

Degree and neighborhood conditions for hamiltonicity of clawfree graphs

Zhi-Hong Chen
Butler University, chen@butler.edu

Follow this and additional works at: https://digitalcommons.butler.edu/facsch_papers
Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation

Chen, Zhi-Hong, "Degree and neighborhood conditions for hamiltonicity of claw-free graphs" Discrete Mathematics / (2017): 3104-3115.
Available at https://digitalcommons.butler.edu/facsch_papers/1043

This Article is brought to you for free and open access by the College of Liberal Arts \& Sciences at Digital Commons @ Butler University. It has been accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler University. For more information, please contact digitalscholarship@butler.edu.

Degree and neighborhood conditions for hamiltonicity of claw-free graphs

Zhi-Hong Chen, Butler University, Indianapolis, IN 46208

Abstract

For a graph H, let $\sigma_{t}(H)=\min \left\{\Sigma_{i=1}^{t} d_{H}\left(v_{i}\right) \mid\left\{v_{1}, v_{2}, \cdots, v_{t}\right\}\right.$ is an independent set in $\left.H\right\}$ and let $U_{t}(H)=\min \left\{\left|\bigcup_{i=1}^{t} N_{H}\left(v_{i}\right)\right| \mid\left\{v_{1}, v_{2}, \cdots, v_{t}\right\}\right.$ is an independent set in $\left.H\right\}$. We show that for a given number ϵ and given integers $p \geq t>0, k \in\{2,3\}$ and $N=N(p, \epsilon)$, if H is a k-connected claw-free graph of order $n>N$ with $\delta(H) \geq 3$ and its Ryjáček's closure $c l(H)=L(G)$, and if $d_{t}(H) \geq t(n+\epsilon) / p$ where $d_{t}(H) \in\left\{\sigma_{t}(H), U_{t}(H)\right\}$, then either H is Hamiltonian or G, the preimage of $L(G)$, can be contracted to a k-edge-connected K_{3}-free graph of order at most $\max \{4 p-5,2 p+1\}$ and without spanning closed trails. As applications, we prove the following for such graphs H of order n with n sufficiently large: (i) If $k=2, \delta(H) \geq 3$, and for a given $t(1 \leq t \leq 4) d_{t}(H) \geq \frac{t n}{4}$, then either H is Hamiltonian or $c l(H)=L(G)$ where G is a graph obtained from $K_{2,3}$ by replacing each of the degree 2 vertices by a $K_{1, s}(s \geq 1)$. When $t=4$ and $d_{t}(H)=\sigma_{4}(H)$, this proves a conjecture in [15]. (ii) If $k=3, \delta(H) \geq 24$, and for a given $t(1 \leq t \leq 10) d_{t}(H)>\frac{t(n+5)}{10}$, then H is Hamiltonian. These bounds on $d_{t}(H)$ in (i) and (ii) are sharp. It unifies and improves several prior results on conditions involved σ_{t} and U_{t} for the hamiltonicity of claw-free graphs. Since the number of graphs of orders at most max $\{4 p-5,2 p+1\}$ are fixed for given p, improvements to (i) or (ii) by increasing the value of p are possible with the help of a computer.

Keywords: Claw-free graph, Hamiltonicity, Neighborhood condition, degree condition

1 Introduction

We shall use the notation of Bondy and Murty [2], except when otherwise stated. Graphs considered in this paper are finite and loopless. A graph is called a multigraph if it contains multiple edges. A graph without multiple edges is called a simple graph or simply a graph. As in [2], $\kappa^{\prime}(G)$ and $d_{G}(v)$ denote the edge-connectivity of G and the degree of a vertex v in G, respectively. For a vertex $v \in V(G)$, let $E_{G}(v)$ be the set of edges incident with v in G. Then $d_{G}(v)=\left|E_{G}(v)\right|$. Define $\bar{\sigma}_{2}(G)=\min \left\{d_{G}(u)+d_{G}(v) \mid\right.$ for every edge $\left.u v \in E(G)\right\}$ and $D_{i}(G)=\left\{v \in V(G) \mid d_{G}(v)=i\right\}$. An edge cut X of a graph G is essential if each component of $G-X$ has some edges. A graph G is essentially k-edge-connected if G is connected and does not have an essential edge cut of size less than k. An
edge $e=u v$ is called a pendant edge if $\min \left\{d_{G}(u), d_{G}(v)\right\}=1$. The independence number of a graph G is denoted by $\alpha(G)$ and the clique covering number of G, (i.e. the minimum number of cliques necessary for covering $V(G)$) by $\theta(G)$. An independent set with t vertices is called a t-independent set and a matching with t edges is called a t-matching. A graph H is claw-free if H does not contain an induced subgraph isomorphic to $K_{1,3}$. A connected graph Ψ is a closed trail if the degree of each vertex in Ψ is even. A closed trail Ψ is called a spanning closed trail (SCT) in G if $V(G)=V(\Psi)$, and is called a dominating closed trail (DCT) if $E(G-V(\Psi))=\emptyset$. A graph is supereulerian if it contains an SCT. The family of supereulerian graphs is denoted by $\mathcal{S L}$. A graph is Hamiltonian if it has a spanning cycle. Throughout this paper, we use P for the Petersen graph.

