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Degree and neighborhood conditions for hamiltonicity of

claw-free graphs

Zhi-Hong Chen, Butler University, Indianapolis, IN 46208

Abstract
For a graph H, let o,(H) = min{E;ZIdH(v[) | {vi,v2,--+ , v} is an independent set in H} and let
U;(H) = min{| Ule Nyl | {vi,v2,--+ , v} is an independent set in H}. We show that for a

given number € and given integers p >t > 0, k € {2,3} and N = N(p, ¢), if H is a k-connected
claw-free graph of order n > N with 6(H) > 3 and its Ryjacek’s closure cl(H) = L(G), and
if d(H) > t(n + €)/p where d,(H) € {o(H), U;(H)}, then either H is Hamiltonian or G, the
preimage of L(G), can be contracted to a k-edge-connected K3-free graph of order at most
max{4p—5,2p+1} and without spanning closed trails. As applications, we prove the following
for such graphs H of order n with n sufficiently large:

) Ifk=2,6(H) >3,and foragivent (1 <t <4)d,(H) > %, then either H is Hamiltonian
or cl(H) = L(G) where G is a graph obtained from K, 3 by replacing each of the degree 2
vertices by a K ¢ (s > 1). When ¢ = 4 and d,(H) = 04(H), this proves a conjecture in [15].

(1) Ifk =3,0(H) > 24, and fora givent (1 <t < 10) d,(H) > %, then H is Hamiltonian.
These bounds on d;(H) in (i) and (ii) are sharp. It unifies and improves several prior results on
conditions involved o and U, for the hamiltonicity of claw-free graphs. Since the number of
graphs of orders at most max{4p — 5,2p + 1} are fixed for given p, improvements to (i) or (ii)

by increasing the value of p are possible with the help of a computer.

Keywords: Claw-free graph, Hamiltonicity, Neighborhood condition, degree condition

1 Introduction

We shall use the notation of Bondy and Murty [2], except when otherwise stated. Graphs considered
in this paper are finite and loopless. A graph is called a multigraph if it contains multiple edges.
A graph without multiple edges is called a simple graph or simply a graph. As in [2], «/(G) and
dg(v) denote the edge-connectivity of G and the degree of a vertex v in G, respectively. For a
vertex v € V(G), let Eg(v) be the set of edges incident with v in G. Then dg(v) = |Eg(v)|. Define
02(G) = min{dg(u)+dg(v) | for every edge uv € E(G)} and Di(G) = {v € V(G) |dg(v) = i}. Anedge
cut X of a graph G is essential if each component of G — X has some edges. A graph G is essentially

k-edge-connected if G is connected and does not have an essential edge cut of size less than k. An



edge e = uv is called a pendant edge if min{dg(u), dg(v)} = 1. The independence number of a graph
G is denoted by a(G) and the clique covering number of G, (i.e. the minimum number of cliques
necessary for covering V(G)) by 6(G). An independent set with ¢ vertices is called a t-independent
set and a matching with ¢ edges is called a t-matching. A graph H is claw-free if H does not contain
an induced subgraph isomorphic to K; 3. A connected graph V¥ is a closed trail if the degree of each
vertex in ¥ is even. A closed trail V¥ is called a spanning closed trail (SCT) in G if V(G) = V(¥),
and is called a dominating closed trail (DCT) if E(G — V(¥)) = 0. A graph is supereulerian if it
contains an SCT. The family of supereulerian graphs is denoted by S£. A graph is Hamiltonian if it

has a spanning cycle. Throughout this paper, we use P for the Petersen graph.

The line graph of a graph G is denoted by L(G). A vertex v € V(H) is locally conntected if its
neighborhood Ny (v) induces a connected graph. The closure of a claw-free graph H introduced by
Ryjacek [25] is the graph obtained by recursively adding edges to join two nonadjacent vertices in
the neighborhood of any locally connected vertex of H as long as this is possible and is denoted by
cl(H). A claw-free graph H is said to be closed if H = cl(H). The following theorem shows the

relationship between a DCT of a graph and a Hamiltonian cycle in its line graph.

Theorem 1.1. (Harary and Nash-Willams [16]). The line graph H = L(G) of a graph G with at
least three edges is Hamiltonian if and only if G has a DCT.

Now, we define two families of nonhamiltonian claw-free graphs.
For a K53, let Dy(Kz3) = {vi,v2,v3}. Let K;3(s1, 82, 53, 1) be the family of graphs of size n
obtained from a K, 3 by adding s; > 1 pendantedges atv; (i = 1,2,3) and s + s + 53 + 6 = n.

Let Q3(s1, 52, 53,n) = {H : H = L(G) where G € K,3(s1, 52, 53, 1)}

For the Petersen graph P, let V(P) = {vi,---,vi0}. Let P(n,s) be the family of graphs of
size n obtained from P by replacing each v; by a connected subgraph ®; with size s; > s and
15+ 319 s; = n. Let Py (n, 5) be the sub-family of P(n, s) in which each ®; = K ;.

Let Qp(n,s) = {H : H = L(G), where G € P(n, s)}.

Let Q})(n, s)={H : H = L(G), where G € P1(n, s)}, a subfamily of Qp(n, s).

By Theorem 1.1, graphs in @, 3(s1, 52, 53, n) U Qp(n, s) are nonhamiltonian.

For a graph H and ¢ > 1, we define

o0 (H) = rnin{Z?zldH(v,-) [{vi,v2,- -+, }1is an independent set in H} (if t > a(H), o(H) = o0);
e U;,(H) = min({| U§:1 Nyl | {vi,v2,- -+, v} is an independent set in H}.

For ¢t = 1, we use 6(H) for o1 (H) and U, (H). In general, oy(H) > U,(H). Let

Q(H) = {o(H), U;(H)}.

Sufficient conditions involved parameters in Q(H) for claw-free graphs to be Hamiltonian have

been the subjects of many papers (see [10, 12, 17]). For 2-connected claw-free graph H of order



n, Matthews and Sumner [23] shown that if 6(H) > (n — 2)/3 H is Hamiltonian; Li [19] shown
that if 6(H) > n/4, then H is either Hamiltonian or belongs to a family of easily described graphs;
Flandrin, et al. [14] shown that if o»(H) > 2"3—_5 then H is Hamiltonian. For o,(H) with t > 4,

Favaron, et al. [10] proved the following:

Theorem 1.2. Let t > 4 be an integer and let H be a 2-connected claw-free simple graph of order n
such thatn > 3t> —4t — 7, 5(H) > 3t — 4 and o;(H) > n + t> — 4t + 7. Then either H is Hamiltonian
orf(cl(H)) <t-1.

As a special case of Theorem 1.2, Favaron, et al. [10] shown that a 2-connected claw-free graph
H of order n > 77 with 6(H) > 14 and o¢(H) > n + 19 is either Hamiltonian or belongs to a
well described exception family. With Theorem 1.2 and the help of a computer, Kovéiik et al. [17]

obtained a result for og(H) > n + 39 with an exception family that contains 318 infinite classes.

