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Degree and neighborhood conditions for hamiltonicity of

claw-free graphs

Zhi-Hong Chen, Butler University, Indianapolis, IN 46208

Abstract

For a graph H, let σt(H) = min{Σt
i=1

dH(vi) | {v1, v2, · · · , vt} is an independent set in H} and let

Ut(H) = min{|
⋃t

i=1 NH(vi)| | {v1, v2, · · · , vt} is an independent set in H}. We show that for a

given number ε and given integers p ≥ t > 0, k ∈ {2, 3} and N = N(p, ε), if H is a k-connected

claw-free graph of order n > N with δ(H) ≥ 3 and its Ryjác̆ek’s closure cl(H) = L(G), and

if dt(H) ≥ t(n + ε)/p where dt(H) ∈ {σt(H),Ut(H)}, then either H is Hamiltonian or G, the

preimage of L(G), can be contracted to a k-edge-connected K3-free graph of order at most

max{4p−5, 2p+1} and without spanning closed trails. As applications, we prove the following

for such graphs H of order n with n sufficiently large:

(i) If k = 2, δ(H) ≥ 3, and for a given t (1 ≤ t ≤ 4) dt(H) ≥ tn
4

, then either H is Hamiltonian

or cl(H) = L(G) where G is a graph obtained from K2,3 by replacing each of the degree 2

vertices by a K1,s (s ≥ 1). When t = 4 and dt(H) = σ4(H), this proves a conjecture in [15].

(ii) If k = 3, δ(H) ≥ 24, and for a given t (1 ≤ t ≤ 10) dt(H) >
t(n+5)

10
, then H is Hamiltonian.

These bounds on dt(H) in (i) and (ii) are sharp. It unifies and improves several prior results on

conditions involved σt and Ut for the hamiltonicity of claw-free graphs. Since the number of

graphs of orders at most max{4p − 5, 2p + 1} are fixed for given p, improvements to (i) or (ii)

by increasing the value of p are possible with the help of a computer.

Keywords: Claw-free graph, Hamiltonicity, Neighborhood condition, degree condition

1 Introduction

We shall use the notation of Bondy and Murty [2], except when otherwise stated. Graphs considered

in this paper are finite and loopless. A graph is called a multigraph if it contains multiple edges.

A graph without multiple edges is called a simple graph or simply a graph. As in [2], κ′(G) and

dG(v) denote the edge-connectivity of G and the degree of a vertex v in G, respectively. For a

vertex v ∈ V(G), let EG(v) be the set of edges incident with v in G. Then dG(v) = |EG(v)|. Define

σ2(G) = min{dG(u)+dG(v) | for every edge uv ∈ E(G)} and Di(G) = {v ∈ V(G) | dG(v) = i}. An edge

cut X of a graph G is essential if each component of G−X has some edges. A graph G is essentially

k-edge-connected if G is connected and does not have an essential edge cut of size less than k. An
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edge e = uv is called a pendant edge if min{dG(u), dG(v)} = 1. The independence number of a graph

G is denoted by α(G) and the clique covering number of G, (i.e. the minimum number of cliques

necessary for covering V(G)) by θ(G). An independent set with t vertices is called a t-independent

set and a matching with t edges is called a t-matching. A graph H is claw-free if H does not contain

an induced subgraph isomorphic to K1,3. A connected graph Ψ is a closed trail if the degree of each

vertex in Ψ is even. A closed trail Ψ is called a spanning closed trail (SCT) in G if V(G) = V(Ψ),

and is called a dominating closed trail (DCT) if E(G − V(Ψ)) = ∅. A graph is supereulerian if it

contains an SCT. The family of supereulerian graphs is denoted by SL. A graph is Hamiltonian if it

has a spanning cycle. Throughout this paper, we use P for the Petersen graph.

The line graph of a graph G is denoted by L(G). A vertex v ∈ V(H) is locally conntected if its

neighborhood NH(v) induces a connected graph. The closure of a claw-free graph H introduced by

Ryjáček [25] is the graph obtained by recursively adding edges to join two nonadjacent vertices in

the neighborhood of any locally connected vertex of H as long as this is possible and is denoted by

cl(H). A claw-free graph H is said to be closed if H = cl(H). The following theorem shows the

relationship between a DCT of a graph and a Hamiltonian cycle in its line graph.

Theorem 1.1. (Harary and Nash-Willams [16]). The line graph H = L(G) of a graph G with at

least three edges is Hamiltonian if and only if G has a DCT.

Now, we define two families of nonhamiltonian claw-free graphs.

For a K2,3, let D2(K2,3) = {v1, v2, v3}. Let K2,3(s1, s2, s3, n) be the family of graphs of size n

obtained from a K2,3 by adding si ≥ 1 pendant edges at vi (i = 1, 2, 3) and s1 + s2 + s3 + 6 = n.

Let Q2,3(s1, s2, s3, n) = {H : H = L(G) where G ∈ K2,3(s1, s2, s3, n)}.

For the Petersen graph P, let V(P) = {v1, · · · , v10}. Let P(n, s) be the family of graphs of

size n obtained from P by replacing each vi by a connected subgraph Φi with size si ≥ s and

15 +
∑10

i=1 si = n. Let P1(n, s) be the sub-family of P(n, s) in which each Φi = K1,si
.

Let QP(n, s) = {H : H = L(G), where G ∈ P(n, s)}.

Let Q1
P
(n, s) = {H : H = L(G), where G ∈ P1(n, s)}, a subfamily of QP(n, s).

By Theorem 1.1, graphs in Q2,3(s1, s2, s3, n) ∪ QP(n, s) are nonhamiltonian.

For a graph H and t ≥ 1, we define

• σt(H) = min{Σt
i=1

dH(vi) | {v1, v2, · · · , vt} is an independent set in H} (if t > α(H), σt(H) = ∞);

• Ut(H) = min{|
⋃t

i=1 NH(vi)| | {v1, v2, · · · , vt} is an independent set in H}.

For t = 1, we use δ(H) for σ1(H) and U1(H). In general, σt(H) ≥ Ut(H). Let

Ω(H) = {σt(H),Ut(H)}.

Sufficient conditions involved parameters in Ω(H) for claw-free graphs to be Hamiltonian have

been the subjects of many papers (see [10, 12, 17]). For 2-connected claw-free graph H of order
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n, Matthews and Sumner [23] shown that if δ(H) ≥ (n − 2)/3 H is Hamiltonian; Li [19] shown

that if δ(H) ≥ n/4, then H is either Hamiltonian or belongs to a family of easily described graphs;

Flandrin, et al. [14] shown that if σ2(H) ≥ 2n−5
3

then H is Hamiltonian. For σt(H) with t ≥ 4,

Favaron, et al. [10] proved the following:

Theorem 1.2. Let t ≥ 4 be an integer and let H be a 2-connected claw-free simple graph of order n

such that n ≥ 3t2 − 4t − 7, δ(H) ≥ 3t − 4 and σt(H) > n + t2 − 4t + 7. Then either H is Hamiltonian

or θ(cl(H)) ≤ t − 1.

As a special case of Theorem 1.2, Favaron, et al. [10] shown that a 2-connected claw-free graph

H of order n ≥ 77 with δ(H) ≥ 14 and σ6(H) > n + 19 is either Hamiltonian or belongs to a

well described exception family. With Theorem 1.2 and the help of a computer, Kovár̆ı́k et al. [17]

obtained a result for σ8(H) > n + 39 with an exception family that contains 318 infinite classes.