The line graph of a graph G is denoted by $L(G)$. A vertex $v \in V(H)$ is locally conntected if its neighborhood $N_{H}(v)$ induces a connected graph. The closure of a claw-free graph H introduced by Ryjáček [25] is the graph obtained by recursively adding edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of H as long as this is possible and is denoted by $c l(H)$. A claw-free graph H is said to be closed if $H=c l(H)$. The following theorem shows the relationship between a DCT of a graph and a Hamiltonian cycle in its line graph.

Theorem 1.1. (Harary and Nash-Willams [16]). The line graph $H=L(G)$ of a graph G with at least three edges is Hamiltonian if and only if G has a DCT.

Now, we define two families of nonhamiltonian claw-free graphs.
For a $K_{2,3}$, let $D_{2}\left(K_{2,3}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $\mathcal{K}_{2,3}\left(s_{1}, s_{2}, s_{3}, n\right)$ be the family of graphs of size n obtained from a $K_{2,3}$ by adding $s_{i} \geq 1$ pendant edges at $v_{i}(i=1,2,3)$ and $s_{1}+s_{2}+s_{3}+6=n$.

Let $Q_{2,3}\left(s_{1}, s_{2}, s_{3}, n\right)=\left\{H: H=L(G)\right.$ where $\left.G \in \mathcal{K}_{2,3}\left(s_{1}, s_{2}, s_{3}, n\right)\right\}$.
For the Petersen graph P, let $V(P)=\left\{v_{1}, \cdots, v_{10}\right\}$. Let $\mathcal{P}(n, s)$ be the family of graphs of size n obtained from P by replacing each v_{i} by a connected subgraph Φ_{i} with size $s_{i} \geq s$ and $15+\sum_{i=1}^{10} s_{i}=n$. Let $\mathcal{P}_{1}(n, s)$ be the sub-family of $\mathcal{P}(n, s)$ in which each $\Phi_{i}=K_{1, s_{i}}$.

Let $Q_{P}(n, s)=\{H: H=L(G)$, where $G \in \mathcal{P}(n, s)\}$.
Let $Q_{P}^{1}(n, s)=\left\{H: H=L(G)\right.$, where $\left.G \in \mathcal{P}_{1}(n, s)\right\}$, a subfamily of $Q_{P}(n, s)$.
By Theorem 1.1, graphs in $Q_{2,3}\left(s_{1}, s_{2}, s_{3}, n\right) \cup Q_{P}(n, s)$ are nonhamiltonian.
For a graph H and $t \geq 1$, we define

- $\sigma_{t}(H)=\min \left\{\Sigma_{i=1}^{t} d_{H}\left(v_{i}\right) \mid\left\{v_{1}, v_{2}, \cdots, v_{t}\right\}\right.$ is an independent set in $\left.H\right\}$ (if $\left.t>\alpha(H), \sigma_{t}(H)=\infty\right)$;
- $U_{t}(H)=\min \left\{\left|\bigcup_{i=1}^{t} N_{H}\left(v_{i}\right)\right| \mid\left\{v_{1}, v_{2}, \cdots, v_{t}\right\}\right.$ is an independent set in $\left.H\right\}$.

For $t=1$, we use $\delta(H)$ for $\sigma_{1}(H)$ and $U_{1}(H)$. In general, $\sigma_{t}(H) \geq U_{t}(H)$. Let

$$
\Omega(H)=\left\{\sigma_{t}(H), U_{t}(H)\right\} .
$$

Sufficient conditions involved parameters in $\Omega(H)$ for claw-free graphs to be Hamiltonian have been the subjects of many papers (see $[10,12,17]$). For 2-connected claw-free graph H of order
n, Matthews and Sumner [23] shown that if $\delta(H) \geq(n-2) / 3 H$ is Hamiltonian; Li [19] shown that if $\delta(H) \geq n / 4$, then H is either Hamiltonian or belongs to a family of easily described graphs; Flandrin, et al. [14] shown that if $\sigma_{2}(H) \geq \frac{2 n-5}{3}$ then H is Hamiltonian. For $\sigma_{t}(H)$ with $t \geq 4$, Favaron, et al. [10] proved the following:

Theorem 1.2. Let $t \geq 4$ be an integer and let H be a 2-connected claw-free simple graph of order n such that $n \geq 3 t^{2}-4 t-7, \delta(H) \geq 3 t-4$ and $\sigma_{t}(H)>n+t^{2}-4 t+7$. Then either H is Hamiltonian or $\theta(c l(H)) \leq t-1$.

