

Butler University
Digital Commons @ Butler University

Scholarship and Professional Work - LAS

College of Liberal Arts & Sciences

12-2017

Degree and neighborhood conditions for hamiltonicity of clawfree graphs

Zhi-Hong Chen Butler University, chen@butler.edu

Follow this and additional works at: https://digitalcommons.butler.edu/facsch_papers

Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation

Chen, Zhi-Hong, "Degree and neighborhood conditions for hamiltonicity of claw-free graphs" *Discrete Mathematics /* (2017): 3104-3115. Available at https://digitalcommons.butler.edu/facsch_papers/1043

This Article is brought to you for free and open access by the College of Liberal Arts & Sciences at Digital Commons @ Butler University. It has been accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler University. For more information, please contact digitalscholarship@butler.edu.

Degree and neighborhood conditions for hamiltonicity of claw-free graphs

Zhi-Hong Chen, Butler University, Indianapolis, IN 46208

Abstract

For a graph *H*, let $\sigma_t(H) = \min\{\sum_{i=1}^t d_H(v_i) | \{v_1, v_2, \dots, v_t\}$ is an independent set in *H*} and let $U_t(H) = \min\{|\bigcup_{i=1}^t N_H(v_i)| | \{v_1, v_2, \dots, v_t\}$ is an independent set in *H*}. We show that for a given number ϵ and given integers $p \ge t > 0$, $k \in \{2, 3\}$ and $N = N(p, \epsilon)$, if *H* is a *k*-connected claw-free graph of order n > N with $\delta(H) \ge 3$ and its Ryjáček's closure cl(H) = L(G), and if $d_t(H) \ge t(n + \epsilon)/p$ where $d_t(H) \in \{\sigma_t(H), U_t(H)\}$, then either *H* is Hamiltonian or *G*, the preimage of L(G), can be contracted to a *k*-edge-connected K_3 -free graph of order at most max $\{4p - 5, 2p + 1\}$ and without spanning closed trails. As applications, we prove the following for such graphs *H* of order *n* with *n* sufficiently large:

(i) If k = 2, $\delta(H) \ge 3$, and for a given $t (1 \le t \le 4) d_t(H) \ge \frac{tn}{4}$, then either *H* is Hamiltonian or cl(H) = L(G) where *G* is a graph obtained from $K_{2,3}$ by replacing each of the degree 2 vertices by a $K_{1,s}$ ($s \ge 1$). When t = 4 and $d_t(H) = \sigma_4(H)$, this proves a conjecture in [15].

(ii) If k = 3, $\delta(H) \ge 24$, and for a given $t (1 \le t \le 10) d_t(H) > \frac{t(n+5)}{10}$, then *H* is Hamiltonian. These bounds on $d_t(H)$ in (i) and (ii) are sharp. It unifies and improves several prior results on conditions involved σ_t and U_t for the hamiltonicity of claw-free graphs. Since the number of graphs of orders at most max $\{4p - 5, 2p + 1\}$ are fixed for given *p*, improvements to (i) or (ii) by increasing the value of *p* are possible with the help of a computer.

Keywords: Claw-free graph, Hamiltonicity, Neighborhood condition, degree condition

1 Introduction

We shall use the notation of Bondy and Murty [2], except when otherwise stated. Graphs considered in this paper are finite and loopless. A graph is called a multigraph if it contains multiple edges. A graph without multiple edges is called a simple graph or simply a graph. As in [2], $\kappa'(G)$ and $d_G(v)$ denote the edge-connectivity of G and the degree of a vertex v in G, respectively. For a vertex $v \in V(G)$, let $E_G(v)$ be the set of edges incident with v in G. Then $d_G(v) = |E_G(v)|$. Define $\overline{\sigma}_2(G) = \min\{d_G(u) + d_G(v) | \text{ for every edge } uv \in E(G)\}$ and $D_i(G) = \{v \in V(G) | d_G(v) = i\}$. An edge cut X of a graph G is *essential* if each component of G - X has some edges. A graph G is *essentially k-edge-connected* if G is connected and does not have an essential edge cut of size less than k. An edge e = uv is called a *pendant edge* if min{ $d_G(u), d_G(v)$ } = 1. The *independence number* of a graph *G* is denoted by $\alpha(G)$ and the *clique covering number of G*, (i.e. the minimum number of cliques necessary for covering V(G)) by $\theta(G)$. An independent set with *t* vertices is called a *t-independent set* and a matching with *t* edges is called a *t-matching*. A graph *H* is *claw-free* if *H* does not contain an induced subgraph isomorphic to $K_{1,3}$. A connected graph Ψ is a *closed trail* if the degree of each vertex in Ψ is even. A closed trail Ψ is called a spanning closed trail (SCT) in *G* if $V(G) = V(\Psi)$, and is called a *dominating closed trail* (DCT) if $E(G - V(\Psi)) = \emptyset$. A graph is *supereulerian* if it contains an SCT. The family of supereulerian graphs is denoted by *SL*. A graph is Hamiltonian if it has a spanning cycle. Throughout this paper, we use *P* for the Petersen graph.

The line graph of a graph *G* is denoted by L(G). A vertex $v \in V(H)$ is *locally connected* if its neighborhood $N_H(v)$ induces a connected graph. The closure of a claw-free graph *H* introduced by Ryjáček [25] is the graph obtained by recursively adding edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of *H* as long as this is possible and is denoted by cl(H). A claw-free graph *H* is said to be *closed* if H = cl(H). The following theorem shows the relationship between a DCT of a graph and a Hamiltonian cycle in its line graph.

Theorem 1.1. (*Harary and Nash-Willams* [16]). *The line graph* H = L(G) *of a graph* G *with at least three edges is Hamiltonian if and only if* G *has a DCT.*

Now, we define two families of nonhamiltonian claw-free graphs.

For a $K_{2,3}$, let $D_2(K_{2,3}) = \{v_1, v_2, v_3\}$. Let $\mathcal{K}_{2,3}(s_1, s_2, s_3, n)$ be the family of graphs of size n obtained from a $K_{2,3}$ by adding $s_i \ge 1$ pendant edges at v_i (i = 1, 2, 3) and $s_1 + s_2 + s_3 + 6 = n$.

Let $Q_{2,3}(s_1, s_2, s_3, n) = \{H : H = L(G) \text{ where } G \in \mathcal{K}_{2,3}(s_1, s_2, s_3, n)\}.$

For the Petersen graph *P*, let $V(P) = \{v_1, \dots, v_{10}\}$. Let $\mathcal{P}(n, s)$ be the family of graphs of size *n* obtained from *P* by replacing each v_i by a connected subgraph Φ_i with size $s_i \ge s$ and $15 + \sum_{i=1}^{10} s_i = n$. Let $\mathcal{P}_1(n, s)$ be the sub-family of $\mathcal{P}(n, s)$ in which each $\Phi_i = K_{1,s_i}$.

Let $Q_P(n, s) = \{H : H = L(G), \text{ where } G \in \mathcal{P}(n, s)\}.$

Let $Q_P^1(n, s) = \{H : H = L(G), \text{ where } G \in \mathcal{P}_1(n, s)\}$, a subfamily of $Q_P(n, s)$.

By Theorem 1.1, graphs in $Q_{2,3}(s_1, s_2, s_3, n) \cup Q_P(n, s)$ are nonhamiltonian.

For a graph *H* and $t \ge 1$, we define

• $\sigma_t(H) = \min\{\sum_{i=1}^t d_H(v_i) | \{v_1, v_2, \cdots, v_t\} \text{ is an independent set in } H\} (\text{if } t > \alpha(H), \sigma_t(H) = \infty);$ • $U_t(H) = \min\{|\bigcup_{i=1}^t N_H(v_i)| | \{v_1, v_2, \cdots, v_t\} \text{ is an independent set in } H\}.$

For t = 1, we use $\delta(H)$ for $\sigma_1(H)$ and $U_1(H)$. In general, $\sigma_t(H) \ge U_t(H)$. Let

$$\Omega(H) = \{\sigma_t(H), U_t(H)\}.$$

Sufficient conditions involved parameters in $\Omega(H)$ for claw-free graphs to be Hamiltonian have been the subjects of many papers (see [10, 12, 17]). For 2-connected claw-free graph *H* of order *n*, Matthews and Sumner [23] shown that if $\delta(H) \ge (n-2)/3$ *H* is Hamiltonian; Li [19] shown that if $\delta(H) \ge n/4$, then *H* is either Hamiltonian or belongs to a family of easily described graphs; Flandrin, et al. [14] shown that if $\sigma_2(H) \ge \frac{2n-5}{3}$ then *H* is Hamiltonian. For $\sigma_t(H)$ with $t \ge 4$, Favaron, et al. [10] proved the following:

Theorem 1.2. Let $t \ge 4$ be an integer and let H be a 2-connected claw-free simple graph of order n such that $n \ge 3t^2 - 4t - 7$, $\delta(H) \ge 3t - 4$ and $\sigma_t(H) > n + t^2 - 4t + 7$. Then either H is Hamiltonian or $\theta(cl(H)) \le t - 1$.

As a special case of Theorem 1.2, Favaron, et al. [10] shown that a 2-connected claw-free graph H of order $n \ge 77$ with $\delta(H) \ge 14$ and $\sigma_6(H) > n + 19$ is either Hamiltonian or belongs to a well described exception family. With Theorem 1.2 and the help of a computer, Kovářík et al. [17] obtained a result for $\sigma_8(H) > n + 39$ with an exception family that contains 318 infinite classes.