For σ3(H), Liu et al. [22], Zhang [29] and Broersma [3] shown that a 2-connected claw-free

graph H of order n with σ3(H) ≥ n − 2 is Hamiltonian. For condition involved σ4(H) for the

hamiltonicity of claw-free graphs, Frydrych proved the following and had a conjecture in [15].

Theorem 1.3 (Frydrych [15]). A 2-connected claw-free simple graph H of order n with σ4(H) ≥

n + 3 is either Hamiltonian or cl(H) ∈ Q2,3(s1, s2, s3, n).

Conjecture 1.4 (Frydrych [15]). Theorem 1.3 still holds if σ4(H) ≥ n and δ(H) ≥ 3.

The condition “δ(H) ≥ 3” in Conjecture 1.4 was not in the original statement in [15]. However,

it would not be true if δ(H) = 2 as shown by the graph in Fig.1, where Ks = K(n−3)/2 and H is a non-

hamiltonian claw-free graph of order n with δ(H) = 2, σ4(H) ≥ n+ 1 and cl(H) < Q2,3(s1, s2, s3, n).
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Fig. 1: A nonhamiltonian graph H of order n with δ(H) = 2 and σ4(H) ≥ n + 1.

For 3-connected claw-free graphs H of order n, Zhang [29] proved that if σ4(H) ≥ n − 3, then

H is Hamiltonian; Wu [27] proved that if σ3(H) ≥ n+ 1, then H is Hamiltonian connected. Settling

a conjecture posed in [13], Lai et al. [18] proved the following:

Theorem 1.5 (Lai et al. [18]). A 3-connected claw-free simple graph H of order n ≥ 196 with

δ(H) ≥ n+5
10

is either Hamiltonian or cl(H) ∈ Q1
P
(n, n−15

10
).

By enlarging the exception family, Li [21] improved Theorem 1.5 for such graphs H with δ(H) ≥

n+34
12

. Solving a conjecture in [21], Chen, et al. in [9] further improved Li’s result to δ(H) ≥ n+6
13

.

For Ut(H) condition on the hamiltonicity of claw-free graphs, the following are known:
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Theorem 1.6. Let H be a k-connected claw-free simple graph of order n. Then each of the following

holds:

(a) (Bauer, Fan and Veldman [1]) If k = 2 and U2(H) ≥ 2n−5
3

, then H is Hamiltonian.

(b) (Li and Virlouvet [20]) If k = 3 and U2(H) ≥
11(n−7)

21
, then H is Hamiltonian.

Theorem 1.6(b) is a special case of the following Theorem.

Theorem 1.7. (Li and Virlouvet [20]) Let H be a k-connected (k ≥ 3) claw-free simple graph of

order n. If there is some integer t, t ≤ 2k, such that Ut(H) ≥
t(4k − t + 1)

2k(2k + 1)
(n − 2k − 1), then H is

Hamiltonian.

In this paper, we unify and strengthen the results involved dt(H) ∈ Ω(H) above and prove

Conjecture 1.4 which is an easy conclusion from the main result.

Let p and t be positive integers and let ε be a given number. Let H be a k-connected claw-free

graph of order n (k ≥ 2). For dt(H) ∈ Ω(H), we consider graphs H that satisfy the following:

dt(H) ≥
t(n + ε)

p
. (1)

All the conditions involved dt(H) ∈ Ω(H) in the theorems mentioned above are the special cases of

(1) with various given values of p, t, and ε.

Let Q0(r, k) be the family of k-edge-connected K3-free graphs of order at most r and without an

SCT. It is known that Q0(5, 2) = {K2,3} and Q0(13, 3) = {P} (see Theorem 2.3 in section 2).

For given integer p > 0 and a real number ε, define

N(p, ε) = max{36p2 − 34p − ε(p + 1), 20p2 − 10p − ε(p + 1), (3p + 1)(−ε − 4p)}. (2)

Our main result is the following:

Theorem 1.8. Let H be a k-connected claw-free simple graph of order n (k ≥ 2) and δ(H) ≥ 3.

For given integers p ≥ t > 0 and a given number ε, if dt(H) ≥
t(n + ε)

p
where dt(H) ∈ Ω(H)

and n > N(p, ε), then either H is Hamiltonian or cl(H) = L(G) where G is an essentially k-edge-

connected K3-free graph without a DCT and G satisfies one of the following:

(a) if k = 2, G is contractible to a graph in Q0(c, 2) where c ≤ max{4p − 5, 2p + 1};

(b) if k = 3, G is contractible to a graph in Q0(c, 3) where c ≤ max{3p − 5, 2p + 1}.

It should be known that “G is contractible to a graph in Q0(c, k)” in Theorem 1.8 means that “the

reduction G′
0

of the core G0 of G is in Q0(c, k)” which is defined by the Catlin’s reduction method

given in next section. As applications of Theorem 1.8, we prove the following two theorems.

Theorem 1.9. Let H be a 2-connected claw-free simple graph of order n with δ(H) ≥ 3 and n is

sufficiently large. If dt(H) ≥ tn
4

where dt(H) ∈ Ω(H) and t is a given integer and 1 ≤ t ≤ 4, then

either H is Hamiltonian or cl(H) ∈ Q2,3(s1, s2, s3, n) where s1 + s2 + s3 + 6 = n.
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Theorem 1.10. Let H be a 3-connected claw-free simple graph of order n and n is sufficiently large.

(a) For a given integer t and 1 ≤ t ≤ 10, if dt(H) ≥
t(n+5)

10
where dt(H) ∈ Ω(H) and δ(H) ≥ 24,

then H is Hamiltonian if and only if cl(H) < Q1
P
(n, n−15

10 ).

(b) If σ13(H) ≥ n + 6 and δ(H) ≥ 33, then H is Hamiltonian if and only if cl(H) < QP(n, 1).

Remarks. (a) The case for dt(H) = σ4(H) ≥ n of Theorem 1.9 verifies Conjecture 1.4. The case

for dt(H) = σ3(H) ≥ 3n
4

of Theorem 1.9 is an improvement of a “σ3(H) ≥ n − 2” theorem obtained

by Liu et al. [22], Zhang [29] and Broersma [3] mentioned above; the case for dt(H) = σ2(H) ≥ n
2

is an improvement of a “σ2(H) ≥ 2n−5
3

” theorem proved by Flandrin, et al. in [14]; the case

dt(H) = σ1(H) = δ(H) is a theorem proved by Li in [19]. The case for dt(H) = Ut(H) with

1 ≤ t ≤ 4 of Theorem 1.9 is an improvement of Theorem 1.6(a).

The case for dt(H) = σt(H) of Theorem 1.10(a) is a generalization and improvement of Theorem

1.5. It shows that the conclusion of Theorem 1.5 holds for σt(H) ≥
t(n+5)

10 for any t ∈ {1, 2, · · · , 10}.

The case for dt(H) = σt(H) of Theorem 1.10(b) is an improvement of the results in [18, 21]. The

case for dt(H) = Ut(H) of Theorem 1.10 is an improvement of Theorem 1.6(b) and Theorem 1.7

with k = 3.

(b) One can check whether a graph belongs to Q2,3(s1, s2, s3, n) ∪ Q1
P
(n, n−15

10
) in polynomial time.

