information on the calculation to allow their replication, and 61% of the studies on weighted networks may contain errors in how shortest paths are calculated. Using toy models and empirical ecological data, we show how to transform the data prior to calculation and illustrate the pitfalls that need to be avoided. We conclude by proposing a five-point checklist to foster best-practices in the calculation and reporting of centrality measures in ecology and evolution studies. The last two decades have witnessed an exponential increase in the use of graph analysis in ecological and conservation studies (see refs. 1,2 for recent introductions to network theory in ecology and evolution). Networks (graphs) represent agents as nodes linked by edges representing pairwise relationships. For instance, a food web can be represented as a network of species (nodes) and their feeding relationships (edges) 3. Similarly, the spatial dynamics of a metapopulation can be analyzed by connecting the patches of suitable habitat (nodes) with edges measuring dispersal between patches 4. Data might either simply report the presence/absence of an edge (binary, unweighted networks), or provide a strength for each edge (weighted networks). In turn, these weights can represent a variety of ecologically-relevant quantities, depending on the system being described. For instance, edge weights can quantify interaction frequency (e.g., visitation networks 5), interaction strength (e.g., per-capita effect of one species on the growth rate of another 3), carbon-flow between trophic levels 6 , genetic similarity 7 , niche overlap (e.g., number of shared resources between two species 8), affinity 9 , dispersal probabilities (e.g., the rate at which individuals of a population move between patches 10), cost of dispersal between patches (e.g., resistance 11), etc. Despite such large variety of ecological network representations, a common task is the identification of nodes of high importance, such as keystone species in a food web, patches acting as stepping stones in a dispersal network , or genes with pleiotropic effects. The identification of important nodes is typically accomplished through centrality measures 5,12. Many centrality measures has been proposed, each probing complementary aspects of node-to-node relationships 13. For instance, Closeness centrality 14,15 highlights nodes that are "near" to all othe

    Azimuthal anisotropy and correlations in the hard scattering regime at RHIC

    Get PDF
    Azimuthal anisotropy (v(2)) and two-particle angular correlations of high p(T) charged hadrons have been measured in Au+Au collisions at roots(NN) = 130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high p(T) partons. The monotonic rise of v(2)(p(T)) for p(T) 3 GeV/c, a saturation of v(2) is observed which persists up to p(T) = 6 GeV/c

    Disappearance of back-to-back high-p(T) hadron correlations in central Au+Au collisions at root s(NN)=200 GeV

    Get PDF
    Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudorapidity range and full azimuth in Au+Au and p+p collisions at roots(NN)=200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes previously observed in high-energy collisions. A strong back-to-back correlation exists for p+p and peripheral Au+Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium

    Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

    Get PDF
    Parity-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system’s orbital momentum axis. We investigate a three-particle azimuthal correlator which is a P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at √sNN=200  GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation
    corecore