For $\sigma_3(H)$, Liu et al. [22], Zhang [29] and Broersma [3] shown that a 2-connected claw-free graph H of order n with $\sigma_3(H) \ge n - 2$ is Hamiltonian. For condition involved $\sigma_4(H)$ for the hamiltonicity of claw-free graphs, Frydrych proved the following and had a conjecture in [15].

Theorem 1.3 (Frydrych [15]). A 2-connected claw-free simple graph H of order n with $\sigma_4(H) \ge n + 3$ is either Hamiltonian or $cl(H) \in Q_{2,3}(s_1, s_2, s_3, n)$.

Conjecture 1.4 (Frydrych [15]). *Theorem 1.3 still holds if* $\sigma_4(H) \ge n$ and $\delta(H) \ge 3$.

The condition " $\delta(H) \ge 3$ " in Conjecture 1.4 was not in the original statement in [15]. However, it would not be true if $\delta(H) = 2$ as shown by the graph in Fig.1, where $K_s = K_{(n-3)/2}$ and H is a non-hamiltonian claw-free graph of order n with $\delta(H) = 2$, $\sigma_4(H) \ge n + 1$ and $cl(H) \notin Q_{2,3}(s_1, s_2, s_3, n)$.

Fig. 1: A nonhamiltonian graph *H* of order *n* with $\delta(H) = 2$ and $\sigma_4(H) \ge n + 1$.

For 3-connected claw-free graphs *H* of order *n*, Zhang [29] proved that if $\sigma_4(H) \ge n - 3$, then *H* is Hamiltonian; Wu [27] proved that if $\sigma_3(H) \ge n + 1$, then *H* is Hamiltonian connected. Settling a conjecture posed in [13], Lai et al. [18] proved the following:

Theorem 1.5 (Lai et al. [18]). A 3-connected claw-free simple graph H of order $n \ge 196$ with $\delta(H) \ge \frac{n+5}{10}$ is either Hamiltonian or $cl(H) \in Q_P^1(n, \frac{n-15}{10})$.

By enlarging the exception family, Li [21] improved Theorem 1.5 for such graphs *H* with $\delta(H) \ge \frac{n+34}{12}$. Solving a conjecture in [21], Chen, et al. in [9] further improved Li's result to $\delta(H) \ge \frac{n+6}{13}$.

For $U_t(H)$ condition on the hamiltonicity of claw-free graphs, the following are known:

Theorem 1.6. *Let H be a k*-connected claw-free simple graph of order *n*. Then each of the following holds:

- (a) (Bauer, Fan and Veldman [1]) If k = 2 and $U_2(H) \ge \frac{2n-5}{3}$, then H is Hamiltonian.
- (b) (Li and Virlouvet [20]) If k = 3 and $U_2(H) \ge \frac{11(n-7)}{21}$, then H is Hamiltonian.

Theorem 1.6(b) is a special case of the following Theorem.

Theorem 1.7. (*Li and Virlouvet* [20]) Let *H* be a *k*-connected ($k \ge 3$) claw-free simple graph of order *n*. If there is some integer *t*, $t \le 2k$, such that $U_t(H) \ge \frac{t(4k-t+1)}{2k(2k+1)}(n-2k-1)$, then *H* is Hamiltonian.

In this paper, we unify and strengthen the results involved $d_t(H) \in \Omega(H)$ above and prove Conjecture 1.4 which is an easy conclusion from the main result.

Let *p* and *t* be positive integers and let ϵ be a given number. Let *H* be a *k*-connected claw-free graph of order $n \ (k \ge 2)$. For $d_t(H) \in \Omega(H)$, we consider graphs *H* that satisfy the following:

$$d_t(H) \ge \frac{t(n+\epsilon)}{p}.$$
(1)

All the conditions involved $d_t(H) \in \Omega(H)$ in the theorems mentioned above are the special cases of (1) with various given values of p, t, and ϵ .

Let $Q_0(r, k)$ be the family of k-edge-connected K_3 -free graphs of order at most r and without an SCT. It is known that $Q_0(5, 2) = \{K_{2,3}\}$ and $Q_0(13, 3) = \{P\}$ (see Theorem 2.3 in section 2).

For given integer p > 0 and a real number ϵ , define

$$N(p,\epsilon) = \max\{36p^2 - 34p - \epsilon(p+1), 20p^2 - 10p - \epsilon(p+1), (3p+1)(-\epsilon - 4p)\}.$$
(2)

Our main result is the following:

Theorem 1.8. Let *H* be a *k*-connected claw-free simple graph of order $n \ (k \ge 2)$ and $\delta(H) \ge 3$. For given integers $p \ge t > 0$ and a given number ϵ , if $d_t(H) \ge \frac{t(n+\epsilon)}{p}$ where $d_t(H) \in \Omega(H)$ and $n > N(p, \epsilon)$, then either *H* is Hamiltonian or cl(H) = L(G) where *G* is an essentially *k*-edgeconnected K₃-free graph without a DCT and *G* satisfies one of the following:

- (a) if k = 2, G is contractible to a graph in $Q_0(c, 2)$ where $c \le \max\{4p 5, 2p + 1\}$;
- (b) if k = 3, G is contractible to a graph in $Q_0(c, 3)$ where $c \le \max\{3p 5, 2p + 1\}$.

It should be known that "G is contractible to a graph in $Q_0(c, k)$ " in Theorem 1.8 means that "the reduction G'_0 of the core G_0 of G is in $Q_0(c, k)$ " which is defined by the Catlin's reduction method given in next section. As applications of Theorem 1.8, we prove the following two theorems.

Theorem 1.9. Let *H* be a 2-connected claw-free simple graph of order *n* with $\delta(H) \ge 3$ and *n* is sufficiently large. If $d_t(H) \ge \frac{tn}{4}$ where $d_t(H) \in \Omega(H)$ and *t* is a given integer and $1 \le t \le 4$, then either *H* is Hamiltonian or $cl(H) \in Q_{2,3}(s_1, s_2, s_3, n)$ where $s_1 + s_2 + s_3 + 6 = n$.

Theorem 1.10. Let H be a 3-connected claw-free simple graph of order n and n is sufficiently large.

- (a) For a given integer t and $1 \le t \le 10$, if $d_t(H) \ge \frac{t(n+5)}{10}$ where $d_t(H) \in \Omega(H)$ and $\delta(H) \ge 24$, then H is Hamiltonian if and only if $cl(H) \notin Q_P^1(n, \frac{n-15}{10})$.
- (b) If $\sigma_{13}(H) \ge n + 6$ and $\delta(H) \ge 33$, then H is Hamiltonian if and only if $cl(H) \notin Q_P(n, 1)$.

Remarks. (a) The case for $d_t(H) = \sigma_4(H) \ge n$ of Theorem 1.9 verifies Conjecture 1.4. The case for $d_t(H) = \sigma_3(H) \ge \frac{3n}{4}$ of Theorem 1.9 is an improvement of a " $\sigma_3(H) \ge n - 2$ " theorem obtained by Liu et al. [22], Zhang [29] and Broersma [3] mentioned above; the case for $d_t(H) = \sigma_2(H) \ge \frac{n}{2}$ is an improvement of a " $\sigma_2(H) \ge \frac{2n-5}{3}$ " theorem proved by Flandrin, et al. in [14]; the case $d_t(H) = \sigma_1(H) = \delta(H)$ is a theorem proved by Li in [19]. The case for $d_t(H) = U_t(H)$ with $1 \le t \le 4$ of Theorem 1.9 is an improvement of Theorem 1.6(a).

The case for $d_t(H) = \sigma_t(H)$ of Theorem 1.10(a) is a generalization and improvement of Theorem 1.5. It shows that the conclusion of Theorem 1.5 holds for $\sigma_t(H) \ge \frac{t(n+5)}{10}$ for any $t \in \{1, 2, \dots, 10\}$. The case for $d_t(H) = \sigma_t(H)$ of Theorem 1.10(b) is an improvement of the results in [18, 21]. The case for $d_t(H) = U_t(H)$ of Theorem 1.10 is an improvement of Theorem 1.6(b) and Theorem 1.7 with k = 3.

(b) One can check whether a graph belongs to $Q_{2,3}(s_1, s_2, s_3, n) \cup Q_p^1(n, \frac{n-15}{10})$ in polynomial time. For graphs *H* satisfying Theorems 1.9 or 1.10(a), it can be determined in polynomial time if *H* is Hamiltonian. For Theorem 1.10(b), a graph given in [9] shows that the result is best possible in the sense that p = 13 cannot be replaced by p = 14.

(c) For given p, t, ϵ and k, comparing to the family of k-connected claw-free graphs of order n with $d_t(H) \ge \frac{t(n+\epsilon)}{p}$ where $d_t(H) \in \Omega(H)$, the number of graphs in $Q_0(4p-5,2) \cup Q_0(3p-5,3)$ is fixed and can be determined in a constant time (independent on n). In some sense, Theorem 1.8 shows that only a finite number of k-connected claw-free graphs H with $d_t(H) \ge \frac{t(n+\epsilon)}{p}$ are non-Hamiltonian. One may obtain new improvements to Theorems 1.10 and 1.9 by enlarging the number of exceptions with the help of a computer.