For graphs H satisfying Theorems 1.9 or 1.10(a), it can be determined in polynomial time if H is

Hamiltonian. For Theorem 1.10(b), a graph given in [9] shows that the result is best possible in the

sense that p = 13 cannot be replaced by p = 14.

(c) For given p, t, ε and k, comparing to the family of k-connected claw-free graphs of order n with

dt(H) ≥
t(n+ε)

p
where dt(H) ∈ Ω(H), the number of graphs inQ0(4p−5, 2)∪Q0(3p−5, 3) is fixed and

can be determined in a constant time (independent on n). In some sense, Theorem 1.8 shows that

only a finite number of k-connected claw-free graphs H with dt(H) ≥
t(n+ε)

p
are non-Hamiltonian.

One may obtain new improvements to Theorems 1.10 and 1.9 by enlarging the number of exceptions

with the help of a computer.

(d) Faudree et al. [11] define the generalized t-degree, δt(H), of a graph H by

δt(H) = min{|
⋃t

i=1 NH(xi)| | {x1, x2, · · · , xt} is a t-subset in H}

Since σt(H) ≥ Ut(H) ≥ δt(H), Theorems 1.8, 1.9 and 1.10 are also true for dt(H) = δt(H).

The rest of this paper is organized as follows. In Section 2, we give a brief discussion of Ryjáček

closure concept and Catlin’s reduction method. In Section 3, we prove a technical lemma which will

be needed in our proofs. The proof of Theorem 1.8 is given in section 4. In Section 5, we prove a

lemma on the properties of reduced graph related to σt condition. The proofs of Theorems 1.9 and

1.10 are given in the last section.
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2 Ryjáček closure concept and Catlin’s reduction Method

The following is a main theorem of Ryjáček closure concept.

Theorem 2.1. (Ryjáček [25]). Let H be a claw-free graph and cl(H) its closure. Then

(a) cl(H) is well defined, and κ(cl(H)) ≥ κ(H);

(b) there is a K3-free graph G such that cl(H) = L(G);

(c) both graphs H and cl(H) have the same circumference.

It is known that a connected line graph H , K3 has a unique graph G with H = L(G). We

call G the preimage graph of H. For a claw-free graph H, the closure cl(H) of H can be obtained

in polynomial time [25] and the preimage graph of a line graph can be obtained in linear time

[24]. We can compute G efficiently for cl(H) = L(G). Thus, with Theorems 1.1 and 2.1, finding a

Hamiltonian cycle in a claw-free graph H is equivalent to finding a DCT in the preimage graph G

of cl(H).

Next, we give a brief discussion on Catlin’s reduction method.

Let G be a connected multigraph. For X ⊆ E(G), the contraction G/X is the graph obtained

from G by identifying the two ends of each edge e ∈ X and deleting the resulting loops. G/X may

not be simple. If Γ is a connected subgraph of G, then Γ is contracted to a vertex in G/Γ and we

write G/Γ for G/E(Γ).

Let O(G) be the set of vertices of odd degree in G. A graph G is collapsible if for every even

subset R ⊆ V(G), there is a spanning connected subgraph ΓR of G with O(ΓR) = R. K1 is regarded

as a collapsible and supereulerian graph. We use CL to denote the family of collapsible graphs.

In [4], Catlin showed that every graph G has a unique collection of maximal collapsible sub-

graphs Γ1, Γ2, · · · , Γc. The reduction of G is G′ = G/(∪c
i=1
Γi), the graph obtained from G by con-

tracting each Γi into a single vertex vi (1 ≤ i ≤ c). For a vertex v ∈ V(G′), there is a unique maximal

collapsible subgraph Γ0(v) such that v is the contraction image of Γ0(v) and Γ0(v) is the preimage of

v. A vertex v ∈ V(G′) is contracted vertex if Γ0(v) , K1. A graph G is reduced if G′ = G.

Theorem 2.2. (Catlin, et al. [4, 5]). Let G be a connected graph and let G′ be the reduction of G.

(a) G ∈ CL if and only if G′ = K1, and G ∈ SL if and only if G′ ∈ SL.

(b) G has a DCT if and only if G′ has a DCT containing all the contracted vertices of G′ .

(c) If G is a reduced graph, then G is simple and K3-free with δ(G) ≤ 3. For any subgraph Ψ of

G, Ψ is reduced and either Ψ ∈ {K1,K2,K2,t(t ≥ 2)} or |E(Ψ)| ≤ 2|V(Ψ)| − 5.

Let P14 be the graph obtained from P by replacing a vertex v in P by a K2,3 in the way that the

three edges incident with v in P are incident with the three degree 2 vertices in K2,3, respectively.

Some facts on reduced graphs are summarized in the following theorem.

6



Theorem 2.3. Let G be a connected reduced graph of order n. Then each of the following holds:

(a) If G < SL and κ′(G) ≥ 2, then n ≥ 5 and n = 5 only if G = K2,3.

(b) ([7]) For 1 < n ≤ 9, if κ′(G) ≥ 2, then |D2(G)| ≥ 3.

(c) ([7]) If κ′(G) ≥ 3 and n ≤ 14, then either G ∈ SL or G ∈ {P, P14}.

(d) ([7]) If κ′(G) ≥ 3 and n = 15, then either G ∈ SL or G is 2-connected, 3-edge-connected

and essentially 4-edge-connected graph with girth at least 5 and V(G) = D3(G) ∪ D4(G) where

|D4(G)| = 3 and D4(G) is an independent set.

(e) ([6]) Let G be a connected reduced graph of order n with δ(G) ≥ 2. Let M be a maximum

matching in G and |D2(G)| = l, and G , K2,a (a ≥ 2). Then |M| ≥ min{ n−1
2 ,

n+5−l
3 }.

Let H be a k-connected claw-free graph with δ(H) ≥ 3 (k ∈ {2, 3}). By Theorem 2.1, there

is a K3-free graph G such that cl(H) = L(G). By the definition of cl(H), V(cl(H)) = V(H) and

dcl(H)(v) ≥ dH(v) for any v ∈ V(cl(H)) and so δ(cl(H)) ≥ δ(H) ≥ 3. For an edge e = xy in G, let ve

be the vertex in cl(H) defined by e in G. Then dcl(H)(ve) + 2 = dG(x) + dG(y). Thus, if cl(H) = L(G)

is k-connected graph with δ(cl(H)) ≥ 3, then G is essentially k-edge-connected with σ2(G) ≥ 5.

Let G be an essentially k-edge-connected graph with σ2(G) ≥ 5, where k ∈ {2, 3}. Then D1(G)∪

D2(G) is an independent set. Let E1 be the set of pendant edges in G. For each x ∈ D2(G), there are

two edges e1
x and e2

x incident with x. Let X2(G) = {e1
x |x ∈ D2(G)}. Define

G0 = G/(E1 ∪ X2(G)) = (G − D1(G))/X2(G).

In other words, G0 is obtained from G by deleting the vertices in D1(G) and replacing each path of

length 2 whose internal vertex is a vertex in D2(G) by an edge.

Let X = D1(G)∪D2(G). In [28], G0 is denoted by IX(G). In [26], Shao defined G0 for essentially

3-edge-connected graphs G. Following [26], we call G0 the core of G. Note that even G is simple,

G0 may not be simple.