As a special case of Theorem 1.2, Favaron, et al. [10] shown that a 2-connected claw-free graph H of order $n \geq 77$ with $\delta(H) \geq 14$ and $\sigma_{6}(H)>n+19$ is either Hamiltonian or belongs to a well described exception family. With Theorem 1.2 and the help of a computer, Kovářík et al. [17] obtained a result for $\sigma_{8}(H)>n+39$ with an exception family that contains 318 infinite classes.

For $\sigma_{3}(H)$, Liu et al. [22], Zhang [29] and Broersma [3] shown that a 2-connected claw-free graph H of order n with $\sigma_{3}(H) \geq n-2$ is Hamiltonian. For condition involved $\sigma_{4}(H)$ for the hamiltonicity of claw-free graphs, Frydrych proved the following and had a conjecture in [15].

Theorem 1.3 (Frydrych [15]). A 2-connected claw-free simple graph H of order n with $\sigma_{4}(H) \geq$ $n+3$ is either Hamiltonian or $c l(H) \in Q_{2,3}\left(s_{1}, s_{2}, s_{3}, n\right)$.

Conjecture 1.4 (Frydrych [15]). Theorem 1.3 still holds if $\sigma_{4}(H) \geq n$ and $\delta(H) \geq 3$.
The condition " $\delta(H) \geq 3$ " in Conjecture 1.4 was not in the original statement in [15]. However, it would not be true if $\delta(H)=2$ as shown by the graph in Fig.1, where $K_{s}=K_{(n-3) / 2}$ and H is a nonhamiltonian claw-free graph of order n with $\delta(H)=2, \sigma_{4}(H) \geq n+1$ and $c l(H) \notin Q_{2,3}\left(s_{1}, s_{2}, s_{3}, n\right)$.

Fig. 1: A nonhamiltonian graph H of order n with $\delta(H)=2$ and $\sigma_{4}(H) \geq n+1$.
For 3-connected claw-free graphs H of order n, Zhang [29] proved that if $\sigma_{4}(H) \geq n-3$, then H is Hamiltonian; Wu [27] proved that if $\sigma_{3}(H) \geq n+1$, then H is Hamiltonian connected. Settling a conjecture posed in [13], Lai et al. [18] proved the following:

Theorem 1.5 (Lai et al. [18]). A 3-connected claw-free simple graph H of order $n \geq 196$ with $\delta(H) \geq \frac{n+5}{10}$ is either Hamiltonian or $\operatorname{cl}(H) \in Q_{P}^{1}\left(n, \frac{n-15}{10}\right)$.

By enlarging the exception family, $\mathrm{Li}[21]$ improved Theorem 1.5 for such graphs H with $\delta(H) \geq$ $\frac{n+34}{12}$. Solving a conjecture in [21], Chen, et al. in [9] further improved Li's result to $\delta(H) \geq \frac{n+6}{13}$.

For $U_{t}(H)$ condition on the hamiltonicity of claw-free graphs, the following are known:

Theorem 1.6. Let H be a k-connected claw-free simple graph of order n. Then each of the following holds:
(a) (Bauer, Fan and Veldman [1]) If $k=2$ and $U_{2}(H) \geq \frac{2 n-5}{3}$, then H is Hamiltonian.
(b) (Li and Virlouvet [20]) If $k=3$ and $U_{2}(H) \geq \frac{11(n-7)}{21}$, then H is Hamiltonian.

Theorem 1.6(b) is a special case of the following Theorem.
Theorem 1.7. (Li and Virlouvet [20]) Let H be a k-connected $(k \geq 3)$ claw-free simple graph of order n. If there is some integer $t, t \leq 2 k$, such that $U_{t}(H) \geq \frac{t(4 k-t+1)}{2 k(2 k+1)}(n-2 k-1)$, then H is Hamiltonian.

In this paper, we unify and strengthen the results involved $d_{t}(H) \in \Omega(H)$ above and prove Conjecture 1.4 which is an easy conclusion from the main result.

Let p and t be positive integers and let ϵ be a given number. Let H be a k-connected claw-free graph of order $n(k \geq 2)$. For $d_{t}(H) \in \Omega(H)$, we consider graphs H that satisfy the following:

$$
\begin{equation*}
d_{t}(H) \geq \frac{t(n+\epsilon)}{p} \tag{1}
\end{equation*}
$$

All the conditions involved $d_{t}(H) \in \Omega(H)$ in the theorems mentioned above are the special cases of (1) with various given values of p, t, and ϵ.

Let $Q_{0}(r, k)$ be the family of k-edge-connected K_{3}-free graphs of order at most r and without an SCT. It is known that $Q_{0}(5,2)=\left\{K_{2,3}\right\}$ and $Q_{0}(13,3)=\{P\}$ (see Theorem 2.3 in section 2).