(d) Faudree et al. [11] define the *generalized t-degree*, $\delta_t(H)$, of a graph *H* by

 $\delta_t(H) = \min\{|\bigcup_{i=1}^t N_H(x_i)| \mid \{x_1, x_2, \cdots, x_t\} \text{ is a } t \text{-subset in } H\}$

Since $\sigma_t(H) \ge U_t(H) \ge \delta_t(H)$, Theorems 1.8, 1.9 and 1.10 are also true for $d_t(H) = \delta_t(H)$.

The rest of this paper is organized as follows. In Section 2, we give a brief discussion of Ryjáček closure concept and Catlin's reduction method. In Section 3, we prove a technical lemma which will be needed in our proofs. The proof of Theorem 1.8 is given in section 4. In Section 5, we prove a lemma on the properties of reduced graph related to σ_t condition. The proofs of Theorems 1.9 and 1.10 are given in the last section.

2 Ryjáček closure concept and Catlin's reduction Method

The following is a main theorem of Ryjáček closure concept.

Theorem 2.1. (*Ryjáček* [25]). Let *H* be a claw-free graph and cl(*H*) its closure. Then (a) cl(*H*) is well defined, and $\kappa(cl(H)) \ge \kappa(H)$; (b) there is a K₃-free graph *G* such that cl(*H*) = *L*(*G*); (c) both graphs *H* and cl(*H*) have the same circumference.

It is known that a connected line graph $H \neq K_3$ has a unique graph G with H = L(G). We call G the preimage graph of H. For a claw-free graph H, the closure cl(H) of H can be obtained in polynomial time [25] and the preimage graph of a line graph can be obtained in linear time [24]. We can compute G efficiently for cl(H) = L(G). Thus, with Theorems 1.1 and 2.1, finding a Hamiltonian cycle in a claw-free graph H is equivalent to finding a DCT in the preimage graph G of cl(H).

Next, we give a brief discussion on Catlin's reduction method.

Let *G* be a connected multigraph. For $X \subseteq E(G)$, the *contraction* G/X is the graph obtained from *G* by identifying the two ends of each edge $e \in X$ and deleting the resulting loops. G/X may not be simple. If Γ is a connected subgraph of *G*, then Γ is contracted to a vertex in G/Γ and we write G/Γ for $G/E(\Gamma)$.

Let O(G) be the set of vertices of odd degree in *G*. A graph *G* is *collapsible* if for every even subset $R \subseteq V(G)$, there is a spanning connected subgraph Γ_R of *G* with $O(\Gamma_R) = R$. K_1 is regarded as a collapsible and supereulerian graph. We use *CL* to denote the family of collapsible graphs.

In [4], Catlin showed that every graph *G* has a unique collection of maximal collapsible subgraphs $\Gamma_1, \Gamma_2, \dots, \Gamma_c$. The *reduction* of *G* is $G' = G/(\bigcup_{i=1}^c \Gamma_i)$, the graph obtained from *G* by contracting each Γ_i into a single vertex v_i $(1 \le i \le c)$. For a vertex $v \in V(G')$, there is a unique maximal collapsible subgraph $\Gamma_0(v)$ such that *v* is the contraction image of $\Gamma_0(v)$ and $\Gamma_0(v)$ is the *preimage* of *v*. A vertex $v \in V(G')$ is *contracted vertex* if $\Gamma_0(v) \ne K_1$. A graph *G* is *reduced* if G' = G.

Theorem 2.2. (*Catlin, et al.* [4, 5]). Let G be a connected graph and let G' be the reduction of G. (a) $G \in CL$ if and only if $G' = K_1$, and $G \in SL$ if and only if $G' \in SL$.

- (b) G has a DCT if and only if G' has a DCT containing all the contracted vertices of G'.
- (c) If G is a reduced graph, then G is simple and K_3 -free with $\delta(G) \leq 3$. For any subgraph Ψ of G, Ψ is reduced and either $\Psi \in \{K_1, K_2, K_{2,t}(t \geq 2)\}$ or $|E(\Psi)| \leq 2|V(\Psi)| 5$.

Let P_{14} be the graph obtained from *P* by replacing a vertex *v* in *P* by a $K_{2,3}$ in the way that the three edges incident with *v* in *P* are incident with the three degree 2 vertices in $K_{2,3}$, respectively.

Some facts on reduced graphs are summarized in the following theorem.

Theorem 2.3. Let G be a connected reduced graph of order n. Then each of the following holds: (a) If $G \notin SL$ and $\kappa'(G) \ge 2$, then $n \ge 5$ and n = 5 only if $G = K_{2,3}$.

(b) ([7]) For $1 < n \le 9$, if $\kappa'(G) \ge 2$, then $|D_2(G)| \ge 3$.

(c) ([7]) If $\kappa'(G) \ge 3$ and $n \le 14$, then either $G \in SL$ or $G \in \{P, P_{14}\}$.

(d) ([7]) If $\kappa'(G) \ge 3$ and n = 15, then either $G \in SL$ or G is 2-connected, 3-edge-connected and essentially 4-edge-connected graph with girth at least 5 and $V(G) = D_3(G) \cup D_4(G)$ where $|D_4(G)| = 3$ and $D_4(G)$ is an independent set.

(e) ([6]) Let G be a connected reduced graph of order n with $\delta(G) \ge 2$. Let M be a maximum matching in G and $|D_2(G)| = l$, and $G \ne K_{2,a}$ $(a \ge 2)$. Then $|M| \ge \min\{\frac{n-1}{2}, \frac{n+5-l}{3}\}$.

Let *H* be a *k*-connected claw-free graph with $\delta(H) \ge 3$ ($k \in \{2, 3\}$). By Theorem 2.1, there is a K_3 -free graph *G* such that cl(H) = L(G). By the definition of cl(H), V(cl(H)) = V(H) and $d_{cl(H)}(v) \ge d_H(v)$ for any $v \in V(cl(H))$ and so $\delta(cl(H)) \ge \delta(H) \ge 3$. For an edge e = xy in *G*, let v_e be the vertex in cl(H) defined by *e* in *G*. Then $d_{cl(H)}(v_e) + 2 = d_G(x) + d_G(y)$. Thus, if cl(H) = L(G)is *k*-connected graph with $\delta(cl(H)) \ge 3$, then *G* is essentially *k*-edge-connected with $\overline{\sigma}_2(G) \ge 5$.

Let *G* be an essentially *k*-edge-connected graph with $\overline{\sigma}_2(G) \ge 5$, where $k \in \{2, 3\}$. Then $D_1(G) \cup D_2(G)$ is an independent set. Let E_1 be the set of pendant edges in *G*. For each $x \in D_2(G)$, there are two edges e_x^1 and e_x^2 incident with *x*. Let $X_2(G) = \{e_x^1 | x \in D_2(G)\}$. Define

$$G_0 = G/(E_1 \cup X_2(G)) = (G - D_1(G))/X_2(G).$$

In other words, G_0 is obtained from G by deleting the vertices in $D_1(G)$ and replacing each path of length 2 whose internal vertex is a vertex in $D_2(G)$ by an edge.

Let $X = D_1(G) \cup D_2(G)$. In [28], G_0 is denoted by $I_X(G)$. In [26], Shao defined G_0 for essentially 3-edge-connected graphs *G*. Following [26], we call G_0 the *core* of *G*. Note that even *G* is simple, G_0 may not be simple.

The vertex set $V(G_0)$ is regarded as a subset of V(G). A vertex in G_0 is nontrivial if it is obtained by contracting some edges in $E_1 \cup X_2(G)$ or it is adjacent to a vertex in $D_2(G)$ in G. For instance, if $x \in D_2(G)$ and $N_G(x) = \{u, v\}$ and if u_x in G_0 is obtained by contracting the edge ux, then both u_x and v are nontrivial in G_0 although u_x is a contracted vertex and v is not a contracted vertex in G_0 . When we say u_x is adjacent to a vertex in $D_2(G)$, we regard u_x as vertex u in this case. Since $\overline{\sigma}_2(G) \ge 5$, all vertices in $D_2(G_0)$ are nontrivial

Let G'_0 be the reduction of G_0 . For a vertex $v \in V(G'_0)$, let $\Gamma_0(v)$ be the maximum collapsible preimage of v in G_0 and let $\Gamma(v)$ be the preimage of v in G which is the graph induced by edges in $E(\Gamma_0(v))$ and some edges in $E_1 \cup X_2(G)$. A vertex v in G'_0 is a *nontrivial vertex* if v is a contracted vertex (i.e., $|E(\Gamma(v))| \ge 1$) or v is adjacent to a vertex in $D_2(G)$.

For a vertex x in $V(\Gamma(v))$, let I(x) be the set of edges in $E(G'_0)$ that are incident with x in G. Let i(x) = |I(x)|. Then i(x) is the number of edges in $E(G'_0)$ that are incident with x in G. For any $x \in V(\Gamma(v)),$

$$i(x) \le \sum_{x \in V(\Gamma(v))} i(x) = d_{G'_0}(v), \text{ and } d_G(x) \le i(x) + |V(\Gamma(v))| - 1 \le i(x) + |E(\Gamma(v))|.$$
(3)

Using Theorem 2.2, Veldman [28] and Shao [26] proved the following:

Theorem 2.4. Let G be a connected and essentially k-edge-connected graph $(k \ge 2)$ with $\overline{\sigma}_2(G) \ge 5$ and L(G) is not complete. Let G_0 be the core of graph G. Let G'_0 be the reduction of G_0 . Then each of the following holds:

(a) G_0 is well defined, nontrivial and $\kappa'(G'_0) \ge \kappa'(G_0) \ge \min\{3, k\}$.