The vertex set V(G0) is regarded as a subset of V(G). A vertex in G0 is nontrivial if it is obtained

by contracting some edges in E1 ∪ X2(G) or it is adjacent to a vertex in D2(G) in G. For instance,

if x ∈ D2(G) and NG(x) = {u, v} and if ux in G0 is obtained by contracting the edge ux, then both

ux and v are nontrivial in G0 although ux is a contracted vertex and v is not a contracted vertex in

G0. When we say ux is adjacent to a vertex in D2(G), we regard ux as vertex u in this case. Since

σ2(G) ≥ 5, all vertices in D2(G0) are nontrivial

Let G′
0

be the reduction of G0. For a vertex v ∈ V(G′
0
), let Γ0(v) be the maximum collapsible

preimage of v in G0 and let Γ(v) be the preimage of v in G which is the graph induced by edges in

E(Γ0(v)) and some edges in E1 ∪ X2(G). A vertex v in G′
0

is a nontrivial vertex if v is a contracted

vertex (i.e., |E(Γ(v))| ≥ 1) or v is adjacent to a vertex in D2(G).

For a vertex x in V(Γ(v)), let I(x) be the set of edges in E(G′
0
) that are incident with x in G.

Let i(x) = |I(x)|. Then i(x) is the number of edges in E(G′0) that are incident with x in G. For any

7



x ∈ V(Γ(v)),

i(x) ≤
∑

x∈V(Γ(v))

i(x) = dG′
0
(v), and dG(x) ≤ i(x) + |V(Γ(v))| − 1 ≤ i(x) + |E(Γ(v))|. (3)

Using Theorem 2.2, Veldman [28] and Shao [26] proved the following:

Theorem 2.4. Let G be a connected and essentially k-edge-connected graph (k ≥ 2) withσ2(G) ≥ 5

and L(G) is not complete. Let G0 be the core of graph G. Let G′
0

be the reduction of G0. Then each

of the following holds:

(a) G0 is well defined, nontrivial and κ′(G′
0
) ≥ κ′(G0) ≥ min{3, k}.

(b) (Lemma 5 [28]) G has a DCT if and only if G′
0

has a DCT containing all the nontrivial vertices.

In the rest of the paper, we will use the following notation related to G′
0
:

• S 0 = {v ∈ V(G′
0
) | v is a nontrivial vertex in G′

0
};

• S 1 = {v ∈ S 0 | |E(Γ(v))| ≥ 1};

• S 2 = S 0 − S 1, the set of vertices v with Γ(v) = K1 and adjacent to some vertices in D2(G);

• V0 = V(G′0) − S 1, the set of vertices v with Γ(v) = K1 in G which includes S 2;

• Φ0 = G′
0
[V0];

• M0 is a maximum matching in Φ0, and VM0
is the vertex set of M0;

• U0 = V0 − VM0
and so V(G′

0
) = S 1 ∪ VM0

∪ U0.

Since σ2(G) ≥ 5, by the definition of G′
0
, D2(G′

0
) ⊆ S 1.

3 A Technical Lemma

Since σt(H) ≥ Ut(H), Ut(H) ≥
t(n + ε)

p
implies σt(H) ≥

t(n + ε)

p
. It will be sufficient to prove

Theorems 1.8, 1.9 and 1.10 for σt. We prove the following lemma for σt only.

Lemma 3.1. Let H be the graph satisfying Theorem 1.8 with cl(H) = L(G). Let G0 and G′0 be the

graphs related to G defined in section 2. For each v ∈ V(G′
0
), let Γ(v) be the preimage of v in G.

Then each of the following holds:

(a) Let M be a matching in G with |M| ≥ t. Then

|M|
σt(H) + 2t

t
≤
∑

xy∈M

(dG(x) + dG(y)). (4)
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(b) Let Vr ⊆ S 1 be a r-subset of S 1 in G′
0
. Let M′

b
be a matching of size b in G′

0
. Let V(M′

b
) be

the vertex set of M′
b
. Suppose that Vr ∩ V(M′

b
) = ∅. If |Vr | + |M

′
b
| = r + b ≥ t, then

∑

v∈Vr

(|V(Γ(v))|+dG′
0
(v))+

∑

xy∈M′
b

(|V(Γ(x))|+|V(Γ(y))|+dG′
0
(x)+dG′

0
(y)) ≥

(r + b)(σt(H) + 2t)

t
+2b.

(c) If H satisfies (1), then |D2(G′
0
)| ≤ p when n > −ε(p + 1).

Proof. (a) Let m = |M| and let Mt be a t-subset of M such that for any ab ∈ M − Mt,

max
xy∈Mt

{dG(x) + dG(y)} ≤ dG(a) + dG(b). (5)

Let At be the t-vertex set in V(cl(H)) = V(H) defined by the edges in Mt. Then At is a t-independent

set in cl(H) (as well as in H). Since dH(ve) ≤ dcl(H)(ve),

σt(H) + 2t ≤
∑

ve∈At

(dH(ve) + 2) ≤
∑

ve∈At

(dcl(H)(ve) + 2) =
∑

e=xy∈Mt

(dG(x) + dG(y)). (6)

For ab ∈ M − Mt, by (6) and (5),

σt(H) + 2t

t
≤

∑

xiyi∈Mt
(dG(xi) + dG(yi))

t
≤

t(dG(a) + dG(b))

t
= dG(a) + dG(b). (7)

By (6), (7) and m = |M|,

∑

xy∈M

(dG(x) + dG(y)) =
∑

xiyi∈Mt

(dG(xi) + dG(yi)) +
∑

ab∈M−Mt

(dG(a) + dG(b))

≥ σt(H) + 2t + (m − t)(
σt(H) + 2t

t
) = m

σt(H) + 2t

t
.

Case (a) is proved.

(b) Let Vr = {v1, v2, · · · , vr} and let Γ(vi) be the preimage of vi (1 ≤ i ≤ r) in G. Since Vr ⊆ S 1, Γ(vi)

is nontrivial. Let xiyi be an edge in Γ(vi). Let Mr = {xiyi | 1 ≤ i ≤ r}. For each xiyi ∈ Mr, since G is

K3-free, NG(xi) ∩ NG(yi) = ∅ and NG(xi) ∪ NG(yi) ⊆ I(xi) ∪ I(yi) ∪ V(Γ(vi)). By (3),

dG(xi) + dG(yi) ≤ i(xi) + i(yi) + |V(Γ(vi))| ≤ dG′
0
(vi) + |V(Γ(vi))|. (8)

For each e = xy ∈ M′
b
, let Γ(x) and Γ(y) be the preimages of x and y in G, respectively. Then

there is a vertex u in V(Γ(x)) and a vertex v in V(Γ(y)) such that uv = e, the edge in G corresponding

to xy in G′
0
. Let M0

b
= {uv | u ∈ V(Γ(x)), v ∈ V(Γ(y)) for each xy ∈ M′

b
}. M0

b
is a b-matching in G.

