9 research outputs found

    Vitamin A Deficiency after Gastric Bypass Surgery: An Underreported Postoperative Complication

    Get PDF
    Introduction. Few data are available on vitamin A deficiency in the gastric bypass population. Methods. We performed a retrospective chart review of gastric bypass patients (n = 69, 74% female). The relationship between serum vitamin A concentration and markers of protein metabolism at 6-weeks and 1-year post-operative were assessed. Results. The average weight loss at 6-weeks and 1-year following surgery was 20.1 ± 9.1 kg and 44.1 ± 17.1 kg, respectively. At 6 weeks and 1 year after surgery, 35% and 18% of patients were vitamin A deficient, (<325 mcg/L). Similarly, 34% and 19% had low pre-albumin levels (<18 mg/dL), at these time intervals. Vitamin A directly correlated with pre-albumin levels at 6 weeks (r = 0.67, P < 0.001) and 1-year (r = 0.67,  P < 0.0001). There was no correlation between the roux limb length measurement and pre-albumin or vitamin A serum concentrations at these post-operative follow-ups. Vitamin A levels and markers of liver function testing were also unrelated. Conclusion. Vitamin A deficiency is common after bariatric surgery and is associated with a low serum concentration of pre-albumin. This fat-soluble vitamin should be measured in patients who have undergone gastric bypass surgery and deficiency should be suspected in those with evidence of protein-calorie malnutrition

    Lanthanide Sensitization in II−VI Semiconductor Materials: A Case Study with Terbium(III) and Europium(III) in Zinc Sulfide Nanoparticles

    No full text
    International audienceThis work explores the sensitization of luminescent lanthanide Tb3+ and Eu3+ cations by electronic structure of zinc sulfide (ZnS) semiconductor nanoparticles. Excitation spectra collected while monitoring the lanthanide emission bands reveal that the ZnS nanoparticles act as an antenna for the sensitization of Tb3+ and Eu3+. The mechanism of lanthanide ion luminescence sensitization is rationalized in terms of an energy and charge transfer between trap sites and is based on a semiempirical model, proposed by Dorenbos and co-workers (Dorenbos, P. J. Phys.: Condens Matter 2003, 15, 8417-8434; J. Lumin. 2004, 108, 301-305; J. Lumin. 2005, 111, 89-104. Dorenbos, P.; van der Kolk, E. Appl. Phys. Lett. 2006, 89, 061122-1-061122-3; Opt. Mater. 2008, 30, 1052-1057. Dorenbos, P. J. Alloys Compd. 2009, 488, 568-573; references 1-6.) to describe the energy level scheme. This model implies that the mechanisms of luminescence sensitization of Tb3+ and Eu3+ in ZnS nanoparticles are different; namely, Tb3+ acts as a hole trap, whereas Eu3+ acts as an electron trap. Further testing of this model is made by extending the studies from ZnS nanoparticles to other II-VI semiconductor materials; namely, CdSe, CdS, and ZnSe

    Acute venous disease: Venous thrombosis and venous trauma

    No full text
    corecore