For given integer $p>0$ and a real number ϵ, define

$$
\begin{equation*}
N(p, \epsilon)=\max \left\{36 p^{2}-34 p-\epsilon(p+1), 20 p^{2}-10 p-\epsilon(p+1),(3 p+1)(-\epsilon-4 p)\right\} \tag{2}
\end{equation*}
$$

Our main result is the following:
Theorem 1.8. Let H be a k-connected claw-free simple graph of order $n(k \geq 2)$ and $\delta(H) \geq 3$. For given integers $p \geq t>0$ and a given number ϵ, if $d_{t}(H) \geq \frac{t(n+\epsilon)}{p}$ where $d_{t}(H) \in \Omega(H)$ and $n>N(p, \epsilon)$, then either H is Hamiltonian or $\operatorname{cl}(H)=L(G)$ where G is an essentially k-edgeconnected K_{3}-free graph without a DCT and G satisfies one of the following:
(a) if $k=2$, G is contractible to a graph in $Q_{0}(c, 2)$ where $c \leq \max \{4 p-5,2 p+1\}$;
(b) if $k=3$, G is contractible to a graph in $Q_{0}(c, 3)$ where $c \leq \max \{3 p-5,2 p+1\}$.

It should be known that " G is contractible to a graph in $Q_{0}(c, k)$ " in Theorem 1.8 means that "the reduction G_{0}^{\prime} of the core G_{0} of G is in $Q_{0}(c, k)$ " which is defined by the Catlin's reduction method given in next section. As applications of Theorem 1.8, we prove the following two theorems.

Theorem 1.9. Let H be a 2-connected claw-free simple graph of order n with $\delta(H) \geq 3$ and n is sufficiently large. If $d_{t}(H) \geq \frac{t n}{4}$ where $d_{t}(H) \in \Omega(H)$ and t is a given integer and $1 \leq t \leq 4$, then either H is Hamiltonian or $\operatorname{cl}(H) \in Q_{2,3}\left(s_{1}, s_{2}, s_{3}, n\right)$ where $s_{1}+s_{2}+s_{3}+6=n$.

Theorem 1.10. Let H be a 3-connected claw-free simple graph of order n and n is sufficiently large.
(a) For a given integer t and $1 \leq t \leq 10$, if $d_{t}(H) \geq \frac{t(n+5)}{10}$ where $d_{t}(H) \in \Omega(H)$ and $\delta(H) \geq 24$, then H is Hamiltonian if and only if $c l(H) \notin Q_{P}^{1}\left(n, \frac{n-15}{10}\right)$.
(b) If $\sigma_{13}(H) \geq n+6$ and $\delta(H) \geq 33$, then H is Hamiltonian if and only if $c l(H) \notin Q_{P}(n, 1)$.

Remarks. (a) The case for $d_{t}(H)=\sigma_{4}(H) \geq n$ of Theorem 1.9 verifies Conjecture 1.4. The case for $d_{t}(H)=\sigma_{3}(H) \geq \frac{3 n}{4}$ of Theorem 1.9 is an improvement of a " $\sigma_{3}(H) \geq n-2$ " theorem obtained by Liu et al. [22], Zhang [29] and Broersma [3] mentioned above; the case for $d_{t}(H)=\sigma_{2}(H) \geq \frac{n}{2}$ is an improvement of a " $\sigma_{2}(H) \geq \frac{2 n-5}{3}$ " theorem proved by Flandrin, et al. in [14]; the case $d_{t}(H)=\sigma_{1}(H)=\delta(H)$ is a theorem proved by Li in [19]. The case for $d_{t}(H)=U_{t}(H)$ with $1 \leq t \leq 4$ of Theorem 1.9 is an improvement of Theorem 1.6(a).

The case for $d_{t}(H)=\sigma_{t}(H)$ of Theorem 1.10(a) is a generalization and improvement of Theorem 1.5. It shows that the conclusion of Theorem 1.5 holds for $\sigma_{t}(H) \geq \frac{t(n+5)}{10}$ for any $t \in\{1,2, \cdots, 10\}$. The case for $d_{t}(H)=\sigma_{t}(H)$ of Theorem 1.10(b) is an improvement of the results in [18, 21]. The case for $d_{t}(H)=U_{t}(H)$ of Theorem 1.10 is an improvement of Theorem 1.6(b) and Theorem 1.7 with $k=3$.
(b) One can check whether a graph belongs to $Q_{2,3}\left(s_{1}, s_{2}, s_{3}, n\right) \cup Q_{P}^{1}\left(n, \frac{n-15}{10}\right)$ in polynomial time. For graphs H satisfying Theorems 1.9 or $1.10(a)$, it can be determined in polynomial time if H is Hamiltonian. For Theorem 1.10(b), a graph given in [9] shows that the result is best possible in the sense that $p=13$ cannot be replaced by $p=14$.
(c) For given p, t, ϵ and k, comparing to the family of k-connected claw-free graphs of order n with $d_{t}(H) \geq \frac{t(n+\epsilon)}{p}$ where $d_{t}(H) \in \Omega(H)$, the number of graphs in $Q_{0}(4 p-5,2) \cup Q_{0}(3 p-5,3)$ is fixed and can be determined in a constant time (independent on n). In some sense, Theorem 1.8 shows that only a finite number of k-connected claw-free graphs H with $d_{t}(H) \geq \frac{t(n+\epsilon)}{p}$ are non-Hamiltonian. One may obtain new improvements to Theorems 1.10 and 1.9 by enlarging the number of exceptions with the help of a computer.
(d) Faudree et al. [11] define the generalized t-degree, $\delta_{t}(H)$, of a graph H by

$$
\delta_{t}(H)=\min \left\{\left|\bigcup_{i=1}^{t} N_{H}\left(x_{i}\right)\right| \mid\left\{x_{1}, x_{2}, \cdots, x_{t}\right\} \text { is a } t \text {-subset in } H\right\}
$$