For uv ∈ M0
b

with u ∈ V(Γ(x)) and v ∈ V(Γ(y)),

dG(u) ≤ dG′
0
(x) + |V(Γ(x))| − 1 and dG(v) ≤ dG′

0
(y) + |V(Γ(y))| − 1. (9)

For each uv ∈ M0
b

and its corresponding edge xy ∈ M′
b
, by (9)

dG(u) + dG(v) ≤ dG′
0
(x) + dG′

0
(y) + |V(Γ(x))| + |V(Γ(y))| − 2. (10)
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Since Vr ∩ V(M′
b
) = ∅, M = Mr ∪ M0

b
is a matching in G with m = |M| = r + b ≥ t. By (4),

∑

xy∈M

(dG(x) + dG(y)) ≥ |M|
σt(H) + 2t

t
. (11)

Since M = Mr ∪ M0
b

and b = |M′
b
|, by (11), (8) and (10)

|M|
σt(H) + 2t

t
≤
∑

xy∈M

dG(x) + dG(y) =
∑

xiyi∈Mr

(dG(xi) + dG(yi)) +
∑

uv∈M0
b

(dG(u) + dG(v))

≤
∑

vi∈Vr

(dG′
0
(vi) + |V(Γ(vi))|) +

∑

xy∈M′
b

(dG′
0
(x) + dG′

0
(y) + |V(Γ(x))| + |V(Γ(y))| − 2);

|M|
σt(H) + 2t

t
+ 2b ≤

∑

vi∈Vr

(dG′
0
(vi) + |V(Γ(vi))|) +

∑

xy∈M′
b

(dG′
0
(x) + dG′

0
(y) + |V(Γ(x))| + |V(Γ(y))|).

Case (b) is proved.

(c). By way of contradiction, suppose that r = |D2(G′
0
)| > p. Since σ2(G) ≥ 5, D2(G′

0
) ⊆ S 1. Let

Vr = D2(G′
0
). By p ≥ t and (b) above with M′

b
= ∅ and dG′

0
(vi) = 2 for vi ∈ D2(G′

0
),

∑

vi∈Vr

|V(Γ(vi))| + 2r =

∑

vi∈Vr

(|V(Γ(vi))| + dG′
0
(vi)) ≥

r(σt(H) + 2t)

t
;

∑

vi∈Vr

|V(Γ(vi))| ≥
rσt(H)

t
. (12)

Since G is not a tree, |E(G)| ≥ |V(G)|. Since |V(G)| ≥
∑

v∈Vr
|V(Γ(v))|, by (12), (1) and n = |E(G)|

n = |E(G)| ≥
∑

v∈Vr

|V(Γ(v))| ≥ r
σt(H)

t
≥ r

t(n+ε)
p

t
=

r

p
(n + ε);

r ≤ p +
−εp

n + ε
.

Thus, when n > −ε(p + 1), |D2(G′
0
)| = r ≤ p. Case (c) is proved. �

4 Proof of Theorem 1.8

Proof of Theorem 1.8. Suppose that H is not Hamiltonian. By Theorem 2.1, there is an essentially

k-edge-connected K3-free graph G such that the closure cl(H) = L(G). Then L(G) is not completed

and |E(G)| = n = |V(H)|. Let G0 be the core of G. Let G′
0

be the reduction of G0 and c = |V(G′
0
)|. By

Theorem 2.4, G′0 does not have an SCT and κ′(G′0) ≥ κ′(G0) ≥ min{3, k}. For k = 2, let r = |D2(G′0)|.

If G′
0
= K2,a, then by Lemma 3.1(c), a = |D2(G′

0
)| ≤ p. Theorem 1.8(a) holds for this case.

Next, we assume G′
0
, K2,a. Let M be a maximum matching in G′

0
. By Theorem 2.3(e)

c ≤ max{3|M| + r − 5, 2|M| + 1}. (13)
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Case 1. |M| ≤ t−1. By (13), c ≤ max{3t+r−8, 2t−1}. Since t ≤ p, if k = 3, c ≤ max{3p−8, 2p−1};

if k = 2, by Lemma 3.1(c), r = |D2(G′
0
)| ≤ p, c ≤ max{4p − 8, 2p − 1}. Theorem 1.8(a) holds.

Case 2. |M| ≥ t. Let m = |M|. Note that an edge e = xy in M can be viewed as an edge e = uv in G

and

dG(u) + dG(v) ≤ |V(Γ(x))| + |V(Γ(y))| + dG′
0
(x) + dG′

0
(y) − 2. (14)

Let MG = {uv | uv is an edge in G corresponding to an edge xy in M}. Then MG is a matching with

|MG | = |M| ≥ t. By Lemma 3.1(a) and (14),

m(σt(H) + 2t)

t
+ 2m ≤

∑

uv∈MG

(dG(u) + dG(v) + 2);

m(σt(H) + 4t)

t
≤
∑

xy∈M

(|V(Γ(x))| + |V(Γ(y))| + dG′
0
(x) + dG′

0
(y)) ≤ |V(G)| +

∑

v∈V(G′
0
)

dG′
0
(v). (15)

Since G is not a tree, |E(G)| ≥ |V(G)|. By (1), (15) and by 2|E(G′
0
)| =
∑

v∈V(G′
0
) dG′

0
(v),

m(
n + ε

p
+ 4) ≤

m(σt(H) + 4t)

t
≤ |V(G)| +

∑

v∈V(G′
0
)

dG′
0
(v) ≤ |E(G)| + 2|E(G′0)|. (16)

Claim 1. |E(G′
0
)| ≤ max{20p − 15, 12p − 3}.

By (1), (16), and by |E(G′0)| ≤ |E(G)| = n, m(n+ε
p
+ 4) ≤ |E(G)| + 2|E(G′0)| ≤ 3n, and so

m ≤ 3p −
3p(ε + 4p)

n + ε + 4p
.

Therefore, m ≤ 3p since n > N(p, ε) ≥ (3p + 1)(−ε − 4p). By (13) and r ≤ p, c ≤ max{3m + r −

5, 2m + 1} ≤ max{9p + r − 5, 6p + 1} ≤ max{10p − 5, 6p + 1}. By Theorem 2.2 and G′
0
, K2,a,

|E(G′0)| ≤ 2|V(G′0)| − 5 ≤ 2 max{10p − 5, 6p + 1} − 5 = max{20p − 15, 12p − 3}. (17)

Claim 1 is proved.

By (16), (17), and by |V(G)| ≤ |E(G)| = n,

m(
n + ε

p
+ 4) ≤ |E(G)| + 2|E(G′0)| ≤ n + 2 max{20p − 15, 12p − 3};

m ≤
np + 2p max{20p − 15, 12p − 3}

n + ε + 4p
= p +

p max{40p − 30, 24p − 6} − (ε + 4p)p

n + ε + 4p

≤ p +
p max{36p − 30 − ε, 20p − 6 − ε}

n + ε + 4p
.

Thus, m ≤ p since n > N(p, ε) ≥ p max{36p − 30 − ε, 20p − 6 − ε} − ε − 4p. By (13) and r ≤ p, if

k = 2, c ≤ max{4p − 5, 2p + 1}; if k = 3, c ≤ max{3p − 5, 2p + 1}. Theorem 1.8 is proved. �

Remark. The expression N(p, ε) defined by (2) is for the convenience in the proofs above. To

avoid a lengthy case by case checking, we did not make efforts to get a best possible bound for this

quantity.
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5 Properties of G′
0

for graphs G satisfying Theorem 1.8

The following lemma will be needed for the proofs of Theorems 1.9 and 1.10

Lemma 5.1. Let H be a graph of order n that satisfies Theorem 1.8 with the given numbers k, p, t

and ε, where k ∈ {2, 3}, p ≥ 3(k−1) and p ≥ t. Suppose that H is nonhamiltonianwith cl(H) = L(G).

