5,385 research outputs found

    Fan-Type Conditions for Collapsible Graphs

    Get PDF

    Circumferences of 3-connected claw-free graphs, II

    Get PDF
    For a graph H , the circumference of H , denoted by c ( H ) , is the length of a longest cycle in H . It is proved in Chen (2016) that if H is a 3-connected claw-free graph of order n with δ ≥ 8 , then c ( H ) ≥ min { 9 δ − 3 , n } . In Li (2006), Li conjectured that every 3-connected k -regular claw-free graph H of order n has c ( H ) ≥ min { 10 k − 4 , n } . Later, Li posed an open problem in Li (2008): how long is the best possible circumference for a 3-connected regular claw-free graph? In this paper, we study the circumference of 3-connected claw-free graphs without the restriction on regularity and provide a solution to the conjecture and the open problem above. We determine five families F i ( 1 ≤ i ≤ 5 ) of 3-connected claw-free graphs which are characterized by graphs contractible to the Petersen graph and show that if H is a 3-connected claw-free graph of order n with δ ≥ 16 , then one of the following holds: (a) either c ( H ) ≥ min { 10 δ − 3 , n } or H ∈ F 1 . (b) either c ( H ) ≥ min { 11 δ − 7 , n } or H ∈ F 1 ∪ F 2 . (c) either c ( H ) ≥ min { 11 δ − 3 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 . (d) either c ( H ) ≥ min { 12 δ − 10 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 ∪ F 4 . (e) if δ ≥ 23 then either c ( H ) ≥ min { 12 δ − 7 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 ∪ F 4 ∪ F 5 . This is also an improvement of the prior results in Chen (2016), Lai et al. (2016), Li et al. (2009) and Mathews and Sumner (1985)

    Degree and neighborhood conditions for hamiltonicity of claw-free graphs

    Get PDF
    For a graph H , let σ t ( H ) = min { Σ i = 1 t d H ( v i ) | { v 1 , v 2 , … , v t } is an independent set in H } and let U t ( H ) = min { | ⋃ i = 1 t N H ( v i ) | | { v 1 , v 2 , ⋯ , v t } is an independent set in H } . We show that for a given number ϵ and given integers p ≥ t \u3e 0 , k ∈ { 2 , 3 } and N = N ( p , ϵ ) , if H is a k -connected claw-free graph of order n \u3e N with δ ( H ) ≥ 3 and its Ryjác̆ek’s closure c l ( H ) = L ( G ) , and if d t ( H ) ≥ t ( n + ϵ ) ∕ p where d t ( H ) ∈ { σ t ( H ) , U t ( H ) } , then either H is Hamiltonian or G , the preimage of L ( G ) , can be contracted to a k -edge-connected K 3 -free graph of order at most max { 4 p − 5 , 2 p + 1 } and without spanning closed trails. As applications, we prove the following for such graphs H of order n with n sufficiently large: (i) If k = 2 , δ ( H ) ≥ 3 , and for a given t ( 1 ≤ t ≤ 4 ), then either H is Hamiltonian or c l ( H ) = L ( G ) where G is a graph obtained from K 2 , 3 by replacing each of the degree 2 vertices by a K 1 , s ( s ≥ 1 ). When t = 4 and d t ( H ) = σ 4 ( H ) , this proves a conjecture in Frydrych (2001). (ii) If k = 3 , δ ( H ) ≥ 24 , and for a given t ( 1 ≤ t ≤ 10 ) d t ( H ) \u3e t ( n + 5 ) 10 , then H is Hamiltonian. These bounds on d t ( H ) in (i) and (ii) are sharp. It unifies and improves several prior results on conditions involved σ t and U t for the hamiltonicity of claw-free graphs. Since the number of graphs of orders at most max { 4 p − 5 , 2 p + 1 } are fixed for given p , improvements to (i) or (ii) by increasing the value of p are possible with the help of a computer

    Spanning Eulerian subgraphs and Catlin’s reduced graphs

    Get PDF
    A graph G is collapsible if for every even subset R ⊆ V (G), there is a spanning connected subgraph HR of G whose set of odd degree vertices is R. A graph is reduced if it has no nontrivial collapsible subgraphs. Catlin [4] showed that the existence of spanning Eulerian subgraphs in a graph G can be determined by the reduced graph obtained from G by contracting all the collapsible subgraphs of G. In this paper, we present a result on 3-edge-connected reduced graphs of small orders. Then, we prove that a 3-edge-connected graph G of order n either has a spanning Eulerian subgraph or can be contracted to the Petersen graph if G satisfies one of the following: (i) d(u) + d(v) \u3e 2(n/15 − 1) for any uv 6∈ E(G) and n is large; (ii) the size of a maximum matching in G is at most 6; (iii) the independence number of G is at most 5. These are improvements of prior results in [16], [18], [24] and [25]

    Properties of Catlin's reduced graphs and supereulerian graphs

    Get PDF
    A graph GG is called collapsible if for every even subset R⊆V(G)R\subseteq V(G), there is a spanning connected subgraph HH of GG such that RR is the set of vertices of odd degree in HH. A graph is the reduction of GG if it is obtained from GG by contracting all the nontrivial collapsible subgraphs. A graph is reduced if it has no nontrivial collapsible subgraphs. In this paper, we first prove a few results on the properties of reduced graphs. As an application, for 3-edge-connected graphs GG of order nn with d(u)+d(v)≥2(n/p−1)d(u)+d(v)\ge 2(n/p-1) for any uv∈E(G)uv\in E(G) where p>0p>0 are given, we show how such graphs change if they have no spanning Eulerian subgraphs when pp is increased from p=1p=1 to 10 then to 1515

    Lai’s conditions for spanning and dominating closed trails

    Get PDF

    Star Formation Properties in Barred Galaxies(SFB). III. Statistical Study of Bar-driven Secular Evolution using a sample of nearby barred spirals

    Get PDF
    Stellar bars are important internal drivers of secular evolution in disk galaxies. Using a sample of nearby spiral galaxies with weak and strong bars, we explore the relationships between the star formation feature and stellar bars in galaxies. We find that galaxies with weak bars tend to be coincide with low concentrical star formation activity, while those with strong bars show a large scatter in the distribution of star formation activity. We find enhanced star formation activity in bulges towards stronger bars, although not predominantly, consistent with previous studies. Our results suggest that different stages of the secular process and many other factors may contribute to the complexity of the secular evolution. In addition, barred galaxies with intense star formation in bars tend to have active star formation in their bulges and disks, and bulges have higher star formation densities than bars and disks, indicating the evolutionary effects of bars. We then derived a possible criterion to quantify the different stages of bar-driven physical process, while future work is needed because of the uncertainties.Comment: 30 single-column pages, 9 figures, accepted for publication in A

    On Hamiltonian Line Graphs

    Get PDF

    On extremal nonsupereulerian graphs with clique number m

    Get PDF

    Supereuleriaun graphs and the Petersen graph

    Get PDF
    Using a contraction method, we find some best-possible sufficient condi­tions for 3-edge-connected simple graphs such that either the graphs have spanning eulerian subgraphs or the graphs are contractible to the Petersen graph
    • …
    corecore