Since $\sigma_{t}(H) \geq U_{t}(H) \geq \delta_{t}(H)$, Theorems 1.8, 1.9 and 1.10 are also true for $d_{t}(H)=\delta_{t}(H)$.
The rest of this paper is organized as follows. In Section 2, we give a brief discussion of Ryjáček closure concept and Catlin's reduction method. In Section 3, we prove a technical lemma which will be needed in our proofs. The proof of Theorem 1.8 is given in section 4. In Section 5, we prove a lemma on the properties of reduced graph related to σ_{t} condition. The proofs of Theorems 1.9 and 1.10 are given in the last section.

2 Ryjáček closure concept and Catlin's reduction Method

The following is a main theorem of Ryjáček closure concept.
Theorem 2.1. (Ryjáček [25]). Let H be a claw-free graph and cl(H) its closure. Then
(a) $\operatorname{cl}(H)$ is well defined, and $\kappa(\operatorname{cl}(H)) \geq \kappa(H)$;
(b) there is a K_{3}-free graph G such that $\operatorname{cl}(H)=L(G)$;
(c) both graphs H and $c l(H)$ have the same circumference.

It is known that a connected line graph $H \neq K_{3}$ has a unique graph G with $H=L(G)$. We call G the preimage graph of H. For a claw-free graph H, the closure $c l(H)$ of H can be obtained in polynomial time [25] and the preimage graph of a line graph can be obtained in linear time [24]. We can compute G efficiently for $c l(H)=L(G)$. Thus, with Theorems 1.1 and 2.1, finding a Hamiltonian cycle in a claw-free graph H is equivalent to finding a DCT in the preimage graph G of $\operatorname{cl}(H)$.

Next, we give a brief discussion on Catlin's reduction method.
Let G be a connected multigraph. For $X \subseteq E(G)$, the contraction G / X is the graph obtained from G by identifying the two ends of each edge $e \in X$ and deleting the resulting loops. G / X may not be simple. If Γ is a connected subgraph of G, then Γ is contracted to a vertex in G / Γ and we write G / Γ for $G / E(\Gamma)$.

Let $O(G)$ be the set of vertices of odd degree in G. A graph G is collapsible if for every even subset $R \subseteq V(G)$, there is a spanning connected subgraph Γ_{R} of G with $O\left(\Gamma_{R}\right)=R . K_{1}$ is regarded as a collapsible and supereulerian graph. We use $C \mathcal{L}$ to denote the family of collapsible graphs.

In [4], Catlin showed that every graph G has a unique collection of maximal collapsible subgraphs $\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{c}$. The reduction of G is $G^{\prime}=G /\left(\cup_{i=1}^{c} \Gamma_{i}\right)$, the graph obtained from G by contracting each Γ_{i} into a single vertex $v_{i}(1 \leq i \leq c)$. For a vertex $v \in V\left(G^{\prime}\right)$, there is a unique maximal collapsible subgraph $\Gamma_{0}(v)$ such that v is the contraction image of $\Gamma_{0}(v)$ and $\Gamma_{0}(v)$ is the preimage of v. A vertex $v \in V\left(G^{\prime}\right)$ is contracted vertex if $\Gamma_{0}(v) \neq K_{1}$. A graph G is reduced if $G^{\prime}=G$.

Theorem 2.2. (Catlin, et al. [4, 5]). Let G be a connected graph and let G^{\prime} be the reduction of G.
(a) $G \in C \mathcal{L}$ if and only if $G^{\prime}=K_{1}$, and $G \in \mathcal{S} \mathcal{L}$ if and only if $G^{\prime} \in \mathcal{S} \mathcal{L}$.
(b) G has a DCT if and only if G^{\prime} has a DCT containing all the contracted vertices of G^{\prime}.
(c) If G is a reduced graph, then G is simple and K_{3}-free with $\delta(G) \leq 3$. For any subgraph Ψ of G, Ψ is reduced and either $\Psi \in\left\{K_{1}, K_{2}, K_{2, t}(t \geq 2)\right\}$ or $|E(\Psi)| \leq 2|V(\Psi)|-5$.

Let P_{14} be the graph obtained from P by replacing a vertex v in P by a $K_{2,3}$ in the way that the three edges incident with v in P are incident with the three degree 2 vertices in $K_{2,3}$, respectively.