Let G0 be the core of G. Let G′
0

the reduction of G0. Let S 0, S 1, S 2, M0, V0 and U0 be the sets

defined in Section 2. If n > N(p, ε) and G′
0
, K2,a, then each of the following holds:

(a) |S 1| + |M0| ≤ p.

(b) If |S 1| + |M0| = p, then |E(G′
0
)| ≥ 2p + ε − |S 1| +

∑

v∈U0
dG(v). Furthermore, if |M0| = 0, then

V(G′0) = S 1 ∪ U0, |E(G′0)| ≥ ε + p +
∑

v∈U0
dG(v) and |V(G′0)| ≤ 2p − ε − 5.

(c) |U0| ≤ 2|S 1| + 3|M0| − 5 and |V(G′
0
)| ≤ 3|S 1| + 5|M0| − 5.

(d) If δ(H) ≥ 3p − 6 when k = 3 or if δ(H) ≥ 4p − 6 when k = 2, then M0 = ∅ and S 2 = ∅.

Proof. Since H is nonhamiltonian, by Theorem 2.4, G′
0

does not have a DCT containing S 0. Since

p ≥ (k − 1)3, max{4p − 5, 2p + 1} = 4p − 5 when k = 2 and max{3p − 5, 2p + 1} = 3p − 5 when

k = 3. By Theorem 2.2 and G′
0
, K2,a, and by Theorem 1.8,

|E(G0)| ≤ 2|V(G′0)| − 5 ≤















6p − 15 if k = 3;

8p − 15 if k = 2,















≤ 8p − 15. (18)

(a) Let s = |S 1| and m = |M0|. If s + m < t, then we are done. Thus, we assume s + m ≥ t.

Since S 1 ∩ VM0
= ∅, by Lemma 3.1(b) with |S 1| + |M0| = s + m ≥ t,

(s + m)
σt(H) + 2t

t
+ 2m ≤

∑

vi∈S 1

(dG′
0
(vi) + |V(Γ(vi))|) +

∑

xy∈M0

(dG′
0
(x) + dG′

0
(y) + |V(Γ(x))| + |V(Γ(y))|)

(s + m)
σt(H) + 2t

t
+ 2m ≤

∑

vi∈S 1∪VM0

dG′
0
(v) +

∑

vi∈S 1

|V(Γ(vi))| +
∑

xy∈M0

(|V(Γ(x))| + |V(Γ(y))|). (19)

For each xy ∈ M0, since x and y are vertices in V0, |V(Γ(x))| = |V(Γ(y))| = 1. By (19),

(s + m)
σt(H) + 2t

t
−
∑

vi∈S 1∪VM0

dG′
0
(v) ≤

∑

vi∈S 1

|V(Γ(vi))|. (20)

Since |E(Γ(v))| ≥ |V(Γ(v))| − 1 for v ∈ S 1, by (20), s = |S 1| and n = |E(G)|, we have

|E(G)| =
∑

v∈S 1

|E(Γ(v))| + |E(G′0)| ≥
∑

v∈S 1

(V(Γ(v))| − 1) + |E(G′0)|

≥
∑

v∈S 1

|V(Γ(v))| − |S 1| + |E(G′0)|;

n ≥





















(s + m)
σt(H) + 2t

t
−
∑

vi∈S 1∪VM0

dG′
0
(v)





















− s + |E(G′0)|. (21)
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Since V(G′
0
) = S 1 ∪ VM0

∪U0, 2|E(G′
0
)| =
∑

v∈S 1∪VM0
dG′

0
(v) +

∑

v∈U0
dG′

0
(v).

∑

v∈S 1∪VM0

dG′
0
(v) = 2|E(G′0)| −

∑

v∈U0

dG′
0
(v). (22)

By (21), (22) and (1),

n ≥

















(s + m)
σt(H) + 2t

t
−

















2|E(G′0)| −
∑

v∈U0

dG′
0
(v)

































− s + |E(G′0)|;

n ≥ (s + m)(
n + ε

p
+ 2) − |E(G′0)| +

∑

v∈U0

dG′
0
(v) − s;

n + |E(G′0)| + s ≥ (s + m)(
n + ε

p
+ 2) +

∑

v∈U0

dG′
0
(v) ≥ (s + m)(

n + ε

p
+ 2). (23)

By (23) and by (18) and s ≤ |V(G′
0
)| ≤ 4p − 5,

s + m ≤
p(n + |E(G′

0
)| + s)

n + ε + 2p
≤

p(n + 12p − 20)

n + ε + 2p
= p +

p(10p − 20 − ε)

n + ε + 2p
.

Thus, (s + m) ≤ p since n > N(p, ε) > 10p2 − 22p − (p + 1)ε. Case (a) is proved.

(b) Since s + m = p, by (23),

n + |E(G′0)| + s ≥ (s + m)(
n + ε

p
+ 2) +

∑

v∈U0

dG′
0
(v) = p(

n + ε

p
+ 2) +

∑

v∈U0

dG′
0
(v);

n + |E(G′0)| + s ≥ n + ε + 2p +
∑

v∈U0

dG′
0
(v);

|E(G′0)| ≥ ε + 2p − s +
∑

v∈U0

dG′
0
(v). (24)

The first part of case (b) is proved.

If |M0| = 0, then VM0
= ∅ and |S 1| = p. Since D2(G′

0
) ⊆ S 1, dG′

0
(v) ≥ 3 for any v ∈ U0. By (24),

|E(G′0)| ≥ ε + p +
∑

v∈U0

dG′
0
(v) ≥ ε + p + 3|U0 |. (25)

Since G′
0
, K2,a, by Theorem 2.2, |E(G′

0
)| ≤ 2|V(G′

0
)| − 5 = 2(|S 1|+ |U0 |)− 5. By (25) and |S 1| = p,

ε + p + 3|U0| ≤ |E(G′0)| ≤ 2(|S 1| + |U0|) − 5 = 2p + 2|U0| − 5;

|U0 | ≤ p − 5 − ε.

Thus, |V(G′
0
)| = p + |U0 | ≤ 2p − 5 − ε. Case (b) is proved.

(c) LetΦ1 be the subgraph in G′
0

induced by the edges in M0 and the edges between U0 and S 1∪VM0
.

Then V(Φ1) = V(G′0) and |E(Φ1)| ≤ |E(G′0)|. Since D2(G′0) ⊆ S 1, dG′
0
(v) ≥ 3 for v ∈ U0. Then

13



|E(Φ1)| ≥ 3|U0 | + |M0|. Since G′
0
, K2,a, by Theorem 2.2, |E(G′

0
)| ≤ 2|V(G′

0
)| − 5. Since |E(Φ1)| ≤

|E(G′
0
)| and |VM0

| = 2|M0|,

3|U0| + |M0| ≤ |E(Φ1)| ≤ 2|V(G′0)| − 5 = 2(|S 1| + |VM0
| + |U0 |) − 5 = 2|S 1| + 4|M0| + 2|U0 | − 5;

|U0| ≤ 2|S 1| + 3|M0| − 5.

Therefore, |V(G′
0
)| = |S 1| + |VM0

| + |U0 | ≤ 3|S 1| + 5|M0| − 5.