For o3(H), Liu et al. [22], Zhang [29] and Broersma [3] shown that a 2-connected claw-free
graph H of order n with o3(H) > n — 2 is Hamiltonian. For condition involved o4(H) for the

hamiltonicity of claw-free graphs, Frydrych proved the following and had a conjecture in [15].

Theorem 1.3 (Frydrych [15]). A 2-connected claw-free simple graph H of order n with o4(H) >

n + 3 is either Hamiltonian or cl(H) € Q>3(s1, 52, 53, ).
Conjecture 1.4 (Frydrych [15]). Theorem 1.3 still holds if c4(H) > n and 6(H) > 3.

The condition “6(H) > 3” in Conjecture 1.4 was not in the original statement in [15]. However,
it would not be true if 6(H) = 2 as shown by the graph in Fig.1, where K = K;,,_3)/> and H is a non-
hamiltonian claw-free graph of order n with 6(H) = 2, 04(H) > n+ 1 and cl(H) & Q>3(s1, 52, 53, 7).

o

Fig. 1: A nonhamiltonian graph H of order n with 6(H) = 2 and o4(H) > n + 1.

For 3-connected claw-free graphs H of order n, Zhang [29] proved that if o4(H) > n — 3, then
H is Hamiltonian; Wu [27] proved that if o3(H) > n + 1, then H is Hamiltonian connected. Settling

a conjecture posed in [13], Lai et al. [18] proved the following:

Theorem 1.5 (Lai et al. [18]). A 3-connected claw-free simple graph H of order n > 196 with

6(H) > % is either Hamiltonian or cl(H) € Q})(n, "I(l)s ).

By enlarging the exception family, Li [21] improved Theorem 1.5 for such graphs H with 6(H) >

n+34
12

> n+6

. Solving a conjecture in [21], Chen, et al. in [9] further improved Li’s result to 6(H) > %37

For U;(H) condition on the hamiltonicity of claw-free graphs, the following are known:



Theorem 1.6. Let H be a k-connected claw-free simple graph of order n. Then each of the following
holds:

(a) (Bauer, Fan and Veldman [1]) If k = 2 and Uy(H) > 2"3_5, then H is Hamiltonian.

(b) (Li and Virlouvet [20]) If k = 3 and Uy(H) > 292, then H is Hamiltonian.

Theorem 1.6(b) is a special case of the following Theorem.

Theorem 1.7. (Li and Virlouvet [20]) Let H be a k-connected (k > 3) claw-free simple graph of

tdk—t+1
order n. If there is some integer t, t < 2k, such that U,(H) > W(ﬂ —2k—1), then H is

Hamiltonian.

In this paper, we unify and strengthen the results involved d,(H) € Q(H) above and prove
Conjecture 1.4 which is an easy conclusion from the main result.

Let p and ¢ be positive integers and let € be a given number. Let H be a k-connected claw-free

graph of order n (k > 2). For d,(H) € Q(H), we consider graphs H that satisfy the following:

d,(H) > t("; € (1)

All the conditions involved d,(H) € Q(H) in the theorems mentioned above are the special cases of

(1) with various given values of p, ¢, and €.

Let Q(r, k) be the family of k-edge-connected K3-free graphs of order at most r and without an
SCT. It is known that Qy(5,2) = {K» 3} and Qy(13, 3) = {P} (see Theorem 2.3 in section 2).

For given integer p > 0 and a real number €, define
N(p, €) = max{36p> — 34p — e(p + 1),20p> — 10p — e(p + 1), Bp + 1)(—e — 4p)}. 2)
Our main result is the following:

Theorem 1.8. Let H be a k-connected claw-free simple graph of order n (k > 2) and 6(H) > 3.
t(n+
(O here dy(H) € QH)

For given integers p > t > 0 and a given number €, if d,(H) >
and n > N(p, €), then either H is Hamiltonian or cl(H) = L(G) where G is an essentially k-edge-
connected Ks-free graph without a DCT and G satisfies one of the following:
(a) ifk =2, G is contractible to a graph in Qy(c,2) where ¢ < max{dp — 5,2p + 1};
(b) ifk =3, G is contractible to a graph in Qy(c, 3) where ¢ < max{3p —5,2p + 1}.
It should be known that “G is contractible to a graph in Qg(c, k)”” in Theorem 1.8 means that “the

reduction G, of the core Gy of G is in Qy(c, k)” which is defined by the Catlin’s reduction method

given in next section. As applications of Theorem 1.8, we prove the following two theorems.

Theorem 1.9. Let H be a 2-connected claw-free simple graph of order n with 5(H) > 3 and n is
sufficiently large. If d(H) > %’ where d,(H) € Q(H) and t is a given integer and 1 < t < 4, then

either H is Hamiltonian or cl(H) € @Q3(s1, $2, 53, 1) where 51 + 52 + s3 + 6 = n.

4



Theorem 1.10. Let H be a 3-connected claw-free simple graph of order n and n is sufficiently large.

(a) For a given integer t and 1 < t < 10, if d(H) > 22 where d,(H) € Q(H) and 5(H) > 24,

then H is Hamiltonian if and only if cl(H) ¢ Q})(n, "I(l)s ).

(b) If o13(H) > n + 6 and 5§(H) > 33, then H is Hamiltonian if and only if cI(H) ¢ Qp(n, 1).

Remarks. (a) The case for d,(H) = 04(H) > n of Theorem 1.9 verifies Conjecture 1.4. The case
for dy(H) = o3(H) > 34—" of Theorem 1.9 is an improvement of a “o3(H) > n — 2” theorem obtained
by Liu et al. [22], Zhang [29] and Broersma [3] mentioned above; the case for d,(H) = o0»(H) > %
is an improvement of a “o»(H) = 2"7_”
di(H) = o1(H) = 6(H) is a theorem proved by Li in [19]. The case for d/(H) = U,(H) with

1 <t <4 of Theorem 1.9 is an improvement of Theorem 1.6(a).

theorem proved by Flandrin, et al. in [14]; the case

The case for d,(H) = o,(H) of Theorem 1.10(a) is a generalization and improvement of Theorem
1.5. It shows that the conclusion of Theorem 1.5 holds for o,(H) > t('igs) forany r € {1,2,---,10}.
The case for d;,(H) = o,(H) of Theorem 1.10(b) is an improvement of the results in [18, 21]. The
case for d,(H) = U;(H) of Theorem 1.10 is an improvement of Theorem 1.6(b) and Theorem 1.7
with k = 3.

n—15
> 10

For graphs H satisfying Theorems 1.9 or 1.10(a), it can be determined in polynomial time if H is

(b) One can check whether a graph belongs to Q> 3(s, s2, 53, 1) U Q})(n ) in polynomial time.
Hamiltonian. For Theorem 1.10(b), a graph given in [9] shows that the result is best possible in the
sense that p = 13 cannot be replaced by p = 14.