Some facts on reduced graphs are summarized in the following theorem.

Theorem 2.3. Let G be a connected reduced graph of order n. Then each of the following holds:
(a) If $G \notin \mathcal{S} \mathcal{L}$ and $\kappa^{\prime}(G) \geq 2$, then $n \geq 5$ and $n=5$ only if $G=K_{2,3}$.
(b) ([7]) For $1<n \leq 9$, if $\kappa^{\prime}(G) \geq 2$, then $\left|D_{2}(G)\right| \geq 3$.
(c) ([7]) If $\kappa^{\prime}(G) \geq 3$ and $n \leq 14$, then either $G \in \mathcal{S} \mathcal{L}$ or $G \in\left\{P, P_{14}\right\}$.
(d) ([7]) If $\kappa^{\prime}(G) \geq 3$ and $n=15$, then either $G \in \mathcal{S} \mathcal{L}$ or G is 2-connected, 3-edge-connected and essentially 4-edge-connected graph with girth at least 5 and $V(G)=D_{3}(G) \cup D_{4}(G)$ where $\left|D_{4}(G)\right|=3$ and $D_{4}(G)$ is an independent set.
(e) ([6]) Let G be a connected reduced graph of order n with $\delta(G) \geq 2$. Let M be a maximum matching in G and $\left|D_{2}(G)\right|=l$, and $G \neq K_{2, a}(a \geq 2)$. Then $|M| \geq \min \left\{\frac{n-1}{2}, \frac{n+5-l}{3}\right\}$.

Let H be a k-connected claw-free graph with $\delta(H) \geq 3(k \in\{2,3\})$. By Theorem 2.1, there is a K_{3}-free graph G such that $c l(H)=L(G)$. By the definition of $\operatorname{cl}(H), V(c l(H))=V(H)$ and $d_{c l(H)}(v) \geq d_{H}(v)$ for any $v \in V(c l(H))$ and so $\delta(c l(H)) \geq \delta(H) \geq 3$. For an edge $e=x y$ in G, let v_{e} be the vertex in $c l(H)$ defined by e in G. Then $d_{c l(H)}\left(v_{e}\right)+2=d_{G}(x)+d_{G}(y)$. Thus, if $c l(H)=L(G)$ is k-connected graph with $\delta(c l(H)) \geq 3$, then G is essentially k-edge-connected with $\bar{\sigma}_{2}(G) \geq 5$.

Let G be an essentially k-edge-connected graph with $\bar{\sigma}_{2}(G) \geq 5$, where $k \in\{2,3\}$. Then $D_{1}(G) \cup$ $D_{2}(G)$ is an independent set. Let E_{1} be the set of pendant edges in G. For each $x \in D_{2}(G)$, there are two edges e_{x}^{1} and e_{x}^{2} incident with x. Let $X_{2}(G)=\left\{e_{x}^{1} \mid x \in D_{2}(G)\right\}$. Define

$$
G_{0}=G /\left(E_{1} \cup X_{2}(G)\right)=\left(G-D_{1}(G)\right) / X_{2}(G)
$$

In other words, G_{0} is obtained from G by deleting the vertices in $D_{1}(G)$ and replacing each path of length 2 whose internal vertex is a vertex in $D_{2}(G)$ by an edge.

Let $X=D_{1}(G) \cup D_{2}(G)$. In [28], G_{0} is denoted by $I_{X}(G)$. In [26], Shao defined G_{0} for essentially 3-edge-connected graphs G. Following [26], we call G_{0} the core of G. Note that even G is simple, G_{0} may not be simple.

The vertex set $V\left(G_{0}\right)$ is regarded as a subset of $V(G)$. A vertex in G_{0} is nontrivial if it is obtained by contracting some edges in $E_{1} \cup X_{2}(G)$ or it is adjacent to a vertex in $D_{2}(G)$ in G. For instance, if $x \in D_{2}(G)$ and $N_{G}(x)=\{u, v\}$ and if u_{x} in G_{0} is obtained by contracting the edge $u x$, then both u_{x} and v are nontrivial in G_{0} although u_{x} is a contracted vertex and v is not a contracted vertex in G_{0}. When we say u_{x} is adjacent to a vertex in $D_{2}(G)$, we regard u_{x} as vertex u in this case. Since $\bar{\sigma}_{2}(G) \geq 5$, all vertices in $D_{2}\left(G_{0}\right)$ are nontrivial

Let G_{0}^{\prime} be the reduction of G_{0}. For a vertex $v \in V\left(G_{0}^{\prime}\right)$, let $\Gamma_{0}(v)$ be the maximum collapsible preimage of v in G_{0} and let $\Gamma(v)$ be the preimage of v in G which is the graph induced by edges in $E\left(\Gamma_{0}(v)\right)$ and some edges in $E_{1} \cup X_{2}(G)$. A vertex v in G_{0}^{\prime} is a nontrivial vertex if v is a contracted vertex (i.e., $|E(\Gamma(v))| \geq 1)$ or v is adjacent to a vertex in $D_{2}(G)$.

