70 research outputs found

    miR2Gene: pattern discovery of single gene, multiple genes, and pathways by enrichment analysis of their microRNA regulators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, a number of tools have been developed to explore microRNAs (miRNAs) by analyzing their target genes. However, a reverse problem, that is, inferring patterns of protein-coding genes through their miRNA regulators, has not been explored. As various miRNA annotation data become available, exploring gene patterns by analyzing the prior knowledge of their miRNA regulators is becoming more feasible.</p> <p>Results</p> <p>In this study, we developed a tool, miR2Gene, for this purpose. Various sets of miRNAs, according to prior rules such as function, associated disease, tissue specificity, family, and cluster, were integrated with miR2Gene. For given genes, miR2Gene evaluates the enrichment of the predicted miRNAs that regulate them in each miRNA set. This tool can be used for single genes, multiple genes, and KEGG pathways. For the KEGG pathway, genes with enriched miRNA sets are highlighted according to various rules. We confirmed the usefulness of miR2Gene through case studies.</p> <p>Conclusions</p> <p>miR2Gene represents a novel and useful tool that integrates miRNA knowledge for protein-coding gene analysis. miR2Gene is freely available at <url>http://cmbi.hsc.pku.edu.cn/mir2gene</url>.</p

    Semantic-visual Guided Transformer for Few-shot Class-incremental Learning

    Full text link
    Few-shot class-incremental learning (FSCIL) has recently attracted extensive attention in various areas. Existing FSCIL methods highly depend on the robustness of the feature backbone pre-trained on base classes. In recent years, different Transformer variants have obtained significant processes in the feature representation learning of massive fields. Nevertheless, the progress of the Transformer in FSCIL scenarios has not achieved the potential promised in other fields so far. In this paper, we develop a semantic-visual guided Transformer (SV-T) to enhance the feature extracting capacity of the pre-trained feature backbone on incremental classes. Specifically, we first utilize the visual (image) labels provided by the base classes to supervise the optimization of the Transformer. And then, a text encoder is introduced to automatically generate the corresponding semantic (text) labels for each image from the base classes. Finally, the constructed semantic labels are further applied to the Transformer for guiding its hyperparameters updating. Our SV-T can take full advantage of more supervision information from base classes and further enhance the training robustness of the feature backbone. More importantly, our SV-T is an independent method, which can directly apply to the existing FSCIL architectures for acquiring embeddings of various incremental classes. Extensive experiments on three benchmarks, two FSCIL architectures, and two Transformer variants show that our proposed SV-T obtains a significant improvement in comparison to the existing state-of-the-art FSCIL methods.Comment: Accepted by IEEE International Conference on Multimedia and Expo (ICME 2023

    microRNA evolution in a human transcription factor and microRNA regulatory network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>microRNAs (miRNAs) are important cellular components. The understanding of their evolution is of critical importance for the understanding of their function. Although some specific evolutionary rules of miRNAs have been revealed, the rules of miRNA evolution in cellular networks remain largely unexplored. According to knowledge from protein-coding genes, the investigations of gene evolution in the context of biological networks often generate valuable observations that cannot be obtained by traditional approaches.</p> <p>Results</p> <p>Here, we conducted the first systems-level analysis of miRNA evolution in a human transcription factor (TF)-miRNA regulatory network that describes the regulatory relations among TFs, miRNAs, and target genes. We found that the architectural structure of the network provides constraints and functional innovations for miRNA evolution and that miRNAs showed different and even opposite evolutionary patterns from TFs and other protein-coding genes. For example, miRNAs preferentially coevolved with their activators but not with their inhibitors. During transcription, rapidly evolving TFs frequently activated but rarely repressed miRNAs. In addition, conserved miRNAs tended to regulate rapidly evolving targets, and upstream miRNAs evolved more rapidly than downstream miRNAs.</p> <p>Conclusions</p> <p>In this study, we performed the first systems level analysis of miRNA evolution. The findings suggest that miRNAs have a unique evolution process and thus may have unique functions and roles in various biological processes and diseases. Additionally, the network presented here is the first TF-miRNA regulatory network, which will be a valuable platform of systems biology.</p