(b) (Lemma 5 [28]) G has a DCT if and only if G'_0 has a DCT containing all the nontrivial vertices.

In the rest of the paper, we will use the following notation related to G'_0 :

- $S_0 = \{v \in V(G'_0) \mid v \text{ is a nontrivial vertex in } G'_0\};$
- $S_1 = \{v \in S_0 \mid |E(\Gamma(v))| \ge 1\};$
- $S_2 = S_0 S_1$, the set of vertices v with $\Gamma(v) = K_1$ and adjacent to some vertices in $D_2(G)$;
- $V_0 = V(G'_0) S_1$, the set of vertices v with $\Gamma(v) = K_1$ in G which includes S_2 ;
- $\Phi_0 = G'_0[V_0];$
- M_0 is a maximum matching in Φ_0 , and V_{M_0} is the vertex set of M_0 ;
- $U_0 = V_0 V_{M_0}$ and so $V(G'_0) = S_1 \cup V_{M_0} \cup U_0$.

Since $\overline{\sigma}_2(G) \ge 5$, by the definition of $G'_0, D_2(G'_0) \subseteq S_1$.

3 A Technical Lemma

Since $\sigma_t(H) \ge U_t(H)$, $U_t(H) \ge \frac{t(n+\epsilon)}{p}$ implies $\sigma_t(H) \ge \frac{t(n+\epsilon)}{p}$. It will be sufficient to prove Theorems 1.8, 1.9 and 1.10 for σ_t . We prove the following lemma for σ_t only.

Lemma 3.1. Let *H* be the graph satisfying Theorem 1.8 with cl(H) = L(G). Let G_0 and G'_0 be the graphs related to *G* defined in section 2. For each $v \in V(G'_0)$, let $\Gamma(v)$ be the preimage of v in *G*. Then each of the following holds:

(a) Let M be a matching in G with $|M| \ge t$. Then

$$|M|\frac{\sigma_t(H)+2t}{t} \le \sum_{xy \in M} (d_G(x)+d_G(y)). \tag{4}$$

(b) Let $V_r \subseteq S_1$ be a r-subset of S_1 in G'_0 . Let M'_b be a matching of size b in G'_0 . Let $V(M'_b)$ be the vertex set of M'_b . Suppose that $V_r \cap V(M'_b) = \emptyset$. If $|V_r| + |M'_b| = r + b \ge t$, then

$$\sum_{v \in V_r} (|V(\Gamma(v))| + d_{G'_0}(v)) + \sum_{xy \in M'_b} (|V(\Gamma(x))| + |V(\Gamma(y))| + d_{G'_0}(x) + d_{G'_0}(y)) \ge \frac{(r+b)(\sigma_t(H) + 2t)}{t} + 2b.$$

(c) If H satisfies (1), then $|D_2(G'_0)| \le p$ when $n > -\epsilon(p+1)$.

Proof. (a) Let m = |M| and let M_t be a *t*-subset of M such that for any $ab \in M - M_t$,

$$\max_{xy \in M_t} \{ d_G(x) + d_G(y) \} \le d_G(a) + d_G(b).$$
(5)

Let A_t be the *t*-vertex set in V(cl(H)) = V(H) defined by the edges in M_t . Then A_t is a *t*-independent set in cl(H) (as well as in H). Since $d_H(v_e) \le d_{cl(H)}(v_e)$,

$$\sigma_t(H) + 2t \le \sum_{v_e \in A_t} (d_H(v_e) + 2) \le \sum_{v_e \in A_t} (d_{cl(H)}(v_e) + 2) = \sum_{e=xy \in M_t} (d_G(x) + d_G(y)).$$
(6)

For $ab \in M - M_t$, by (6) and (5),

$$\frac{\sigma_t(H) + 2t}{t} \le \frac{\sum_{x_i y_i \in M_t} (d_G(x_i) + d_G(y_i))}{t} \le \frac{t(d_G(a) + d_G(b))}{t} = d_G(a) + d_G(b).$$
(7)

By (6), (7) and m = |M|,

$$\begin{split} \sum_{xy \in M} (d_G(x) + d_G(y)) &= \sum_{x_i y_i \in M_t} (d_G(x_i) + d_G(y_i)) + \sum_{ab \in M - M_t} (d_G(a) + d_G(b)) \\ &\geq \sigma_t(H) + 2t + (m - t)(\frac{\sigma_t(H) + 2t}{t}) = m \frac{\sigma_t(H) + 2t}{t}. \end{split}$$

Case (a) is proved.

(b) Let $V_r = \{v_1, v_2, \dots, v_r\}$ and let $\Gamma(v_i)$ be the preimage of v_i $(1 \le i \le r)$ in G. Since $V_r \subseteq S_1$, $\Gamma(v_i)$ is nontrivial. Let $x_i y_i$ be an edge in $\Gamma(v_i)$. Let $M_r = \{x_i y_i \mid 1 \le i \le r\}$. For each $x_i y_i \in M_r$, since G is K_3 -free, $N_G(x_i) \cap N_G(y_i) = \emptyset$ and $N_G(x_i) \cup N_G(y_i) \subseteq I(x_i) \cup I(y_i) \cup V(\Gamma(v_i))$. By (3),

$$d_G(x_i) + d_G(y_i) \le i(x_i) + i(y_i) + |V(\Gamma(v_i))| \le d_{G'_0}(v_i) + |V(\Gamma(v_i))|.$$
(8)

For each $e = xy \in M'_b$, let $\Gamma(x)$ and $\Gamma(y)$ be the preimages of x and y in G, respectively. Then there is a vertex u in $V(\Gamma(x))$ and a vertex v in $V(\Gamma(y))$ such that uv = e, the edge in G corresponding to xy in G'_0 . Let $M^0_b = \{uv \mid u \in V(\Gamma(x)), v \in V(\Gamma(y)) \text{ for each } xy \in M'_b\}$. M^0_b is a b-matching in G.

For $uv \in M_h^0$ with $u \in V(\Gamma(x))$ and $v \in V(\Gamma(y))$,

$$d_G(u) \le d_{G'_0}(x) + |V(\Gamma(x))| - 1 \text{ and } d_G(v) \le d_{G'_0}(y) + |V(\Gamma(y))| - 1.$$
(9)

For each $uv \in M_b^0$ and its corresponding edge $xy \in M_b'$, by (9)

$$d_G(u) + d_G(v) \le d_{G'_0}(x) + d_{G'_0}(y) + |V(\Gamma(x))| + |V(\Gamma(y))| - 2.$$
(10)

Since $V_r \cap V(M'_b) = \emptyset$, $M = M_r \cup M^0_b$ is a matching in G with $m = |M| = r + b \ge t$. By (4),

$$\sum_{xy \in M} (d_G(x) + d_G(y)) \ge |M| \frac{\sigma_t(H) + 2t}{t}.$$
(11)

Since $M = M_r \cup M_b^0$ and $b = |M_b'|$, by (11), (8) and (10)

$$\begin{split} |M| \frac{\sigma_t(H) + 2t}{t} &\leq \sum_{xy \in M} d_G(x) + d_G(y) = \sum_{x_i y_i \in M_r} (d_G(x_i) + d_G(y_i)) + \sum_{uv \in M_b^0} (d_G(u) + d_G(v)) \\ &\leq \sum_{v_i \in V_r} (d_{G'_0}(v_i) + |V(\Gamma(v_i))|) + \sum_{xy \in M'_b} (d_{G'_0}(x) + d_{G'_0}(y) + |V(\Gamma(x))| + |V(\Gamma(y))| - 2); \\ |\frac{\sigma_t(H) + 2t}{t} + 2b &\leq \sum_{v_i \in V_r} (d_{G'_0}(v_i) + |V(\Gamma(v_i))|) + \sum_{xy \in M'_b} (d_{G'_0}(x) + d_{G'_0}(y) + |V(\Gamma(x))| + |V(\Gamma(y))|). \end{split}$$

Case (b) is proved.

|M|

(c). By way of contradiction, suppose that $r = |D_2(G'_0)| > p$. Since $\overline{\sigma}_2(G) \ge 5$, $D_2(G'_0) \subseteq S_1$. Let $V_r = D_2(G'_0)$. By $p \ge t$ and (b) above with $M'_b = \emptyset$ and $d_{G'_0}(v_i) = 2$ for $v_i \in D_2(G'_0)$,

$$\sum_{v_i \in V_r} |V(\Gamma(v_i))| + 2r = \sum_{v_i \in V_r} (|V(\Gamma(v_i))| + d_{G'_0}(v_i)) \ge \frac{r(\sigma_t(H) + 2t)}{t};$$

$$\sum_{v_i \in V_r} |V(\Gamma(v_i))| \ge \frac{r\sigma_t(H)}{t}.$$
(12)

Since G is not a tree, $|E(G)| \ge |V(G)|$. Since $|V(G)| \ge \sum_{v \in V_r} |V(\Gamma(v))|$, by (12), (1) and n = |E(G)|

$$\begin{split} n &= |E(G)| \geq \sum_{v \in V_r} |V(\Gamma(v))| \geq r \frac{\sigma_t(H)}{t} \geq r \frac{\frac{t(n+\epsilon)}{p}}{t} = \frac{r}{p}(n+\epsilon); \\ r &\leq p + \frac{-\epsilon p}{n+\epsilon}. \end{split}$$

Thus, when $n > -\epsilon(p+1)$, $|D_2(G'_0)| = r \le p$. Case (c) is proved.