For a vertex x in $V(\Gamma(v))$, let $I(x)$ be the set of edges in $E\left(G_{0}^{\prime}\right)$ that are incident with x in G. Let $i(x)=|I(x)|$. Then $i(x)$ is the number of edges in $E\left(G_{0}^{\prime}\right)$ that are incident with x in G. For any
$x \in V(\Gamma(v))$,

$$
\begin{equation*}
i(x) \leq \sum_{x \in V(\Gamma(v))} i(x)=d_{G_{0}^{\prime}}(v), \text { and } \mathrm{d}_{\mathrm{G}}(\mathrm{x}) \leq \mathrm{i}(\mathrm{x})+|\mathrm{V}(\Gamma(\mathrm{v}))|-1 \leq \mathrm{i}(\mathrm{x})+|\mathrm{E}(\Gamma(\mathrm{v}))| . \tag{3}
\end{equation*}
$$

Using Theorem 2.2, Veldman [28] and Shao [26] proved the following:
Theorem 2.4. Let G be a connected and essentiallyk-edge-connected graph $(k \geq 2)$ with $\bar{\sigma}_{2}(G) \geq 5$ and $L(G)$ is not complete. Let G_{0} be the core of graph G. Let G_{0}^{\prime} be the reduction of G_{0}. Then each of the following holds:
(a) G_{0} is well defined, nontrivial and $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq \kappa^{\prime}\left(G_{0}\right) \geq \min \{3, k\}$.
(b) (Lemma 5 [28]) G has a DCT if and only if G_{0}^{\prime} has a DCT containing all the nontrivial vertices.

In the rest of the paper, we will use the following notation related to G_{0}^{\prime} :

- $S_{0}=\left\{v \in V\left(G_{0}^{\prime}\right) \mid v\right.$ is a nontrivial vertex in $\left.G_{0}^{\prime}\right\}$;
- $S_{1}=\left\{v \in S_{0}| | E(\Gamma(v)) \mid \geq 1\right\} ;$
- $S_{2}=S_{0}-S_{1}$, the set of vertices v with $\Gamma(v)=K_{1}$ and adjacent to some vertices in $D_{2}(G)$;
- $V_{0}=V\left(G_{0}^{\prime}\right)-S_{1}$, the set of vertices v with $\Gamma(v)=K_{1}$ in G which includes S_{2};
- $\Phi_{0}=G_{0}^{\prime}\left[V_{0}\right]$;
- M_{0} is a maximum matching in Φ_{0}, and $V_{M_{0}}$ is the vertex set of M_{0};
- $U_{0}=V_{0}-V_{M_{0}}$ and so $V\left(G_{0}^{\prime}\right)=S_{1} \cup V_{M_{0}} \cup U_{0}$.

Since $\bar{\sigma}_{2}(G) \geq 5$, by the definition of $G_{0}^{\prime}, D_{2}\left(G_{0}^{\prime}\right) \subseteq S_{1}$.

3 A Technical Lemma

Since $\sigma_{t}(H) \geq U_{t}(H), U_{t}(H) \geq \frac{t(n+\epsilon)}{p}$ implies $\sigma_{t}(H) \geq \frac{t(n+\epsilon)}{p}$. It will be sufficient to prove Theorems 1.8, 1.9 and 1.10 for σ_{t}. We prove the following lemma for σ_{t} only.

Lemma 3.1. Let H be the graph satisfying Theorem 1.8 with $\operatorname{cl}(H)=L(G)$. Let G_{0} and G_{0}^{\prime} be the graphs related to G defined in section 2. For each $v \in V\left(G_{0}^{\prime}\right)$, let $\Gamma(v)$ be the preimage of v in G. Then each of the following holds:
(a) Let M be a matching in G with $|M| \geq t$. Then

$$
\begin{equation*}
|M| \frac{\sigma_{t}(H)+2 t}{t} \leq \sum_{x y \in M}\left(d_{G}(x)+d_{G}(y)\right) \tag{4}
\end{equation*}
$$

(b) Let $V_{r} \subseteq S_{1}$ be a r-subset of S_{1} in G_{0}^{\prime}. Let M_{b}^{\prime} be a matching of size b in G_{0}^{\prime}. Let $V\left(M_{b}^{\prime}\right)$ be the vertex set of M_{b}^{\prime}. Suppose that $V_{r} \cap V\left(M_{b}^{\prime}\right)=\emptyset$. If $\left|V_{r}\right|+\left|M_{b}^{\prime}\right|=r+b \geq t$, then

$$
\sum_{v \in V_{r}}\left(|V(\Gamma(v))|+d_{G_{0}^{\prime}}(v)\right)+\sum_{x y \in M_{b}^{\prime}}\left(|V(\Gamma(x))|+|V(\Gamma(y))|+d_{G_{0}^{\prime}}(x)+d_{G_{0}^{\prime}}(y)\right) \geq \frac{(r+b)\left(\sigma_{t}(H)+2 t\right)}{t}+2 b .
$$

(c) If H satisfies (1), then $\left|D_{2}\left(G_{0}^{\prime}\right)\right| \leq p$ when $n>-\epsilon(p+1)$.