(c) For given p, t, € and k, comparing to the family of k-connected claw-free graphs of order n with
d:(H) > t("p—+6) where d,(H) € Q(H), the number of graphs in Qy(4p—5,2)UQy(3p-5, 3) is fixed and
can be determined in a constant time (independent on n). In some sense, Theorem 1.8 shows that
only a finite number of k-connected claw-free graphs H with d;(H) > t("p—+6) are non-Hamiltonian.
One may obtain new improvements to Theorems 1.10 and 1.9 by enlarging the number of exceptions

with the help of a computer.

(d) Faudree et al. [11] define the generalized t-degree, 6,(H), of a graph H by
0;(H) = min{| U§:1 Ny(xe)| | {x1,x2, -+, x,}1is a t-subset in H}
Since o(H) > U;(H) > 6;(H), Theorems 1.8, 1.9 and 1.10 are also true for d;(H) = 6,(H).

The rest of this paper is organized as follows. In Section 2, we give a brief discussion of Ryjacek
closure concept and Catlin’s reduction method. In Section 3, we prove a technical lemma which will
be needed in our proofs. The proof of Theorem 1.8 is given in section 4. In Section 5, we prove a
lemma on the properties of reduced graph related to o; condition. The proofs of Theorems 1.9 and

1.10 are given in the last section.



2 Ryjacek closure concept and Catlin’s reduction Method

The following is a main theorem of Ryjacek closure concept.

Theorem 2.1. (Ryjdcek [25]). Let H be a claw-free graph and cl(H) its closure. Then
(a) cl(H) is well defined, and k(cl(H)) > k(H);
(b) there is a K3-free graph G such that cl(H) = L(G);
(c) both graphs H and cl(H) have the same circumference.

It is known that a connected line graph H # K3 has a unique graph G with H = L(G). We
call G the preimage graph of H. For a claw-free graph H, the closure c/(H) of H can be obtained
in polynomial time [25] and the preimage graph of a line graph can be obtained in linear time
[24]. We can compute G efficiently for c/(H) = L(G). Thus, with Theorems 1.1 and 2.1, finding a
Hamiltonian cycle in a claw-free graph H is equivalent to finding a DCT in the preimage graph G
of cl(H).

Next, we give a brief discussion on Catlin’s reduction method.

Let G be a connected multigraph. For X C E(G), the contraction G/X is the graph obtained
from G by identifying the two ends of each edge e € X and deleting the resulting loops. G/X may
not be simple. If I' is a connected subgraph of G, then I is contracted to a vertex in G/I" and we
write G/T" for G/E(T).

Let O(G) be the set of vertices of odd degree in G. A graph G is collapsible if for every even
subset R € V(G), there is a spanning connected subgraph I'r of G with O(I'r) = R. K is regarded
as a collapsible and supereulerian graph. We use CL to denote the family of collapsible graphs.

In [4], Catlin showed that every graph G has a unique collection of maximal collapsible sub-
graphs I'1, [z, - -+ ,[.. The reduction of G is G’ = G/(U¢_,T), the graph obtained from G by con-
tracting each I'; into a single vertex v; (1 < i < ¢). For a vertex v € V(G’), there is a unique maximal
collapsible subgraph I'g(v) such that v is the contraction image of I'g(v) and I'g(v) is the preimage of
v. A vertex v € V(G’) is contracted vertex if To(v) # K;. A graph G is reduced it G’ = G.

Theorem 2.2. (Catlin, et al. [4, 5]). Let G be a connected graph and let G’ be the reduction of G.
(a) GeCLifand onlyif G’ = K1, and G € 8L if and only if G’ € SL.
(b) G has a DCT if and only if G’ has a DCT containing all the contracted vertices of G’ .
(c) If G is a reduced graph, then G is simple and K3-free with 6(G) < 3. For any subgraphV¥ of
G, Y is reduced and either ¥ € (K1, K, Ky 4(t = 2)} or |[ECY)| < 2|V(P)| - 5.

Let P14 be the graph obtained from P by replacing a vertex v in P by a K3 3 in the way that the
three edges incident with v in P are incident with the three degree 2 vertices in K3 3, respectively.

Some facts on reduced graphs are summarized in the following theorem.



Theorem 2.3. Let G be a connected reduced graph of order n. Then each of the following holds:
(a)If G ¢ SL and K'(G) > 2, thenn > 5 andn = 5 only if G = K; 3.

(b)([7]) For 1 <n <9, ifk'(G) = 2, then |D,(G)| = 3.

(c)([7]) If K (G) = 3 and n < 14, then either G € SL or G € {P, P14}

(d) ([7]) If K (G) = 3 and n = 15, then either G € SL or G is 2-connected, 3-edge-connected
and essentially 4-edge-connected graph with girth at least 5 and V(G) = D3(G) U D4(G) where
|D4(G)| = 3 and D4(G) is an independent set.

(e) ([6]) Let G be a connected reduced graph of order n with 6(G) > 2. Let M be a maximum

matching in G and |D2(G)| = 1, and G # Ky, (a > 2). Then |M| > min{*5!, 2=},

Let H be a k-connected claw-free graph with 6(H) > 3 (k € {2,3}). By Theorem 2.1, there
is a Ksz-free graph G such that c/(H) = L(G). By the definition of cl(H), V(cl(H)) = V(H) and
deiy(v) > dy(v) for any v € V(cl(H)) and so 6(cl(H)) > 6(H) > 3. For an edge e = xy in G, let v,
be the vertex in c/(H) defined by e in G. Then d¢ymy(ve) + 2 = dg(x) + dg(y). Thus, if cl(H) = L(G)
is k-connected graph with 6(cl(H)) > 3, then G is essentially k-edge-connected with o»(G) > 5.

Let G be an essentially k-edge-connected graph with 0»(G) > 5, where k € {2, 3}. Then D{(G)U
D, (G) is an independent set. Let E; be the set of pendant edges in G. For each x € D,(G), there are
two edges e)lc and ei incident with x. Let X»(G) = {e)lc |x € D7(G)}. Define

Go = G/(E1 U X3(G)) = (G - D1(G))/X2(G).

In other words, Gy is obtained from G by deleting the vertices in D1(G) and replacing each path of
length 2 whose internal vertex is a vertex in D,(G) by an edge.

Let X = D(G)UD,(G). In [28], Gy is denoted by Ix(G). In [26], Shao defined G for essentially
3-edge-connected graphs G. Following [26], we call Gy the core of G. Note that even G is simple,
Gp may not be simple.