4 **Proof of Theorem 1.8**

Proof of Theorem 1.8. Suppose that *H* is not Hamiltonian. By Theorem 2.1, there is an essentially *k*-edge-connected K_3 -free graph *G* such that the closure cl(H) = L(G). Then L(G) is not completed and |E(G)| = n = |V(H)|. Let G_0 be the core of *G*. Let G'_0 be the reduction of G_0 and $c = |V(G'_0)|$. By Theorem 2.4, G'_0 does not have an SCT and $\kappa'(G'_0) \ge \kappa'(G_0) \ge \min\{3, k\}$. For k = 2, let $r = |D_2(G'_0)|$.

If $G'_0 = K_{2,a}$, then by Lemma 3.1(c), $a = |D_2(G'_0)| \le p$. Theorem 1.8(a) holds for this case. Next, we assume $G'_0 \ne K_{2,a}$. Let *M* be a maximum matching in G'_0 . By Theorem 2.3(e)

$$c \le \max\{3|M| + r - 5, 2|M| + 1\}.$$
(13)

Case 1. $|M| \le t-1$. By (13), $c \le \max\{3t+r-8, 2t-1\}$. Since $t \le p$, if $k = 3, c \le \max\{3p-8, 2p-1\}$; if k = 2, by Lemma 3.1(c), $r = |D_2(G'_0)| \le p, c \le \max\{4p-8, 2p-1\}$. Theorem 1.8(a) holds.

Case 2. $|M| \ge t$. Let m = |M|. Note that an edge e = xy in M can be viewed as an edge e = uv in G and

$$d_G(u) + d_G(v) \le |V(\Gamma(x))| + |V(\Gamma(y))| + d_{G'_0}(x) + d_{G'_0}(y) - 2.$$
(14)

Let $M_G = \{uv \mid uv \text{ is an edge in } G \text{ corresponding to an edge } xy \text{ in } M\}$. Then M_G is a matching with $|M_G| = |M| \ge t$. By Lemma 3.1(a) and (14),

$$\frac{m(\sigma_t(H)+2t)}{t} + 2m \le \sum_{uv \in M_G} (d_G(u) + d_G(v) + 2);$$

$$\frac{m(\sigma_t(H)+4t)}{t} \le \sum_{xy \in M} (|V(\Gamma(x))| + |V(\Gamma(y))| + d_{G'_0}(x) + d_{G'_0}(y)) \le |V(G)| + \sum_{v \in V(G'_0)} d_{G'_0}(v). \quad (15)$$

Since G is not a tree, $|E(G)| \ge |V(G)|$. By (1), (15) and by $2|E(G'_0)| = \sum_{v \in V(G'_0)} d_{G'_0}(v)$,

$$m(\frac{n+\epsilon}{p}+4) \le \frac{m(\sigma_t(H)+4t)}{t} \le |V(G)| + \sum_{v \in V(G'_0)} d_{G'_0}(v) \le |E(G)| + 2|E(G'_0)|.$$
(16)

Claim 1. $|E(G'_0)| \le \max\{20p - 15, 12p - 3\}.$

By (1), (16), and by $|E(G'_0)| \le |E(G)| = n$, $m(\frac{n+\epsilon}{p} + 4) \le |E(G)| + 2|E(G'_0)| \le 3n$, and so $m \le 3p - \frac{3p(\epsilon + 4p)}{n + \epsilon + 4p}$.

Therefore, $m \le 3p$ since $n > N(p, \epsilon) \ge (3p + 1)(-\epsilon - 4p)$. By (13) and $r \le p, c \le \max\{3m + r - 5, 2m + 1\} \le \max\{9p + r - 5, 6p + 1\} \le \max\{10p - 5, 6p + 1\}$. By Theorem 2.2 and $G'_0 \ne K_{2,a}$,

$$|E(G'_0)| \le 2|V(G'_0)| - 5 \le 2\max\{10p - 5, 6p + 1\} - 5 = \max\{20p - 15, 12p - 3\}.$$
 (17)

Claim 1 is proved.

By (16), (17), and by
$$|V(G)| \le |E(G)| = n$$
,
 $m(\frac{n+\epsilon}{p}+4) \le |E(G)| + 2|E(G'_0)| \le n+2\max\{20p-15, 12p-3\};$
 $m \le \frac{np+2p\max\{20p-15, 12p-3\}}{n+\epsilon+4p} = p + \frac{p\max\{40p-30, 24p-6\} - (\epsilon+4p)p}{n+\epsilon+4p}$
 $\le p + \frac{p\max\{36p-30-\epsilon, 20p-6-\epsilon\}}{n+\epsilon+4p}.$

Thus, $m \le p$ since $n > N(p, \epsilon) \ge p \max\{36p - 30 - \epsilon, 20p - 6 - \epsilon\} - \epsilon - 4p$. By (13) and $r \le p$, if $k = 2, c \le \max\{4p - 5, 2p + 1\}$; if $k = 3, c \le \max\{3p - 5, 2p + 1\}$. Theorem 1.8 is proved.

Remark. The expression $N(p, \epsilon)$ defined by (2) is for the convenience in the proofs above. To avoid a lengthy case by case checking, we did not make efforts to get a best possible bound for this quantity.

5 Properties of G'₀ for graphs G satisfying Theorem 1.8

The following lemma will be needed for the proofs of Theorems 1.9 and 1.10

Lemma 5.1. Let *H* be a graph of order *n* that satisfies Theorem 1.8 with the given numbers *k*, *p*, *t* and ϵ , where $k \in \{2, 3\}$, $p \ge 3(k-1)$ and $p \ge t$. Suppose that *H* is nonhamiltonian with cl(H) = L(G). Let G_0 be the core of *G*. Let G'_0 the reduction of G_0 . Let S_0 , S_1 , S_2 , M_0 , V_0 and U_0 be the sets defined in Section 2. If $n > N(p, \epsilon)$ and $G'_0 \neq K_{2,a}$, then each of the following holds:

- (a) $|S_1| + |M_0| \le p$.
- (b) If $|S_1| + |M_0| = p$, then $|E(G'_0)| \ge 2p + \epsilon |S_1| + \sum_{v \in U_0} d_G(v)$. Furthermore, if $|M_0| = 0$, then $V(G'_0) = S_1 \cup U_0, |E(G'_0)| \ge \epsilon + p + \sum_{v \in U_0} d_G(v)$ and $|V(G'_0)| \le 2p \epsilon 5$.
- (c) $|U_0| \le 2|S_1| + 3|M_0| 5$ and $|V(G'_0)| \le 3|S_1| + 5|M_0| 5$.
- (d) If $\delta(H) \ge 3p 6$ when k = 3 or if $\delta(H) \ge 4p 6$ when k = 2, then $M_0 = \emptyset$ and $S_2 = \emptyset$.

Proof. Since *H* is nonhamiltonian, by Theorem 2.4, G'_0 does not have a DCT containing S_0 . Since $p \ge (k-1)3$, max $\{4p-5, 2p+1\} = 4p-5$ when k = 2 and max $\{3p-5, 2p+1\} = 3p-5$ when k = 3. By Theorem 2.2 and $G'_0 \ne K_{2,a}$, and by Theorem 1.8,

$$|E(G_0)| \le 2|V(G'_0)| - 5 \le \begin{cases} 6p - 15 & \text{if } k = 3; \\ 8p - 15 & \text{if } k = 2, \end{cases} \le 8p - 15.$$
(18)

(a) Let $s = |S_1|$ and $m = |M_0|$. If s + m < t, then we are done. Thus, we assume $s + m \ge t$.