    Human MicroRNA Oncogenes and Tumor Suppressors Show Significantly Different Biological Patterns: From Functions to Targets

    Get PDF
    MicroRNAs (miRNAs) are small noncoding RNAs which play essential roles in many important biological processes. Therefore, their dysfunction is associated with a variety of human diseases, including cancer. Increasing evidence shows that miRNAs can act as oncogenes or tumor suppressors, and although there is great interest in research into these cancer-associated miRNAs, little is known about them. In this study, we performed a comprehensive analysis of putative human miRNA oncogenes and tumor suppressors. We found that miRNA oncogenes and tumor suppressors clearly show different patterns in function, evolutionary rate, expression, chromosome distribution, molecule size, free energy, transcription factors, and targets. For example, miRNA oncogenes are located mainly in the amplified regions in human cancers, whereas miRNA tumor suppressors are located mainly in the deleted regions. miRNA oncogenes tend to cleave target mRNAs more frequently than miRNA tumor suppressors. These results indicate that these two types of cancer-associated miRNAs play different roles in cancer formation and development. Moreover, the patterns identified here can discriminate novel miRNA oncogenes and tumor suppressors with a high degree of accuracy. This study represents the first large-scale bioinformatic analysis of human miRNA oncogenes and tumor suppressors. Our findings provide help for not only understanding of miRNAs in cancer but also for the specific identification of novel miRNAs as miRNA oncogenes and tumor suppressors. In addition, the data presented in this study will be valuable for the study of both miRNAs and cancer

    Self-supervised Guided Hypergraph Feature Propagation for Semi-supervised Classification with Missing Node Features

    Full text link
    Graph neural networks (GNNs) with missing node features have recently received increasing interest. Such missing node features seriously hurt the performance of the existing GNNs. Some recent methods have been proposed to reconstruct the missing node features by the information propagation among nodes with known and unknown attributes. Although these methods have achieved superior performance, how to exactly exploit the complex data correlations among nodes to reconstruct missing node features is still a great challenge. To solve the above problem, we propose a self-supervised guided hypergraph feature propagation (SGHFP). Specifically, the feature hypergraph is first generated according to the node features with missing information. And then, the reconstructed node features produced by the previous iteration are fed to a two-layer GNNs to construct a pseudo-label hypergraph. Before each iteration, the constructed feature hypergraph and pseudo-label hypergraph are fused effectively, which can better preserve the higher-order data correlations among nodes. After then, we apply the fused hypergraph to the feature propagation for reconstructing missing features. Finally, the reconstructed node features by multi-iteration optimization are applied to the downstream semi-supervised classification task. Extensive experiments demonstrate that the proposed SGHFP outperforms the existing semi-supervised classification with missing node feature methods.Comment: Accepted by 48th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023

    TransmiR: a transcription factor–microRNA regulation database

    Get PDF
    MicroRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are therefore important cellular components. As is true for protein-coding genes, the transcription of miRNAs is regulated by transcription factors (TFs), an important class of gene regulators that act at the transcriptional level. The correct regulation of miRNAs by TFs is critical, and increasing evidence indicates that aberrant regulation of miRNAs by TFs can cause phenotypic variations and diseases. Therefore, a TF–miRNA regulation database would be helpful for understanding the mechanisms by which TFs regulate miRNAs and understanding their contribution to diseases. In this study, we manually surveyed approximately 5000 reports in the literature and identified 243 TF–miRNA regulatory relationships, which were supported experimentally from 86 publications. We used these data to build a TF–miRNA regulatory database (TransmiR, http://cmbi.bjmu.edu.cn/transmir), which contains 82 TFs and 100 miRNAs with 243 regulatory pairs between TFs and miRNAs. In addition, we included references to the published literature (PubMed ID) information about the organism in which the relationship was found, whether the TFs and miRNAs are involved with tumors, miRNA function annotation and miRNA-associated disease annotation. TransmiR provides a user-friendly interface by which interested parties can easily retrieve TF–miRNA regulatory pairs by searching for either a miRNA or a TF

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Abstract: Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.

    Get PDF
    Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. Variant annotation was supported by software resources provided via the Caché Campus program of the InterSystems GmbH to Alexander Teumer
    corecore