The vertex set V(Gy) is regarded as a subset of V(G). A vertex in Gy is nontrivial if it is obtained
by contracting some edges in E1 U X,(G) or it is adjacent to a vertex in D,(G) in G. For instance,
if x € Dy(G) and Ng(x) = {u, v} and if u, in Gy is obtained by contracting the edge ux, then both
u, and v are nontrivial in Gy although u, is a contracted vertex and v is not a contracted vertex in
Go. When we say u, is adjacent to a vertex in D,(G), we regard u, as vertex u in this case. Since

02(G) > 5, all vertices in D»(Gy) are nontrivial

Let 66 be the reduction of Gy. For a vertex v € V(Gf)), let T'p(v) be the maximum collapsible
preimage of v in Gy and let I'(v) be the preimage of v in G which is the graph induced by edges in
E(p(v)) and some edges in £} U X»(G). A vertex v in 66 is a nontrivial vertex if v is a contracted
vertex (i.e., |[E(T'(v))| = 1) or v is adjacent to a vertex in D(G).

For a vertex x in V(I'(v)), let I(x) be the set of edges in E(G))) that are incident with x in G.
Let i(x) = [[(x)|. Then i(x) is the number of edges in E(G{) that are incident with x in G. For any



x € V(I'(v)),

i(x) < Z i(x) = dg; (v), and dg(x) <i(x) + [VI(V))| = I <i(x) + [ET(V))]. 3)
xeV(T(v)

Using Theorem 2.2, Veldman [28] and Shao [26] proved the following:

Theorem 2.4. Let G be a connected and essentially k-edge-connected graph (k > 2) witho>(G) > 5
and L(G) is not complete. Let Gy be the core of graph G. Let G|, be the reduction of Gy. Then each
of the following holds:

(a) Gy is well defined, nontrivial and «'(G;)) > k' (Go) = min{3, k}.

(b) (Lemma 5 [28]) G has a DCT if and only if G, has a DCT containing all the nontrivial vertices.

In the rest of the paper, we will use the following notation related to G:

e So={ve V(G))|visanontrivial vertex in G };

e S1={veSolIETW)I =1}

e S, =50— 51, the set of vertices v with ['(v) = K| and adjacent to some vertices in D,(G);
e Vo = V(G}) — S 1, the set of vertices v with I'(v) = K in G which includes S 5;

e Oy = Gj[Vol;

e My is a maximum matching in ®g, and V), is the vertex set of Mo;

e Uy =Vo—Vuy,andso V(Gj) = S1 U Vy, U Up.

Since 03(G) = 5, by the definition of G/, DQ(GE)) cSy.

3 A Technical Lemma

t t
(nte) implies o,(H) > (n+€)

Since o(H) > U/(H), U,(H) > . It will be sufficient to prove

Theorems 1.8, 1.9 and 1.10 for o;. We prove the following lemma for o only.

Lemma 3.1. Let H be the graph satisfying Theorem 1.8 with cl(H) = L(G). Let Gy and G, be the
graphs related to G defined in section 2. For each v € V(Gy), let I'(v) be the preimage of v in G.
Then each of the following holds:

(a) Let M be a matching in G with |M| > t. Then
o(H) + 2t
IM|=m=—= < " (dg(x) + dG()). @)

! xyeM



(b) Let V, C S| be a r-subset of S in G{. Let M; be a matching of size b in G,. Let V(M) be
the vertex set of M;. Suppose that V, N\ V(M) = 0. If |V,| + [M}| = r + b > t, then

(r+ b)(O';(H) + 21) b,

D AVEE)+dg, )+ Y. (VE@)+HVTGI+da, (0)+dg, () 2

VeV, xyeM,
(c) If H satisfies (1), then |Dy(G)| < p whenn > —€(p + 1).

Proof. (a) Let m = |M| and let M, be a t-subset of M such that for any ab € M — M,,
max {dg(x) + d(y)} < dg(a) + dg(D). %)
xyeM,

Let A, be the t-vertex set in V(cl(H)) = V(H) defined by the edges in M,. Then A, is a t-independent
setin cl(H) (as well as in H). Since dy(v.) < degmy(ve),
T(H) +2t < Y (dp(ve) +2) < Y (daan() +2) = Y (do(x) +dc(). (©6)
VeEA; VEA; e=xyeM,
For ab € M — M,, by (6) and (5),
o(H) + 2t - 2oxyiem,(dc(xi) + dg(yi) - 1(dg(a) + dg(b))
t - t - t
By (6), (7) and m = |M|,

= dg(a) + dg(b). (N

Do) +de(y) = D (dx)+dgh)+ | (dg(@) +dg(b)

xyeM Xiyi€M; abeM—-M,

o (H) + 21 + (m — z)((”(Ht) *at mo-t(H: 2

v

Case (a) is proved.

(b) Let V, = {v1,vp,--- ,v,} and let I'(v;) be the preimage of v; (1 <i < r)in G. Since V. C S, ['(v;)
is nontrivial. Let x;y; be an edge in I'(v;). Let M, = {x;y; | 1 < i < r}. For each x;y; € M,, since G is
K3-free, Ng(x;) N Ng(y;) = 0 and Ng(x;) U Ng(yi) € I(x;) U I(y;) U V(I'(v;). By (3),

de(xp) + dg(yi) < i(x) +i(y) + [VI'(v)| < dgy (vi) + [VIT(v)- ®)

For each e = xy € M, let I'(x) and I'(y) be the preimages of x and y in G, respectively. Then
there is a vertex u in V(I'(x)) and a vertex v in V(I'(y)) such that uv = e, the edge in G corresponding
to xy in Gj). Let M} = {uv | u € V(I'(x)),v € V(I'(y)) for each xy € M;}. M} is a b-matching in G.

For uv € Mg withu € V(I'(x)) and v € V(I'(y)),

dg(u) < dgy(x) +|[VIT'(x0)| = 1 and dg(v) < dg; (y) + VI ()] - 1. (€))
For each uv € Mg and its corresponding edge xy € M;, by (9)
dg(u) + dg(v) < dgy(x) + dg; (y) + [VI(x)] + VI )] - 2. (10)

9



Since V., N V(M) =0, M = M, U Mg is a matching in G withm = [M| =r+ b > t. By (4),

3 o) + o) = I T2 (an
xyeM
Since M = M, U Mg and b = |M}’)|, by (11), (8) and (10)
MZEEZ N o) 4 o) =Y (ot +deGi) + Y (@) + dg()
XyeM Xiyi€M, uveM)
< Z (dg; (vi) + VI (W) +Z (dg; (x) + dg, () + VI + VIO - 2);
Vi€V, xyeM,
O-t(H) + 2t
M lf +2b < Z (dg; (vi) + VI (v + Z (dg; (x) + dg, (y) + V)| + [VIG)D.
Vi€V, xyeM,”
Case (b) is proved.