Since $S_1 \cap V_{M_0} = \emptyset$, by Lemma 3.1(b) with $|S_1| + |M_0| = s + m \ge t$,

$$(s+m)\frac{\sigma_{t}(H)+2t}{t}+2m \leq \sum_{v_{i}\in S_{1}} (d_{G'_{0}}(v_{i})+|V(\Gamma(v_{i}))|) + \sum_{xy\in M_{0}} (d_{G'_{0}}(x)+d_{G'_{0}}(y)+|V(\Gamma(x))|+|V(\Gamma(y))|)$$

$$(s+m)\frac{\sigma_{t}(H)+2t}{t}+2m \leq \sum_{v_{i}\in S_{1}\cup V_{M_{0}}} d_{G'_{0}}(v) + \sum_{v_{i}\in S_{1}} |V(\Gamma(v_{i}))| + \sum_{xy\in M_{0}} (|V(\Gamma(x))|+|V(\Gamma(y))|).$$
(19)

For each $xy \in M_0$, since x and y are vertices in V_0 , $|V(\Gamma(x))| = |V(\Gamma(y))| = 1$. By (19),

$$(s+m)\frac{\sigma_t(H)+2t}{t} - \sum_{v_i \in S_1 \cup V_{M_0}} d_{G'_0}(v) \le \sum_{v_i \in S_1} |V(\Gamma(v_i))|.$$
(20)

Since $|E(\Gamma(v))| \ge |V(\Gamma(v))| - 1$ for $v \in S_1$, by (20), $s = |S_1|$ and n = |E(G)|, we have

$$|E(G)| = \sum_{v \in S_1} |E(\Gamma(v))| + |E(G'_0)| \ge \sum_{v \in S_1} (V(\Gamma(v))| - 1) + |E(G'_0)|$$

$$\ge \sum_{v \in S_1} |V(\Gamma(v))| - |S_1| + |E(G'_0)|;$$

$$n \ge \left((s+m) \frac{\sigma_t(H) + 2t}{t} - \sum_{v_i \in S_1 \cup V_{M_0}} d_{G'_0}(v) \right) - s + |E(G'_0)|.$$
(21)

Since $V(G'_0) = S_1 \cup V_{M_0} \cup U_0$, $2|E(G'_0)| = \sum_{v \in S_1 \cup V_{M_0}} d_{G'_0}(v) + \sum_{v \in U_0} d_{G'_0}(v)$.

$$\sum_{v \in S_1 \cup V_{M_0}} d_{G'_0}(v) = 2|E(G'_0)| - \sum_{v \in U_0} d_{G'_0}(v).$$
(22)

By (21), (22) and (1),

$$n \geq \left((s+m)\frac{\sigma_t(H)+2t}{t} - \left(2|E(G'_0)| - \sum_{v \in U_0} d_{G'_0}(v) \right) \right) - s + |E(G'_0)|;$$

$$n \geq (s+m)(\frac{n+\epsilon}{p}+2) - |E(G'_0)| + \sum_{v \in U_0} d_{G'_0}(v) - s;$$

$$n + |E(G'_0)| + s \geq (s+m)(\frac{n+\epsilon}{p}+2) + \sum_{v \in U_0} d_{G'_0}(v) \geq (s+m)(\frac{n+\epsilon}{p}+2).$$
(23)

By (23) and by (18) and $s \le |V(G'_0)| \le 4p - 5$,

$$s + m \le \frac{p(n + |E(G'_0)| + s)}{n + \epsilon + 2p} \le \frac{p(n + 12p - 20)}{n + \epsilon + 2p} = p + \frac{p(10p - 20 - \epsilon)}{n + \epsilon + 2p}.$$

Thus, $(s + m) \le p$ since $n > N(p, \epsilon) > 10p^2 - 22p - (p + 1)\epsilon$. Case (a) is proved.

(b) Since s + m = p, by (23),

$$n + |E(G'_{0})| + s \ge (s+m)(\frac{n+\epsilon}{p}+2) + \sum_{v \in U_{0}} d_{G'_{0}}(v) = p(\frac{n+\epsilon}{p}+2) + \sum_{v \in U_{0}} d_{G'_{0}}(v);$$

$$n + |E(G'_{0})| + s \ge n+\epsilon+2p + \sum_{v \in U_{0}} d_{G'_{0}}(v);$$

$$|E(G'_{0})| \ge \epsilon+2p - s + \sum_{v \in U_{0}} d_{G'_{0}}(v).$$
(24)

The first part of case (b) is proved.

If $|M_0| = 0$, then $V_{M_0} = \emptyset$ and $|S_1| = p$. Since $D_2(G'_0) \subseteq S_1$, $d_{G'_0}(v) \ge 3$ for any $v \in U_0$. By (24),

$$|E(G'_0)| \ge \epsilon + p + \sum_{v \in U_0} d_{G'_0}(v) \ge \epsilon + p + 3|U_0|.$$
(25)

Since $G'_0 \neq K_{2,a}$, by Theorem 2.2, $|E(G'_0)| \le 2|V(G'_0)| - 5 = 2(|S_1| + |U_0|) - 5$. By (25) and $|S_1| = p$,

$$\begin{aligned} \epsilon + p + 3|U_0| &\leq |E(G'_0)| \leq 2(|S_1| + |U_0|) - 5 = 2p + 2|U_0| - 5; \\ |U_0| &\leq p - 5 - \epsilon. \end{aligned}$$

Thus, $|V(G'_0)| = p + |U_0| \le 2p - 5 - \epsilon$. Case (b) is proved.

(c) Let Φ_1 be the subgraph in G'_0 induced by the edges in M_0 and the edges between U_0 and $S_1 \cup V_{M_0}$. Then $V(\Phi_1) = V(G'_0)$ and $|E(\Phi_1)| \le |E(G'_0)|$. Since $D_2(G'_0) \le S_1$, $d_{G'_0}(v) \ge 3$ for $v \in U_0$. Then $|E(\Phi_1)| \ge 3|U_0| + |M_0|$. Since $G'_0 \ne K_{2,a}$, by Theorem 2.2, $|E(G'_0)| \le 2|V(G'_0)| - 5$. Since $|E(\Phi_1)| \le |E(G'_0)|$ and $|V_{M_0}| = 2|M_0|$,

$$\begin{aligned} 3|U_0| + |M_0| &\leq |E(\Phi_1)| \leq 2|V(G'_0)| - 5 = 2(|S_1| + |V_{M_0}| + |U_0|) - 5 = 2|S_1| + 4|M_0| + 2|U_0| - 5; \\ |U_0| &\leq 2|S_1| + 3|M_0| - 5. \end{aligned}$$

Therefore, $|V(G'_0)| = |S_1| + |V_{M_0}| + |U_0| \le 3|S_1| + 5|M_0| - 5$.

(d) If $M_0 \neq \emptyset$, let *xy* be an edge in M_0 . Then $\Gamma(x) = \Gamma(y) = K_1$ in *G*. Thus, $d_G(x) + d_G(y) = d_{G'_0}(x) + d_{G'_0}(y)$. Since G'_0 is K_3 -free, $N_{G'_0}(x) \cup N_{G'_0}(y) \subseteq V(G'_0)$ and $N_{G'_0}(x) \cap N_{G'_0}(y) = \emptyset$. $d_{G'_0}(x) + d_{G'_0}(y) \leq |V(G'_0)|$. Hence, $\delta(H) + 2 = \overline{\sigma}_2(G'_0) \leq d_G(x) + d_G(y) = d_{G'_0}(x) + d_{G'_0}(y) \leq |V(G'_0)|$.

If $S_2 \neq \emptyset$, let $u \in S_2$. Then u is adjacent to a vertex $v \in D_2(G)$ and $\Gamma(u) = K_1$. Since G'_0 is 2-edge-connected and K_3 -free, $d_G(u) = d_{G'_0}(u) \le |V(G'_0)| - 2$. $\delta(H) + 2 = \overline{\sigma}_2(G'_0) \le d_G(u) + d_G(v) = d_{G'_0}(u) + 2 \le |V(G'_0)| - 2 + 2 = |V(G'_0)|$. Thus, if $M_0 \ne \emptyset$ or $S_2 \ne \emptyset$,

$$\delta(H) \le |V(G'_0)| - 2. \tag{26}$$

By Theorem 1.8. $|V(G'_0)| \le 3p - 5$ if k = 3 and $|V(G'_0)| \le 4p - 5$ if k = 2. By (26)

$$\delta(H) \le |V(G'_0)| - 2 \le \begin{cases} 3p - 7 & \text{if } k = 3; \\ 4p - 7 & \text{if } k = 2, \end{cases}$$

a contradiction. Thus, $M_0 = \emptyset$ and $S_2 = \emptyset$. Case (d) is proved.

6 **Proofs of Theorem 1.9 and Theorem 1.10**

Proof of Theorem 1.9. This is the special case of Theorem 1.8 with p = 4, $1 \le t \le 4$ and $\epsilon = 0$. Suppose that *H* is not Hamiltonian. By Theorem 2.1, cl(H) = L(G) where *G* is an essentially 2-edge-connected K_3 -free graph with |E(G)| = n. By Theorem 1.1, *G* does not have a DCT. Let G'_0 be the reduction of G_0 . Since $\kappa'(G'_0) \ge 2$, by Theorems 2.2(c) and 1.8, $|E(G'_0)| \le 2|V(G'_0)| - 4 \le 2(4p - 5) - 4 = 18$. Note that $G'_0 \notin SL$, by Theorem 2.3(a) $|V(G'_0)| \ge 5$.

Let S_0 , S_1 , M_0 and U_0 be the sets defined above. By Theorem 2.4, G'_0 does not have a DCT containing S_0 . When n > 18, $|E(G'_0)| < |E(G)|$. Thus, $|S_1| \ge 1$. By Lemma 5.1, $|S_1| + |M_0| \le 4$.

Case 1. $G'_0 \neq K_{2,a}$.

If $|S_1| + |M_0| \le 3$, then $|M_0| \le 2$. By Lemma 5.1, $|V(G'_0)| \le 3|S_1| + 5|M_0| - 5 = 4 + 2|M_0| \le 8$. By Theorem 2.3(b), $|D_2(G'_0)| \ge 3$. Then $|S_1| \ge |D_2(G'_0)| \ge 3$. Therefore, $|M_0| = 0$. It follows that $|V(G'_0)| \le 3|S_1| + 5|M_0| - 5 = 4$, contrary to that $|V(G'_0)| \ge 5$.

