12 research outputs found

    Consensus parameter: research methodologies to evaluate neurodevelopmental effects of pubertal suppression in transgender youth

    Get PDF
    An international interdisciplinary team of experts achieved consensus around primary methods and domains for assessing neurodevelopmental effects (i.e., benefits and/or difficulties) of pubertal suppression treatment in transgender youth.Pathways through Adolescenc

    A cross-disease meta-GWAS identifies four new susceptibility loci shared between systemic sclerosis and Crohn’s disease

    Get PDF
    Abstract: Genome-wide association studies (GWASs) have identified a number of genetic risk loci associated with systemic sclerosis (SSc) and Crohn’s disease (CD), some of which confer susceptibility to both diseases. In order to identify new risk loci shared between these two immune-mediated disorders, we performed a cross-disease meta-analysis including GWAS data from 5,734 SSc patients, 4,588 CD patients and 14,568 controls of European origin. We identified 4 new loci shared between SSc and CD, IL12RB2, IRF1/SLC22A5, STAT3 and an intergenic locus at 6p21.31. Pleiotropic variants within these loci showed opposite allelic effects in the two analysed diseases and all of them showed a significant effect on gene expression. In addition, an enrichment in the IL-12 family and type I interferon signaling pathways was observed among the set of SSc-CD common genetic risk loci. In conclusion, through the first cross-disease meta-analysis of SSc and CD, we identified genetic variants with pleiotropic effects on two clinically distinct immune-mediated disorders. The fact that all these pleiotropic SNPs have opposite allelic effects in SSc and CD reveals the complexity of the molecular mechanisms by which polymorphisms affect diseases

    Representing Multiple Orientations in 2D with Orientation Channel Histograms

    No full text
    The channel representation is a simple yet powerful representation of scalars and vectors. It is especially suited for representation of several scalars at the same time without mixing them up. This report is partly intended to serve as a simple illustration of the channel representation. The report shows how the channels can be used to represent multiple orientations in two dimensions. The idea is to make a channel representation of the local orientation angle computed from the image gradient. The representation basically becomes an orientation histogram with overlapping bins. The channel histogram is compared with the orientation tensor, which is another representation of orientation. The performance comparable to tensors in the simple signal case, but decreases slightly for increasing number of channels. The channel histogram outperforms the tensors on non-simple signals

    FANCD2 and REV1 cooperate in the protection of nascent DNA strands in response to replication stress

    No full text
    REV1 is a eukaryotic member of the Y-family of DNA polymerases involved in translesion DNA synthesis and genome mutagenesis. Recently, REV1 is also found to function in homologous recombination. However, it remains unclear how REV1 is recruited to the sites where homologous recombination is processed. Here, we report that loss of mammalian REV1 results in a specific defect in replication-associated gene conversion. We found that REV1 is targeted to laser-induced DNA damage stripes in a manner dependent on its ubiquitin-binding motifs, on RAD18, and on monoubiquitinated FANCD2 (FANCD2-mUb) that associates with REV1. Expression of a FANCD2-Ub chimeric protein in RAD18-depleted cells enhances REV1 assembly at laser-damaged sites, suggesting that FANCD2-mUb functions downstream of RAD18 to recruit REV1 to DNA breaks. Consistent with this suggestion we found that REV1 and FANCD2 are epistatic with respect to sensitivity to the double-strand break-inducer camptothecin. REV1 enrichment at DNA damage stripes also partially depends on BRCA1 and BRCA2, components of the FANCD2/BRCA supercomplex. Intriguingly, analogous to FANCD2-mUb and BRCA1/BRCA2, REV1 plays an unexpected role in protecting nascent replication tracts from degradation by stabilizing RAD51 filaments. Collectively these data suggest that REV1 plays multiple roles at stalled replication forks in response to replication stress

    Small noncoding differentially methylated copy-number variants, including IncRNA genes, cause a lethal lung developmental disorder

    No full text
    An unanticipated and tremendous amount of the noncoding sequence of the human genome is transcribed. Long noncoding RNAs (IncRNAs) constitute a significant fraction of non-protein-coding transcripts; however, their functions remain enigmatic. We demonstrate that deletions of a small noncoding differentially methylated region at 16q24.1, including IncRNA genes, cause a lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), with parent-of-origin effects. We identify overlapping deletions 250 kb upstream of FOXF1 in nine patients with ACD/MPV that arose de novo specifically on the maternally inherited chromosome and delete lung-specific IncRNAgenes. These deletions define a distant cis-regulatory region that harbors, besides lncRNAgenes, also a differentially methylated CpGisland, binds GLI2 depending on the methylation status of this CpG island, and physically interacts with and up-regulates the FOXF1 promoter. Wesuggest that lung-transcribed 16q24.1 IncRNAs may contribute to long-range regulation of FOXF1 by GLI2 and other transcription factors. Perturbation of IncRNA-mediated chromatin interactions may, in general, be responsible for position effect phenomena and potentially cause many disorders of human development
    corecore