(c). By way of contradiction, suppose that r = |D>(Gy)| > p. Since 72(G) > 5, D2(Gj)) € S1. Let
V, = D2(Gy). By p > t and (b) above with M; = () and dG6 (vi) = 2 for v; € Dy (Gy),

Z VIl +2r = Z(|V(r(vl))| +dg (v) 2 w;

t
V,’EV, V,’EV,

(H
3 vaey > D

V,‘EVr t

Since G is not a tree, |E(G)| > |[V(G)|. Since [V(G)| = X ey, [VIT(W)|, by (12), (1) and n = |[E(G)|

vV

. 12)

t(n+e)
H
n=1EGI > Y vaop s IS T Ly,
t t p
vevV,
—ep
< + .
TP €
Thus, whenn > —e(p + 1), |D2(G)| = r < p. Case (c) is proved. 0

4 Proof of Theorem 1.8

Proof of Theorem 1.8. Suppose that H is not Hamiltonian. By Theorem 2.1, there is an essentially

k-edge-connected K3-free graph G such that the closure c/(H) = L(G). Then L(G) is not completed

and |E(G)| = n = |V(H)|. Let Gy be the core of G. Let G, be the reduction of Gy and ¢ = |V(G{)|. By

Theorem 2.4, G, does not have an SCT and k' (G{)) > «’(Go) > min{3, k}. For k = 2, let r = [D2(G)|.
If G, = K24, then by Lemma 3.1(c), a = |D2(G)| < p. Theorem 1.8(a) holds for this case.

Next, we assume G|, # K3 . Let M be a maximum matching in G{,. By Theorem 2.3(e)

¢ < max{3|M| + r —5,2|M| + 1}. (13)
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Casel. [M| <t-1. By (13), c < max{3¢+r—8,2¢t—1}. Since t < p,ifk = 3, ¢c < max{3p-8,2p—1};
if k =2, by Lemma 3.1(c), r = |D2(Gf))| < p,c <max{4p — 8,2p — 1}. Theorem 1.8(a) holds.

Case 2. [M| > t. Let m = [M|. Note that an edge e = xy in M can be viewed as an edge e = uvin G

and

dg(u) + dg(v) < [VI)| + [VIW)| + dg; (x) + dg (v) = 2. (14)

Let Mg = {uv | uvis an edge in G corresponding to an edge xy in M}. Then M is a matching with
|Mg| = |M| > t. By Lemma 3.1(a) and (14),

W +2m < Z (dG(I,t) + dG(V) + 2),
t uveMg
{(H)+4

m(o t) 40 SZ (VT + VIO + dg; (x) + dg, () < V(G| + Z dg, ). (15)

h veV(G))

Since G is not a tree, |E(G)| > |[V(G)|. By (1), (15) and by 2|E(G])| = ZVGV(GE)) da, (v),
m"EE ) < w <IVGI+ > da,) < IEG) +2/EG) (16)

veV(G))

Claim 1. [E(G})| < max{20p — 15,12p — 3}.
By (1), (16), and by |[E(G})| < |[E(G)| = n, m("T+E +4) < |[E(G)| + 2|E(G})| < 3n, and so

_ 3p(e+4p)

m<3 .
n+e+4p

Therefore, m < 3p since n > N(p,€) > Bp + 1)(—e —4p). By (13) and r < p, ¢ < max{3m + r —
5,2m+ 1} <max{9p +r—5,6p + 1} < max{10p — 5,6p + 1}. By Theorem 2.2 and G6 # Ko 4,

|E(G))I < 2IV(Gyl =5 < 2max{10p — 5,6p + 1} = 5 = max{20p — 15, 12p — 3}. a7
Claim 1 is proved.

By (16), (17), and by |V(G)| < |[E(G)| = n,

m(TEE +4) < |E(G)| +2E(G))| < n+2max{20p — 15, 12p - 3);
np + 2pmax{20p — 15, 12p — 3} N pmax{40p — 30,24p — 6} — (e + 4p)p
m =
B n+e+4p b n+e+4p
pmax{36p —30—¢,20p — 6 — €}
< p+ .
n+e+4p
Thus, m < p since n > N(p,€) > pmax{36p —30—-¢€,20p— 6 —€} —€ —4p. By (13) and r < p, if
k=2,c<max{dp —-5,2p+ 1};if k = 3, c < max{3p — 5,2p + 1}. Theorem 1.8 is proved. O

Remark. The expression N(p, €) defined by (2) is for the convenience in the proofs above. To
avoid a lengthy case by case checking, we did not make efforts to get a best possible bound for this

quantity.

11



S Properties of G|, for graphs G satisfying Theorem 1.8

The following lemma will be needed for the proofs of Theorems 1.9 and 1.10

Lemma S.1. Let H be a graph of order n that satisfies Theorem 1.8 with the given numbers k, p, t
and €, where k € {2,3}, p > 3(k—1) and p > t. Suppose that H is nonhamiltonianwith cl(H) = L(G).
Let Gg be the core of G. Let G6 the reduction of Go. Let So, S1, S2, Mo, Vo and Uy be the sets
defined in Section 2. If n > N(p, €) and G|, # K3 4, then each of the following holds:

(a) 1S1]+ Mol < p.

(b) If IS 1| + [My| = p, then |E(G6)| >2p+€— |81+ Xyer, dc(v). Furthermore, if |My| = 0, then
V(G) = S1U Uy, IE(GY)| = €+ p + Xyep, dc(v) and |V(Gy)| < 2p — € = 5.

(c) |Uol < 2IS 1| + 3IMo| = 5 and |V(Gy)| < 3|8 1] + 5|Mo| - 5.
(d) If6(H) 23p—6whenk =3 orif6o(H) > 4p — 6 when k = 2, then My =0 and S, = 0.

Proof. Since H is nonhamiltonian, by Theorem 2.4, G{, does not have a DCT containing S. Since
p = (k—1)3, max{dp —5,2p + 1} = 4p — 5 when k = 2 and max{3p — 5,2p + 1} = 3p — 5 when
k = 3. By Theorem 2.2 and G, # K34, and by Theorem 1.8,

6p—15 ifk=3;

E(Go)l < 2IV(Gp)l -5 <
|E(Go)l < 2|V(Gy)l {8p—15 ifk =2,

} <8p - 15. (18)

(a) Let s = |S1| and m = |My|. If s + m < t, then we are done. Thus, we assume s + m > t.