Thus, $|S_1| + |M_0| = 4$. By Lemma 5.1(b) with p = 4 and $\epsilon = 0$, and by $|U_0| = |V(G'_0)| - |S_1| - 2|M_0|$,

$$|E(G'_0)| \ge 8 - |S_1| + 3|U_0| \ge 3|V(G'_0)| + 8 - 4|S_1| - 6|M_0|.$$

$$\tag{27}$$

By Theorem 2.2 and $G'_0 \neq K_{2,a}$, $|E(G'_0)| \le 2|V(G'_0)| - 5$. By (27) and $|S_1| + |M_0| = 4$,

$$2|V(G'_{0})| - 5 \ge |E(G'_{0})| \ge 3|V(G'_{0})| + 8 - 4|S_{1}| - 6|M_{0}|;$$

$$4(|S_{1}| + |M_{0}|) + 2|M_{0}| = 4|S_{1}| + 6|M_{0}| \ge |V(G'_{0})| + 13;$$

$$16 + 2|M_{0}| \ge |V(G'_{0})| + 13;$$

$$3 + 2|M_{0}| \ge |V(G'_{0})|.$$
(28)

Since $|S_1| \ge 1$, $|M_0| \le 3$. By (28), $|V(G'_0)| \le 9$. By Theorem 2.3(b), $|D_2(G'_0)| \ge 3$. Since $D_2(G'_0) \subseteq S_1$, $|S_1| \ge 3$ and so $|M_0| \le 1$. By (28), $|V(G'_0)| \le 5$. By Theorem 2.3(a), $G'_0 = K_{2,3}$, a contradiction.

Case 2. $G'_0 = K_{2,a}$ with $2 \le a \le p = 4$.

Since G'_0 does not have an SCT, $G'_0 = K_{2,3}$. Since $D_2(G'_0) \subseteq S_1, 3 \leq |S_1| \leq 4$. For $v \in S_1$, let $\Gamma(v)$ be the preimage of v in G. Then $|E(G)| = |E(K_{2,3})| + \sum_{v \in S_1} |E(\Gamma(v))| = 6 + \sum_{v \in S_1} |E(\Gamma(v))|$.

If $|S_1| = 4$, then let $S_1 = D_2(G'_0) \cup \{u\}$ where $d_{G'_0}(u) = 3$. By Lemma 3.1, $\sigma_t(H) \ge \frac{m}{4}$ $(1 \le t \le 4)$, $|E(\Gamma(v))| \ge |V(\Gamma(v))| - 1$ and n = |E(G)|,

$$\begin{split} |S_1| \frac{\sigma_t(H) + 2t}{t} &\leq \sum_{v \in S_1} (d_{G'_0}(v) + |V(\Gamma(v))|) \leq \sum_{v \in D_2(G'_0) \cup \{u\}} d_{G'_0}(v) + \sum_{v \in S_1} (|E(\Gamma(v))| + 1);\\ n + 8 &\leq 9 + (|E(G)| - 6) + 4 = n + 7, \end{split}$$

a contradiction. This shows that $G'_0 = K_{2,3}$ with $|S_1| = 4$ is impossible.

If $|S_1| = 3$, then $S_1 = D_2(K_{2,3})$. Let $S_1 = \{v_1, v_2, v_3\}$. To prove $cl(H) = L(G) \in Q_{2,3}(s_1, s_2, s_3, n)$, we only need to show that for each $v_i \in S_1$, $\Gamma(v_i) = K_{1,s}$ for some $s \ge 1$.

By way of contradiction, we assume that $\Gamma(v_1) \neq K_{1,s}$. Let $e_a = v_1y_1$ and $e_b = v_1y_2$ be the two edges in G'_0 incident with v_1 where y_i is a degree 3 vertex in $G'_0 = K_{2,3}$ and $d_G(y_i) = d_{G'_0}(y_i) = 3$ (i = 1, 2). Then there are two vertices x_1 and x_2 in $V(\Gamma(v_1))$ such that $x_1y_1 = e_a$ and $x_2y_2 = e_b$ in G.

Claim 1. $\Gamma(v_1)$ contains an edge that is adjacent to at most one of the edges in $\{e_a, e_b\}$.

By $|E(\Gamma(v_1))| \ge 1$, $\Gamma(v_1) \ne K_{1,s}$ and *G* is an essentially 2-edge-connected K_3 -free graph with $\sigma_2(G) \ge 5$, if $x_1 = x_2$, then $\Gamma(v_1)$ contains a cycle *C* of length at least 4 and so *C* has an edge that is not adjacent to either edge in $\{e_a, e_b\}$; if $x_1 \ne x_2$, $\Gamma(v_1)$ has an edge that is adjacent to at most one of the edges $\{e_a, e_b\}$. The Claim is proved.

With Claim 1, we may let $e_y = xy$ be such an edge in $\Gamma(v_1)$ that is not adjacent to e_b . Let $e_j = w_j z_j$ be an edge in $E(\Gamma(v_j))$ (j = 2, 3). Then $M_a = \{e_y, e_b, e_2, e_3\}$ is a matching in G.

For $e_b = x_2y_2$, $d_G(x_2) + d_G(y_2) = |E_G(x_2)| + 3$. For $e_y = xy$, since G is K_3 -free, $|E_G(x) \cap E_G(y)| = 1$ and $|(E_G(x) \cup E_G(y)) \cap E_G(x_2)| \le 1$, and $E_G(x) \cup E_G(y)) \cup E_G(x_2) \subseteq E(\Gamma(v_1)) \cup \{e_a, e_b\}$. Thus,

$$\begin{aligned} |E_G(x)| + |E_G(y)| + |E_G(x_2)| &= |E_G(x) \cup E_G(y) \cup E_G(x_2)| + |E_G(x) \cap E_G(y)| \\ &+ |(E_G(x) \cup E_G(y)) \cap E_G(x_2)| \\ &\leq |E(\Gamma(v_1))| + |\{e_a, e_b\}| + 2 = |E(\Gamma(v_1))| + 4. \end{aligned}$$

Hence,

$$(d_G(x) + d_G(y)) + (d_G(x_2) + d_G(y_2)) = |E_G(x)| + |E_G(y)| + |E_G(x_2)| + 3 \le |E(\Gamma(v_1))| + 7.$$
(29)

Since *G* is K_3 -free, $E_G(w_j) \cap E_G(z_j) = \{w_j z_j\}$ and $E_G(w_j) \cup E_G(z_j) \le E(\Gamma(v_j)) \cup E_{G'_0}(v_j)$. Since $v_j \in S_1 = D_2(K_{2,3}), |E_{G'_0}(v_j)| = 2$. Then

$$|E_G(w_j)| + |E_G(z_j)| = |E_G(w_j) \cup E_G(z_j)| + |E_G(w_j) \cap E_G(z_j)| \le |E(\Gamma(v_j))| + 3.$$
(30)

Thus,

$$\sum_{j=2}^{3} (d_G(w_j) + d_G(z_j)) \le \sum_{j=2}^{3} (|E_G(w_j)| + |E_G(z_j)|) \le |E(\Gamma(v_2))| + |E(\Gamma(v_3))| + 6.$$
(31)

By Lemma 3.1 with $\sigma_t(H) \ge \frac{tn}{4}$ and $|M_a| = 4$, by (29), (30), (31) and $|E(G)| = 6 + \sum_{i=1}^3 |E(\Gamma(v_i))|$,

$$|M_a| \frac{\sigma_t(H) + 2t}{t} \leq (d_G(x) + d_G(y)) + (d_G(x_2) + d_G(y_2)) + \sum_{j=2}^3 (d_G(w_j) + d_G(z_j));$$

$$n + 8 \leq |E(\Gamma(v_1))| + 7 + |E(\Gamma(v_2))| + |E(\Gamma(v_3))| + 6 = |E(G)| - 6 + 13 = n + 7,$$

a contradiction. The proof is completed.

To prove Theorem 1.10, we need the following theorem:

Theorem 6.1. (*Chen et al.* [8]). Let G be a 3-edge-connected graph and let $S \subseteq V(G)$ be a vertex subset with $|S| \le 12$. Then either G has a closed trail C such that $S \subseteq V(C)$, or G can be contracted to P in such a way that the preimage of each vertex of P contains at least one vertex in S.

Proof of Theorem 1.10. Suppose that *H* is not Hamiltonian. Let *G* be the preimage of cl(H) = L(G). Then *G* is essentially 3-edge-connected. By Theorem 1.1, *G* does not have a DCT. Let S_0 , S_1, S_2, M_0 and U_0 be the sets defined before, where S_0 is the set of all the nontrivial vertices of G'_0 . By Theorem 2.4, $\kappa'(G'_0) \ge 3$ and G'_0 dose not have a DCT containing S_0 . Hence, $G'_0 \ne K_{2,a}$.

(a) This is a special case of Theorem 1.8 with k = 3, p = 10, $1 \le t \le 10$ and $\epsilon = 5$. By Lemma 5.1, since $\delta(H) \ge 24 = 3p - 6$, $M_0 = \emptyset$, $S_2 = \emptyset$ and $|S_1| \le p = 10$. Thus, $S_0 = S_1$ and $U_0 = V(G'_0) - S_0$.

If $|S_0| \le 9$, then by Theorem 6.1, G'_0 has a closed trail C such that $S_0 \subseteq C$. Since U_0 is an independent set, C is a DCT in G'_0 containing S_0 , a contradiction.