(d) If M0 , ∅, let xy be an edge in M0. Then Γ(x) = Γ(y) = K1 in G. Thus, dG(x)+ dG(y) = dG′
0
(x)+

dG′
0
(y). Since G′

0
is K3-free, NG′

0
(x) ∪ NG′

0
(y) ⊆ V(G′

0
) and NG′

0
(x) ∩ NG′

0
(y) = ∅. dG′

0
(x) + dG′

0
(y) ≤

|V(G′0)|. Hence, δ(H) + 2 = σ2(G′0) ≤ dG(x) + dG(y) = dG′
0
(x) + dG′

0
(y) ≤ |V(G′0)|.

If S 2 , ∅, let u ∈ S 2. Then u is adjacent to a vertex v ∈ D2(G) and Γ(u) = K1. Since G′
0

is

2-edge-connected and K3-free, dG(u) = dG′
0
(u) ≤ |V(G′

0
)| − 2. δ(H)+ 2 = σ2(G′

0
) ≤ dG(u)+ dG(v) =

dG′
0
(u) + 2 ≤ |V(G′

0
)| − 2 + 2 = |V(G′

0
)|. Thus, if M0 , ∅ or S 2 , ∅,

δ(H) ≤ |V(G′0)| − 2. (26)

By Theorem 1.8. |V(G′
0
)| ≤ 3p − 5 if k = 3 and |V(G′

0
)| ≤ 4p − 5 if k = 2. By (26)

δ(H) ≤ |V(G′0)| − 2 ≤















3p − 7 if k = 3;

4p − 7 if k = 2,

a contradiction. Thus, M0 = ∅ and S 2 = ∅. Case (d) is proved. �

6 Proofs of Theorem 1.9 and Theorem 1.10

Proof of Theorem 1.9. This is the special case of Theorem 1.8 with p = 4, 1 ≤ t ≤ 4 and ε = 0.

Suppose that H is not Hamiltonian. By Theorem 2.1, cl(H) = L(G) where G is an essentially 2-

edge-connected K3-free graph with |E(G)| = n. By Theorem 1.1, G does not have a DCT. Let G′
0

be the reduction of G0. Since κ′(G′
0
) ≥ 2, by Theorems 2.2(c) and 1.8, |E(G′

0
)| ≤ 2|V(G′

0
)| − 4 ≤

2(4p − 5) − 4 = 18. Note that G′0 < SL, by Theorem 2.3(a) |V(G′0)| ≥ 5.

Let S 0, S 1, M0 and U0 be the sets defined above. By Theorem 2.4, G′
0

does not have a DCT

containing S 0. When n > 18, |E(G′
0
)| < |E(G)|. Thus, |S 1| ≥ 1. By Lemma 5.1, |S 1| + |M0| ≤ 4.

Case 1. G′
0
, K2,a.

If |S 1| + |M0| ≤ 3, then |M0| ≤ 2. By Lemma 5.1, |V(G′
0
)| ≤ 3|S 1| + 5|M0| − 5 = 4 + 2|M0| ≤ 8.

By Theorem 2.3(b), |D2(G′
0
)| ≥ 3. Then |S 1| ≥ |D2(G′

0
)| ≥ 3. Therefore, |M0| = 0. It follows that

|V(G′
0
)| ≤ 3|S 1| + 5|M0| − 5 = 4, contrary to that |V(G′

0
)| ≥ 5.

Thus, |S 1|+|M0 | = 4. By Lemma 5.1(b) with p = 4 and ε = 0, and by |U0 | = |V(G′0)|−|S 1|−2|M0 |,

|E(G′0)| ≥ 8 − |S 1| + 3|U0| ≥ 3|V(G′0)| + 8 − 4|S 1| − 6|M0|. (27)
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By Theorem 2.2 and G′
0
, K2,a, |E(G′

0
)| ≤ 2|V(G′

0
)| − 5. By (27) and |S 1| + |M0| = 4,

2|V(G′0)| − 5 ≥ |E(G′0)| ≥ 3|V(G′0)| + 8 − 4|S 1| − 6|M0|;

4(|S 1| + |M0|) + 2|M0| = 4|S 1| + 6|M0| ≥ |V(G′0)| + 13;

16 + 2|M0| ≥ |V(G′0)| + 13;

3 + 2|M0| ≥ |V(G′0)|. (28)

Since |S 1| ≥ 1, |M0| ≤ 3. By (28), |V(G′
0
)| ≤ 9. By Theorem 2.3(b), |D2(G′

0
)| ≥ 3. Since D2(G′

0
) ⊆

S 1, |S 1| ≥ 3 and so |M0| ≤ 1. By (28), |V(G′
0
)| ≤ 5. By Theorem 2.3(a), G′

0
= K2,3, a contradiction.

Case 2. G′
0
= K2,a with 2 ≤ a ≤ p = 4.

Since G′
0

does not have an SCT, G′
0
= K2,3. Since D2(G′

0
) ⊆ S 1, 3 ≤ |S 1| ≤ 4. For v ∈ S 1, let

Γ(v) be the preimage of v in G. Then |E(G)| = |E(K2,3)| +
∑

v∈S 1
|E(Γ(v))| = 6 +

∑

v∈S 1
|E(Γ(v))|.

If |S 1| = 4, then let S 1 = D2(G′
0
)∪{u}where dG′

0
(u) = 3. By Lemma 3.1, σt(H) ≥ tn

4 (1 ≤ t ≤ 4),

|E(Γ(v))| ≥ |V(Γ(v))| − 1 and n = |E(G)|,

|S 1|
σt(H) + 2t

t
≤
∑

v∈S 1

(dG′
0
(v) + |V(Γ(v))|) ≤

∑

v∈D2(G′
0
)∪{u}

dG′
0
(v) +

∑

v∈S 1

(|E(Γ(v))| + 1);

n + 8 ≤ 9 + (|E(G)| − 6) + 4 = n + 7,

a contradiction. This shows that G′
0
= K2,3 with |S 1| = 4 is impossible.

If |S 1| = 3, then S 1 = D2(K2,3). Let S 1 = {v1, v2, v3}. To prove cl(H) = L(G) ∈ Q2,3(s1, s2, s3, n),

we only need to show that for each vi ∈ S 1, Γ(vi) = K1,s for some s ≥ 1.

By way of contradiction, we assume that Γ(v1) , K1,s. Let ea = v1y1 and eb = v1y2 be the two

edges in G′
0

incident with v1 where yi is a degree 3 vertex in G′
0
= K2,3 and dG(yi) = dG′

0
(yi) = 3

(i = 1, 2). Then there are two vertices x1 and x2 in V(Γ(v1)) such that x1y1 = ea and x2y2 = eb in G.

Claim 1. Γ(v1) contains an edge that is adjacent to at most one of the edges in {ea, eb}.

By |E(Γ(v1))| ≥ 1, Γ(v1) , K1,s and G is an essentially 2-edge-connected K3-free graph with

σ2(G) ≥ 5, if x1 = x2, then Γ(v1) contains a cycle C of length at least 4 and so C has an edge that is

not adjacent to either edge in {ea, eb}; if x1 , x2, Γ(v1) has an edge that is adjacent to at most one of

the edges {ea, eb}. The Claim is proved.

With Claim 1, we may let ey = xy be such an edge in Γ(v1) that is not adjacent to eb. Let

e j = w jz j be an edge in E(Γ(v j)) ( j = 2, 3). Then Ma = {ey, eb, e2, e3} is a matching in G.