Since S 1 N Vy, = 0, by Lemma 3.1(b) with |S| + [Mo| = s + m > ¢,

(s+ m)@ +2m < Y (day ) + IVI@DD + Y. (day(x) + dgy () + V)] + VTG
V€S xyeMy
O-t(H) + 2t
(s+m="m—=s2m < 3 dgm+ ) VTG)I+ ) (VE@)+ VTG (19)
vieS 1UVM0 vieS | xyeMy

For each xy € My, since x and y are vertices in Vo, |V(['(x))| = [V(I'(y))| = 1. By (19),

(H) +2
rmZEEE S dg < Y VE) 0)

v;eS 1UVM0 vieS

Since |[E(T(v))| = |[V(T(v))| — 1 forv € S, by (20), s = |S| and n = |E(G)|, we have

EG) = D IECO) +EGyl = Y (VTM)| = 1) + EGy)
ves ves
> > IV =11+ IEGY)l;
ves
n > |(s+ m)w - Z dgy (V)| = s+ |E(Gy)I. 21)
v,'ES[UVMO
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Since V(Gpy) = §1 U Viy, U Uo, 2IE(G)l = Zses uvy, 4o, (V) + Zyer, da, )
o 70 0

D, o) =2EGy] - Y da,0).

ves 1UVM0 velUy

By (21), (22) and (1),

S
v

(H) +2 / ‘
w _ [2|E(GO)I -] de)(V)B = s +EGo)l;

vely

[(s +m)

=
v

(54 m( = +2) ~ EGYI+ 3 dgy) = s

vely

n+|E(Gy)|+ s

v

s+mEE 12+ > dg ) > (s +myE +2).
p p

vely

By (23) and by (18) and s < IV(GE))I <4p -5,

p(n+|E(G))| +9) _pin+ 12p -20) s p(10p —20—¢€)
n+e+2p T n+e+2p n+e+2p

s+m<

Thus, (s + m) < p since n > N(p, €) > 10p> —22p — (p + 1)e. Case (a) is proved.

(b) Since s + m = p, by (23),

, n+e n+e
n+lEGyl+s 2 (s+m(——+2)+ Y dg ()= p(—— +2)+ Y dg,(v);
p vely p velp
n+|EGyl+s = nte+2p+ > dg ()
vely
EGYl 2 e+2p—s+ Y daO).
vely

The first part of case (b) is proved.

(22)

(23)

(24)

If [My| = O, then Vyy, = 0 and |S 1| = p. Since DQ(GE)) cSy, dG6(v) > 3 for any v € Uy. By (24),

EGpl 2 €+p+ ) da,(v) 2 €+ p+3|Ugl.

vely

(25)

Since G{, # K34, by Theorem 2.2, |[E(G)| < 2|V(Gy)I =5 = 2(IS 1| +|Uo|) = 5. By (25) and |S 1| = p,

e+p+3lUl < |EGHI <2(S1]+Uol) =5 =2p +2|Upl| - 5;

A

|lUgl] £ p—-5-—¢e.

Thus, [V(G{)| = p +|Uo| < 2p — 5 — €. Case (b) is proved.

(c) Let @ be the subgraph in G, induced by the edges in My and the edges between U and S UV,
Then V(®) = V(G}) and |E(®y)| < |E(G))|. Since D2(Gj) € S, dg,(v) 2 3 for v € Up. Then
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|[E(D1)| = 3|Up| + [Mo|. Since Gy # K34, by Theorem 2.2, |E(G))| < 2|[V(G)| — 5. Since |[E(Dy)| <
|E(G{)l and |V,| = 2|Mo,

A

3|Uol + 1Mol < [E(@)] < 2[V(G)l =5 = 2(S 1] + [Vl + 1Uol) = 5 = 2IS 1| + 4IMo| + 2|Up| - 5;
|Uol 2|S 1] + 3|Mo| - 5.

IA

Therefore, |V(GE))| =[S 11+ Vgl + [Uol < 3|8 1] + 5IMop| = 5.

(d) If My # 0, let xy be an edge in My. Then I'(x) = I'(y) = K; in G. Thus, dg(x) +dg(y) = dG;)(x) +
dg, (). Since G, is K3-free, Ng; (x) U Ng; () € V(G)) and Ng, (x) N Ng; (v) = 0. dg; (x) + dg; () <
IV(Gyl. Hence, 6(H) + 2 = 02(Gy) < dg(x) + dg(y) = dg) (%) + dg; (v) < [V(Gy)l-

If S # 0, let u € S». Then u is adjacent to a vertex v € D»(G) and I'(u) = K. Since G, is
2-edge-connected and K3-free, dg(u) = dg; (u) < V(G)I =2. 6(H) +2 = 02(Gy) < dg(u) +dg(v) =
dg, () +2 < |V(G)l = 2+ 2 = [V(G)|. Thus, if My # @ or S, # 0,

S(H) < |V(Gy)l - 2. (26)

By Theorem 1.8. [V(G()| <3p —5ifk =3 and |V(G))| < 4p - 5 if k = 2. By (26)

, 3p-T7 ifk=23;
S(H) < |V(Gy)| -2 <
4p -7 ifk=2,
a contradiction. Thus, My = 0@ and S, = 0. Case (d) is proved. m|

6 Proofs of Theorem 1.9 and Theorem 1.10

Proof of Theorem 1.9. This is the special case of Theorem 1.8 withp = 4,1 <t <4 ande = 0.
Suppose that H is not Hamiltonian. By Theorem 2.1, cl(H) = L(G) where G is an essentially 2-
edge-connected K3-free graph with |[E(G)| = n. By Theorem 1.1, G does not have a DCT. Let G,
be the reduction of Gy. Since «'(Gj)) > 2, by Theorems 2.2(c) and 1.8, |E(G)| < 2|V(G))| — 4 <
2(4p - 5) — 4 = 18. Note that G|, ¢ SL, by Theorem 2.3(a) [V(G()| > 5.

Let So, S1, My and Uy be the sets defined above. By Theorem 2.4, 66 does not have a DCT
containing S o. When n > 18, |E(GE))| < |E(G)|. Thus, |S | = 1. By Lemma 5.1, |S | + [My]| < 4.

Case 1. G|, # K.

If IS 1] + |Mo| < 3, then |[M| < 2. By Lemma 5.1, [V(G()| < 3|S1] + 5|Mo| =5 = 4 + 2|Mo| < 8.
By Theorem 2.3(b), |D2(G{)| = 3. Then |S || > |D2(G)| = 3. Therefore, [Mo| = 0. It follows that
IV(GE))I < 3|S1| + 5|Mp| — 5 = 4, contrary to that |V(GE))| > 5.

Thus, |S 1|+|Mp| = 4. By Lemma 5.1(b) with p = 4 and € = 0, and by |Uy| = |V(Gf))|—|Sll—2|M0|,

|E(Go)l = 8 = IS 1] + 3|Uol 2 3|V(Gy)l + 8 — 4IS 1] — 6|Mo. 27)
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By Theorem 2.2 and G # K> 4, |E(G{)| < 2|V(G{)| = 5. By (27) and |S 1| + |Mo| = 4,

\%

2lV(Gpl =5 2 [E(Gyl = 3[V(Gpl +8 = 4IS 1| = 6]Mo;
4IS 1] + [Mol) + 2|Mo| = 4IS 1| + 6|Mo| > [V(Gp)| + 13;
16 +2|My| > [V(Gp)l +13;
3+2[Mol > V(G- (28)

Since [S1] > 1, [My| < 3. By (28), [V(G{)| < 9. By Theorem 2.3(b), |D>(G})| = 3. Since D»(G)) €
S1,181] = 3 and so [My| < 1. By (28), |V(G{)| < 5. By Theorem 2.3(a), G|, = K> 3, a contradiction.