Thus, $|S_0| = 10$. By Lemma 5.1(b), $|V(G'_0)| \le 2p - 5 - \epsilon = 10$. By Theorem 2.3(c), $G'_0 = P$ and so $S_0 = V(G'_0)$. Let $V(G'_0) = \{v_1, v_2, \dots, v_{10}\}$. Let $\Gamma(v_i)$ be the preimage of v_i in *G*. We assume that

$$|V(\Gamma(v_1))| \le |V(\Gamma(v_2))| \le \dots \le |V(\Gamma(v_{10}))|.$$
(32)

By Lemma 3.1(a), $d_{G'_0}(v) = 3$ for any $v \in V(G'_0)$, $|V(G'_0)| = 10$ and $\sigma_t(H) \ge \frac{t(n+5)}{10}$,

$$\sum_{v \in V(G'_0)} |V(\Gamma(v))| + 3|V(G'_0)| = \sum_{v \in V(G'_0)} \left(|V(\Gamma(v))| + d_{G'_0}(v) \right) \ge |V(G'_0)| \frac{\sigma_t(H) + 2t}{t} \ge n + 25;$$

$$\sum_{v \in V(G'_0)} |V(\Gamma(v))| \ge \frac{10\sigma_t(H)}{t} - 10 = (n+5) - 10 = n - 5.$$
(33)

Since $|E(\Gamma(v_i))| \ge |V(\Gamma(v_i)| - 1)$, by (33), and by n = |E(G)| and $|E(G'_0)| = |E(P)| = 15$,

$$\begin{split} n &= |E(G)| &= |E(G'_0)| + \sum_{i=1}^{10} |E(\Gamma(v_i))| \ge 15 + \sum_{i=1}^{10} (|V(\Gamma(v_i))| - 1) \\ &\ge 5 + \sum_{i=1}^{10} |V(\Gamma(v_i))| = 5 + (n-5) = n. \end{split}$$

Thus, the equalities of (32), (33), and $|E(\Gamma(v_i))| = |V(\Gamma(v_i))| - 1$ must hold. Hence, $\Gamma(v_i)$ is a tree with $|E(\Gamma(v_i))| = |V(\Gamma(v_i))| - 1 = \frac{n-15}{10}$. Since G is essentially 3-edge-connected, $\Gamma(v_i) = K_{1,\frac{n-15}{10}}$. Theorem 1.10(a) is proved.

(b) This is a special case of Theorem 1.8 with k = 3, p = t = 13 and $\epsilon = 6$. With $\delta(H) \ge 33 = 3p-6$, by Lemma 5.1, $M_0 = \emptyset$, $S_2 = \emptyset$ and $|S_1| \le p = 13$. Hence, $S_0 = S_1$ and $U_0 = V(G'_0) - S_0$. **Case 1**. $|S_0| = |S_1| \le 12$. Then by Theorem 6.1, we have two subcases: **Subcase (i)**. G'_0 has a closed trail *C* such that $S_0 \subseteq C$.

Then *C* is a DCT in G'_0 that contains all the nontrivial vertices, a contradiction. **Subcase (ii)**. G'_0 can be contracted to *P* such that the preimage of each vertex of *P* contains at least one vertex in S_0 . Thus, $G \in \mathcal{P}(n, 1)$ and so $cl(H) \in \mathcal{Q}_P(n, 1)$. Theorem 1.10 is proved for this case.

Case 2. $|S_0| = |S_1| = p = 13$. By Lemma 5.1, $13 \le |V(G'_0)| \le 2p - 5 - \epsilon = 15$ and

$$|E(G'_0)| \ge \epsilon + p + \sum_{\nu \in U_0} d_{G'_0}(\nu) = 19 + 3|U_0|.$$
(34)

If $13 \le |V(G'_0)| \le 14$, then by Theorem 2.3(c). $G'_0 = P_{14}$. Then $|U_0| = 1$. By (34), $|E(G'_0)| \ge 22$, contrary to that $|E(G'_0)| = |E(P_{14})| = 21$.

If $|V(G_0)| = 15$, then $|U_0| = 2$. By (34) $|E(G'_0)| \ge 25$. By Theorem 2.3(d), $V(G'_0) = D_3(G'_0) \cup D_4(G'_0)$ with $|D_4(G'_0)| = 3$. Then $|E(G'_0)| = 24$, a contradiction. Thus, $|S_0| = 13$ is impossible. \Box

References

[1] D. Bauer, G. Fan and H.J. Veldman, Hamilton properties of graphs with large neighborhood unions, Discrete Math. 96 (1991) 33-49.

- [2] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications". American Elsevier, New York (1976).
- [3] H.J. Broersma, Sufficient conditions for hamiltonicity and traceability of $K_{1,3}$ -free graphs, Hamilton cycles in graphs and related topics, Ph.D. Thesis, University of Twente, Netherlands, 1988, pp. 45-53 (Chapter 5).
- [4] P. A. Catlin, A reduction method to find spanning Eulerian subgraphs. J. Graph Theory 12 (1988), 29-45.
- [5] P. A. Catlin, Z. Han, and H.-J. Lai, Graphs without spanning eulerian trails. Discrete Math. 160 (1996) 81-91.
- [6] Z.-H. Chen, Chvátal-Erdós type conditions for hamiltonicity of claw-free graphs, Graphs and Combinatorics, (2016) 32: 2253-2266.
- [7] W.-G. Chen and Z.-H. Chen, Spanning Eulerian subgraphs and Catlin's reduced graphs, J. of Combinatorial Math. and Combinatorial Computing, 96 (2016) pp. 41-63.
- [8] Z.-H. Chen, H.-J. Lai, X.W. Li, D.Y. Li, J. Z. Mao, Eulerian Sugraphs in 3-edge-connected graphs and Hamiltonian Line Graphs, J. Graph Theorey 42 (2003) 308-319.
- [9] Z.-H. Chen, H.-J. Lai, L.M. Xiong, Minimum degree conditions for the Hamiltonicity of 3connected claw-free graphs, J. Combin. Theory Ser. B 122 (2017) 167-186.
- [10] O. Favaron, E. Flandrin, H. Li, Z. Ryjáček, Cliques covering and degree conditions for hamiltonicity in claw-free graphs, Discrete Math. 236 (2001) 65-80.
- [11] R. Faudree, R. Gould, L. Lesniak and T. Lindquester, Generalized degree conditions for graphs with bounded independence number, J. Graph Theory 19 (1995) 397-409.
- [12] R. Faudree, E. Flandrin, Z. Ryjáček. Claw-Free Graphs-A survey, Discrete Math. 164 (1997) 87-147.
- [13] O. Favaron, P. Fraisse, Hamiltonicity and minimum degree in 3-connected claw-free graphs, J. Combin. Theory Ser. B 82 (2001) 297-305.
- [14] E. Flandrin, I. Fournier and A. Germa, Circumference and hamiltonism in *K*_{1,3}-free graphs, in: Graph Theory in Memory of G.A. Dirac (Sandbjerg, 1985), Ann. Discrete Math. vol. 41 (North-Hollad, Amsterdam, New York, 1989) 131-140.
- [15] W. Frydrych, Nonhamiltonian 2-connected claw-free graphs with large 4-degree sum, Discrete Math. 236 (2001) 123-130.

- [16] F. Harary and C. St. J. A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs. Canada Math. Bull. 8 (1965), 701-710.
- [17] O. Kovářík, M. Mulač, Z. Ryjáček, A note on degree conditions for hamiltonicity in 2connected claw-free graphs, Discrete Math. 244 (2002) 253-268.
- [18] H.-J. Lai, Y. Shao, M. Zhan, Hamiltonicity in 3-connected claw-free graphs, J. Combin. Theory Ser. B 96 (2006) 493-504.
- [19] H. Li, Hamiltonian cycles in 2-connected claw-free graphs, J. Graph Theory 20 (1995), 447-457.
- [20] Hao Li, C. Virlouvet, Neighborhood conditions for claw-free hamiltonian graphs, Ars Combin. 29A (1990) 109-116.
- [21] M. Li, Hamiltonian claw-free graphs involving minimum degrees, Discrete Applied Mathematics 161(2013) 1530-1537.
- [22] Y. Liu, F. Tian, Z. Wu, Some results on longest paths and cycles in K_{1,3}-free graphs, J. Changsha Railway Inst. 4 (1986) 105-106.
- [23] M.M. Mathews, D. P. Sumner, Longest paths and cycles in $K_{1,3}$ -free graphs, J. Graph Theory 9 (1985) 269-277.
- [24] N. D. Roussopoulos, A max $\{m, n\}$ algorithm for determining the graph *H* from its line graph *G*, Information Processing Letters 2 (1973) 108-112.
- [25] Z. Ryjáček, On a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70 (1997) 217-224.
- [26] Y. Shao, Claw-free graphs and line graphs, Ph.D dissertation, West Virginia University, 2005.
- [27] Z.S. Wu, Hamilton connectivity of $K_{1,3}$ -free graphs, J. Math. Res. Exposition 9 (1989) 447-451 (In Chinese, English summary).
- [28] H. J. Veldman, On dominating and spanning circuits in graphs. Discrete Math., 124 (1994), 229 - 239.
- [29] C.-Q. Zhang, Hamilton cycles in claw-free graphs, J. Graph Theory 12 (1988) 209-216.