For eb = x2y2, dG(x2)+dG(y2) = |EG(x2)|+3. For ey = xy, since G is K3-free, |EG (x)∩EG (y)| = 1

and |(EG(x) ∪ EG(y)) ∩ EG(x2)| ≤ 1, and EG(x) ∪ EG(y)) ∪ EG (x2) ⊆ E(Γ(v1)) ∪ {ea, eb}. Thus,

|EG(x)| + |EG(y)| + |EG (x2)| = |EG(x) ∪ EG(y) ∪ EG (x2)| + |EG(x) ∩ EG(y)|

+|(EG(x) ∪ EG(y)) ∩ EG(x2)|

≤ |E(Γ(v1))| + |{ea, eb}| + 2 = |E(Γ(v1))| + 4.
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Hence,

(dG(x) + dG(y)) + (dG(x2) + dG(y2)) = |EG(x)| + |EG(y)| + |EG(x2)| + 3 ≤ |E(Γ(v1))| + 7. (29)

Since G is K3-free, EG (w j) ∩ EG(z j) = {w jz j} and EG(w j) ∪ EG(z j) ≤ E(Γ(v j)) ∪ EG′
0
(v j). Since

v j ∈ S 1 = D2(K2,3), |EG′
0
(v j)| = 2. Then

|EG(w j)| + |EG(z j)| = |EG(w j) ∪ EG(z j)| + |EG(w j) ∩ EG(z j)| ≤ |E(Γ(v j))| + 3. (30)

Thus,

3
∑

j=2

(dG(w j) + dG(z j)) ≤

3
∑

j=2

(|EG(w j)| + |EG (z j)|) ≤ |E(Γ(v2))| + |E(Γ(v3))| + 6. (31)

By Lemma 3.1 with σt(H) ≥ tn
4

and |Ma| = 4, by (29), (30), (31) and |E(G)| = 6 +
∑3

i=1 |E(Γ(vi))|,

|Ma|
σt(H) + 2t

t
≤ (dG(x) + dG(y)) + (dG(x2) + dG(y2)) +

3
∑

j=2

(dG(w j) + dG(z j));

n + 8 ≤ |E(Γ(v1))| + 7 + |E(Γ(v2))| + |E(Γ(v3))| + 6 = |E(G)| − 6 + 13 = n + 7,

a contradiction. The proof is completed. �

To prove Theorem 1.10, we need the following theorem:

Theorem 6.1. (Chen et al. [8]). Let G be a 3-edge-connected graph and let S ⊆ V(G) be a vertex

subset with |S | ≤ 12. Then either G has a closed trail C such that S ⊆ V(C), or G can be contracted

to P in such a way that the preimage of each vertex of P contains at least one vertex in S .

Proof of Theorem 1.10. Suppose that H is not Hamiltonian. Let G be the preimage of cl(H) =

L(G). Then G is essentially 3-edge-connected. By Theorem 1.1, G does not have a DCT. Let S 0,

S 1, S 2, M0 and U0 be the sets defined before, where S 0 is the set of all the nontrivial vertices of G′
0
.

By Theorem 2.4, κ′(G′
0
) ≥ 3 and G′

0
dose not have a DCT containing S 0. Hence, G′

0
, K2,a.

(a) This is a special case of Theorem 1.8 with k = 3, p = 10, 1 ≤ t ≤ 10 and ε = 5. By Lemma 5.1,

since δ(H) ≥ 24 = 3p−6, M0 = ∅ , S 2 = ∅ and |S 1| ≤ p = 10. Thus, S 0 = S 1 and U0 = V(G′
0
)−S 0.

If |S 0| ≤ 9, then by Theorem 6.1, G′
0

has a closed trail C such that S 0 ⊆ C. Since U0 is an

independent set, C is a DCT in G′0 containing S 0, a contradiction.

Thus, |S 0| = 10. By Lemma 5.1(b), |V(G′
0
)| ≤ 2p − 5 − ε = 10. By Theorem 2.3(c), G′

0
= P and

so S 0 = V(G′
0
). Let V(G′

0
) = {v1, v2, · · · , v10}. Let Γ(vi) be the preimage of vi in G. We assume that

|V(Γ(v1))| ≤ |V(Γ(v2))| ≤ · · · ≤ |V(Γ(v10))|. (32)
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By Lemma 3.1(a), dG′
0
(v) = 3 for any v ∈ V(G′

0
), |V(G′

0
)| = 10 and σt(H) ≥

t(n+5)
10

,

∑

v∈V(G′
0
)

|V(Γ(v))| + 3|V(G′0)| =
∑

v∈V(G′
0
)

(

|V(Γ(v))| + dG′
0
(v)
)

≥ |V(G′0)|
σt(H) + 2t

t
≥ n + 25;

∑

v∈V(G′
0
)

|V(Γ(v))| ≥
10σt(H)

t
− 10 = (n + 5) − 10 = n − 5. (33)

Since |E(Γ(vi ))| ≥ |V(Γ(vi)| − 1, by (33), and by n = |E(G)| and |E(G′
0
)| = |E(P)| = 15,

n = |E(G)| = |E(G′0)| +

10
∑

i=1

|E(Γ(vi ))| ≥ 15 +

10
∑

i=1

(|V(Γ(vi))| − 1)

≥ 5 +

10
∑

i=1

|V(Γ(vi))| = 5 + (n − 5) = n.

Thus, the equalities of (32), (33), and |E(Γ(vi))| = |V(Γ(vi))| − 1 must hold. Hence, Γ(vi) is a tree

with |E(Γ(vi))| = |V(Γ(vi))| − 1 = n−15
10 . Since G is essentially 3-edge-connected, Γ(vi) = K1, n−15

10
.

Theorem 1.10(a) is proved.

(b) This is a special case of Theorem 1.8 with k = 3, p = t = 13 and ε = 6. With δ(H) ≥ 33 = 3p−6,

by Lemma 5.1, M0 = ∅, S 2 = ∅ and |S 1| ≤ p = 13. Hence, S 0 = S 1 and U0 = V(G′
0
) − S 0.

Case 1. |S 0| = |S 1| ≤ 12. Then by Theorem 6.1, we have two subcases:

Subcase (i). G′
0

has a closed trail C such that S 0 ⊆ C.

Then C is a DCT in G′
0

that contains all the nontrivial vertices, a contradiction.

Subcase (ii). G′0 can be contracted to P such that the preimage of each vertex of P contains at least

one vertex in S 0. Thus, G ∈ P(n, 1) and so cl(H) ∈ QP(n, 1). Theorem 1.10 is proved for this case.

Case 2. |S 0| = |S 1| = p = 13. By Lemma 5.1, 13 ≤ |V(G′
0
)| ≤ 2p − 5 − ε = 15 and

|E(G′0)| ≥ ε + p +
∑

v∈U0

dG′
0
(v) = 19 + 3|U0|. (34)

If 13 ≤ |V(G′
0
)| ≤ 14, then by Theorem 2.3(c). G′

0
= P14. Then |U0 | = 1. By (34), |E(G′

0
)| ≥ 22,

contrary to that |E(G′
0
)| = |E(P14)| = 21.

If |V(G0)| = 15, then |U0 | = 2. By (34) |E(G′
0
)| ≥ 25. By Theorem 2.3(d), V(G′

0
) = D3(G′

0
) ∪

D4(G′
0
) with |D4(G′

0
)| = 3. Then |E(G′

0
)| = 24, a contradiction. Thus, |S 0| = 13 is impossible. �
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