Case2. G, = K>, with2 <a<p=4.
Since G, does not have an SCT, G|, = K3 3. Since D2(G))) € §1,3 <|S1| < 4. Forv € §y, let
['(v) be the preimage of v in G. Then |E(G)| = |E(K23)| + Xyes, IET W) = 6 + X es, IET ().

If|S;| =4, thenletS; = DQ(G(’))U{u} where dG;)(M) = 3. By Lemma 3.1, 0/(H) > %’ (I1<t<4),
[EC(v)| = [V(T(m)| — 1 and n = |[E(G)],

o(H) + 2t
|s1|%

IA

DM +IVEGI) < Y- dgv)+ Y (EC)] + 1);

ves | veDs(Gl)U{u) ves |

n+8 9+ (EG)|-6)+4=n+17,

IA

a contradiction. This shows that 66 = K3 with |[§{| = 4 is impossible.

If|S 1] = 3,then S| = D2(K»3). LetS| = {vi,v2,v3}. To prove cl(H) = L(G) € Q3(s1, 52, $3, 1),
we only need to show that for each v; € §1, I'(v;) = K; 5 for some s > 1.

By way of contradiction, we assume that ['(v;) # K; ;. Let e, = vy and e, = vy, be the two
edges in 66 incident with v; where y; is a degree 3 vertex in 66 = Ky3 and dg(yi) = dG6@i) =3

(i = 1,2). Then there are two vertices x| and x; in V(I'(v{)) such that x;y; = e, and x,y, = ¢p in G.

Claim 1. I'(v;) contains an edge that is adjacent to at most one of the edges in {e,, ep}.

By |[EQT'(v1))| = 1, I'(v1) # Kj 5 and G is an essentially 2-edge-connected K3-free graph with
o2(G) = 5, if x| = xp, then I'(v}) contains a cycle C of length at least 4 and so C has an edge that is
not adjacent to either edge in {e,, ep}; if x; # x, ['(v1) has an edge that is adjacent to at most one of
the edges {e,, ep}. The Claim is proved.

With Claim 1, we may let e, = xy be such an edge in I'(vy) that is not adjacent to e;,. Let
ej =wjz; beanedgein EI'(v;)) ( j = 2,3). Then M, = {ey, e5, €2, €3} is a matching in G.

For e, = x2y2, dg(x2)+dg(y2) = |Eg(x2)|+3. For e, = xy, since G is K3-free, |[Eg(x)NEg(y)| = 1
and |[(Eg(x) U Eg(y)) N Eg(x2)| < 1, and Eg(x) U Eg(y)) U Eg(x2) € E(I'(v1)) U {eq, ep}. Thus,

|Eg(0)] + [Ec(D)] + |Eg (x2)] |EG(x) U EG(y) U Eg(x2)| + |[Eg(x) N Eg(y)|
+|(Eg(x) U Eg(y)) N Eg(x2)|

I[ETi))I+ Heas ep}l + 2 = [EXT(vi))] + 4.

IA
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Hence,

(de(x) +dg(y) + (dg(x2) + dc(y2)) = |[Eg(0| + |[EcW)| + [Eg(x2)| + 3 < [ET(vi DI+ 7. (29)

Since G is Kj3-free, EG(W]') N EG(Zj) = {Wij} and EG(W]') U EG(Zj) < E(F(V])) U EG6 (Vj). Since
v; € S = D2(K2’3), |EG6 (Vj)l = 2. Then

|[Ec(wjl + |Eg(z))l = |[Eg(wj) U Eg(zj)| + |[Ec(wj) N Eg(z))| < |[EX(vj))]| + 3. (30)
Thus,
3 3
D (dow)) +da(z)) < D (Ecw)l +|EgE)D < [ETw)) + |ET(r3))] +6. (31)
J=2 j=2

By Lemma 3.1 with o(H) > %’ and [M,| = 4, by (29), (30), (31) and |E(G)| = 6 + Z?:l [ET(v))I,

3
o(H) + 2t
|Ma|% < (dg(x) +dg(y)) + (dg(x2) + dg(y2)) + Z(dG(Wj) +dg(z)));
j=2
n+8 < [ECW)+T7+IET@))+IECW3)+6=|EG)|-6+13=n+7,
a contradiction. The proof is completed. O

To prove Theorem 1.10, we need the following theorem:

Theorem 6.1. (Chen et al. [8]). Let G be a 3-edge-connected graph and let S C V(G) be a vertex
subset with |S| < 12. Then either G has a closed trail C such that S C V(C), or G can be contracted

to P in such a way that the preimage of each vertex of P contains at least one vertex in S.

Proof of Theorem 1.10. Suppose that H is not Hamiltonian. Let G be the preimage of cl(H) =
L(G). Then G is essentially 3-edge-connected. By Theorem 1.1, G does not have a DCT. Let Sy,
S1, 87, My and Uy be the sets defined before, where S  is the set of all the nontrivial vertices of Gf).
By Theorem 2.4, k'(G)) > 3 and G{, dose not have a DCT containing S . Hence, G|, # K 4.

(a) This is a special case of Theorem 1.8 withk =3, p =10,1 <t <10and € = 5. By Lemma 5.1,
since6(H) 224 =3p-6,My=0,S, =0and|S{| < p =10. Thus,S¢g =S and Uy = V(Gf))—So.
If |So| < 9, then by Theorem 6.1, 66 has a closed trail C such that Sy € C. Since Uj is an
independent set, C is a DCT in G|, containing S o, a contradiction.
Thus, |S¢| = 10. By Lemma 5.1(b), |V(G{)| < 2p — 5 — € = 10. By Theorem 2.3(c), G, = P and
soSg = V(Gf)). Let V(Gé) = {vi, v, ,v10}. Let I'(v;) be the preimage of v; in G. We assume that

VT < V@) < -+ < [VIT(vi0))l. (32)
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By Lemma 3.1(a), dg; (v) = 3 for any v € V(G}), [V(Gy)| = 10 and o(H) > 22,

O-t(H)+2t >n

2, WEI+3VG) = Y (VT +dg ) = IVGI=— +25;
veV(G)) veV(Gy)
> vam) = 10745 1= (n+5)-10=n-5. (33)
veV(G)) !

Since |[E(T(vi))| = [V(I'(vy)| = 1, by (33), and by n = |E(G)| and |E(G)))| = |E(P)| = 15,

10 10
EGI+ Y IET@)| = 15+ 3 (VI - 1)

i=1 i=1

n =|E@G)|

0
VIl =5+m-5)=n.
i=1

[\

1
5+
Thus, the equalities of (32), (33), and |E(I'(v;))| = |[V('(v;))| — 1 must hold. Hence, I'(v;) is a tree
with |[ET(v;))| = [lVA W) -1 = "I(l)s Since G is essentially 3-edge-connected, ['(v;) = Kl,% .
Theorem 1.10(a) is proved.

(b) This is a special case of Theorem 1.8 withk =3, p =t = 13 and € = 6. With 6(H) > 33 = 3p-6,
by Lemma 5.1, My = 0, S, = 0 and |S | < p = 13. Hence, S¢ = S and Uy = V(G)) — So.
Case 1. |So| = 1S 1| < 12. Then by Theorem 6.1, we have two subcases:
Subcase (i). G|, has a closed trail C such that S € C.
Then C is a DCT in G6 that contains all the nontrivial vertices, a contradiction.
Subcase (ii). G|, can be contracted to P such that the preimage of each vertex of P contains at least

one vertex in S . Thus, G € P(n, 1) and so cl(H) € Qp(n, 1). Theorem 1.10 is proved for this case.

Case 2. [So| =|S1| = p=13. By Lemma 5.1, 13 < |[V(G()| < 2p -5 — € = 15 and
EGl 2 €+p+ Y dg,(v) =19 +3|Uql. (34)
vely

If 13 < |[V(G)))| < 14, then by Theorem 2.3(c). G|, = P14. Then |Ug| = 1. By (34), |[E(G])| > 22,
contrary to that |E(G))| = |E(P14)| = 21.

If [V(Go)| = 15, then |Up| = 2. By (34) |[E(G;)| = 25. By Theorem 2.3(d), V(G{)) = D3(G}) U
Dy4(G)) with |D4(G{)| = 3. Then |E(G))| = 24, a contradiction. Thus, |So| = 13 is impossible. O

References

[1] D. Bauer, G. Fan and H.J. Veldman, Hamilton properties of graphs with large neighborhood
unions, Discrete Math. 96 (1991) 33-49.

17



[2] J. A. Bondy and U. S. R. Murty, “Graph Theory with Applications”. American Elsevier, New
York (1976).

[3] H.J. Broersma, Sufficient conditions for hamiltonicity and traceability of K 3-free graphs,
Hamilton cycles in graphs and related topics, Ph.D. Thesis, University of Twente, Netherlands,
1988, pp. 45-53 (Chapter 5).

[4] P. A. Catlin, A reduction method to find spanning Eulerian subgraphs. J. Graph Theory 12
(1988), 29-45.

[5] P. A. Catlin, Z. Han, and H.-J. Lai, Graphs without spanning eulerian trails. Discrete Math.
160 (1996) 81-91.

[6] Z.-H. Chen, Chvaital-Erd6s type conditions for hamiltonicity of claw-free graphs, Graphs and
Combinatorics, (2016) 32: 2253-2266.

[71 W.-G. Chen and Z.-H. Chen, Spanning Eulerian subgraphs and Catlin’s reduced graphs, J. of
Combinatorial Math. and Combinatorial Computing, 96 (2016) pp. 41-63.

[8] Z.-H. Chen, H.-J. Lai, X.W. Li, D.Y. Li, J. Z. Mao, Eulerian Sugraphs in 3-edge-connected
graphs and Hamiltonian Line Graphs, J. Graph Theorey 42 (2003) 308-319.

[9] Z.-H. Chen, H.-J. Lai, L.M. Xiong, Minimum degree conditions for the Hamiltonicity of 3-
connected claw-free graphs, J. Combin. Theory Ser. B 122 (2017) 167-186.

[10] O. Favaron, E. Flandrin, H. Li, Z. Ryjacek, Cliques covering and degree conditions for hamil-
tonicity in claw-free graphs, Discrete Math. 236 (2001) 65-80.

[11] R. Faudree, R. Gould, L. Lesniak and T. Lindquester, Generalized degree conditions for graphs
with bounded independence number, J. Graph Theory 19 (1995) 397-409.

[12] R. Faudree, E. Flandrin, Z. Ryjacek. Claw-Free Graphs-A survey, Discrete Math. 164 (1997)
87-147.

[13] O. Favaron, P. Fraisse, Hamiltonicity and minimum degree in 3-connected claw-free graphs,
J. Combin. Theory Ser. B 82 (2001) 297-305.

[14] E. Flandrin, I. Fournier and A. Germa, Circumference and hamiltonism in K 3-free graphs,
in: Graph Theory in Memory of G.A. Dirac (Sandbjerg, 1985), Ann. Discrete Math. vol. 41
(North-Hollad, Amsterdam, New York, 1989) 131-140.

[15] W. Frydrych, Nonhamiltonian 2-connected claw-free graphs with large 4-degree sum, Discrete
Math. 236 (2001) 123-130.

18



[16] F. Harary and C. St.J. A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs.
Canada Math. Bull. 8 (1965), 701-710.

[17] O. Kovaiik, M. Mula¢, Z. Ryjacek, A note on degree conditions for hamiltonicity in 2-
connected claw-free graphs, Discrete Math. 244 (2002) 253-268.

[18] H.-J. Lai, Y. Shao, M. Zhan, Hamiltonicity in 3-connected claw-free graphs, J. Combin. The-
ory Ser. B 96 (2006) 493-504.

[19] H. Li, Hamiltonian cycles in 2-connected claw-free graphs, J. Graph Theory 20 (1995), 447-
457.

[20] Hao Li, C. Virlouvet, Neighborhood conditions for claw-free hamiltonian graphs, Ars Combin.
29A (1990) 109-116.

[21] M. Li, Hamiltonian claw-free graphs involving minimum degrees, Discrete Applied Mathe-
matics 161(2013) 1530-1537.

[22] Y. Liu, F. Tian, Z. Wu, Some results on longest paths and cycles in K 3-free graphs, J. Chang-
sha Railway Inst. 4 (1986) 105-106.

[23] M.M. Mathews, D. P. Sumner, Longest paths and cycles in K 3-free graphs, J. Graph Theory
9 (1985) 269-277.

[24] N. D. Roussopoulos, A max{m, n} algorithm for determining the graph H from its line graph
G, Information Processing Letters 2 (1973) 108-112.

[25] Z. Ryjacek, On a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70 (1997)
217-224.

[26] Y. Shao, Claw-free graphs and line graphs, Ph.D dissertation, West Virginia University, 2005.

[27] Z.S. Wu, Hamilton connectivity of K 3-free graphs, J. Math. Res. Exposition 9 (1989) 447-451

(In Chinese, English summary).

[28] H. J. Veldman, On dominating and spanning circuits in graphs. Discrete Math., 124 (1994),
229 - 239.

[29] C.-Q. Zhang, Hamilton cycles in claw-free graphs, J. Graph Theory 12 (1988) 209-216.

19



	Degree and neighborhood conditions for hamiltonicity of claw-free graphs
	Recommended Citation

	AllDegreeClawFreeY17Final.DVI