Proof. (a) Let $m=|M|$ and let M_{t} be a t-subset of M such that for any $a b \in M-M_{t}$,

$$
\begin{equation*}
\max _{x y \in M_{t}}\left\{d_{G}(x)+d_{G}(y)\right\} \leq d_{G}(a)+d_{G}(b) . \tag{5}
\end{equation*}
$$

Let A_{t} be the t-vertex set in $V(c l(H))=V(H)$ defined by the edges in M_{t}. Then A_{t} is a t-independent set in $c l(H)$ (as well as in H). Since $d_{H}\left(v_{e}\right) \leq d_{c l(H)}\left(v_{e}\right)$,

$$
\begin{equation*}
\sigma_{t}(H)+2 t \leq \sum_{v_{e} \in A_{t}}\left(d_{H}\left(v_{e}\right)+2\right) \leq \sum_{v_{e} \in A_{t}}\left(d_{c l(H)}\left(v_{e}\right)+2\right)=\sum_{e=x y \in M_{t}}\left(d_{G}(x)+d_{G}(y)\right) . \tag{6}
\end{equation*}
$$

For $a b \in M-M_{t}$, by (6) and (5),

$$
\begin{equation*}
\frac{\sigma_{t}(H)+2 t}{t} \leq \frac{\sum_{x_{i} y_{i} \in M_{t}}\left(d_{G}\left(x_{i}\right)+d_{G}\left(y_{i}\right)\right)}{t} \leq \frac{t\left(d_{G}(a)+d_{G}(b)\right)}{t}=d_{G}(a)+d_{G}(b) . \tag{7}
\end{equation*}
$$

By (6), (7) and $m=|M|$,

$$
\begin{aligned}
\sum_{x y \in M}\left(d_{G}(x)+d_{G}(y)\right) & =\sum_{x_{i} y_{i} \in M_{t}}\left(d_{G}\left(x_{i}\right)+d_{G}\left(y_{i}\right)\right)+\sum_{a b \in M-M_{t}}\left(d_{G}(a)+d_{G}(b)\right) \\
& \geq \sigma_{t}(H)+2 t+(m-t)\left(\frac{\sigma_{t}(H)+2 t}{t}\right)=m \frac{\sigma_{t}(H)+2 t}{t} .
\end{aligned}
$$

Case (a) is proved.
(b) Let $V_{r}=\left\{v_{1}, v_{2}, \cdots, v_{r}\right\}$ and let $\Gamma\left(v_{i}\right)$ be the preimage of $v_{i}(1 \leq i \leq r)$ in G. Since $V_{r} \subseteq S_{1}, \Gamma\left(v_{i}\right)$ is nontrivial. Let $x_{i} y_{i}$ be an edge in $\Gamma\left(v_{i}\right)$. Let $M_{r}=\left\{x_{i} y_{i} \mid 1 \leq i \leq r\right\}$. For each $x_{i} y_{i} \in M_{r}$, since G is K_{3}-free, $N_{G}\left(x_{i}\right) \cap N_{G}\left(y_{i}\right)=\emptyset$ and $N_{G}\left(x_{i}\right) \cup N_{G}\left(y_{i}\right) \subseteq I\left(x_{i}\right) \cup I\left(y_{i}\right) \cup V\left(\Gamma\left(v_{i}\right)\right)$. By (3),

$$
\begin{equation*}
d_{G}\left(x_{i}\right)+d_{G}\left(y_{i}\right) \leq i\left(x_{i}\right)+i\left(y_{i}\right)+\left|V\left(\Gamma\left(v_{i}\right)\right)\right| \leq d_{G_{0}^{\prime}}\left(v_{i}\right)+\left|V\left(\Gamma\left(v_{i}\right)\right)\right| . \tag{8}
\end{equation*}
$$

For each $e=x y \in M_{b}^{\prime}$, let $\Gamma(x)$ and $\Gamma(y)$ be the preimages of x and y in G, respectively. Then there is a vertex u in $V(\Gamma(x))$ and a vertex v in $V(\Gamma(y))$ such that $u v=e$, the edge in G corresponding to $x y$ in G_{0}^{\prime}. Let $M_{b}^{0}=\left\{u v \mid u \in V(\Gamma(x)), v \in V(\Gamma(y))\right.$ for each $\left.x y \in M_{b}^{\prime}\right\} . M_{b}^{0}$ is a b-matching in G.

For $u v \in M_{b}^{0}$ with $u \in V(\Gamma(x))$ and $v \in V(\Gamma(y))$,

$$
\begin{equation*}
d_{G}(u) \leq d_{G_{0}^{\prime}}(x)+|V(\Gamma(x))|-1 \text { and } d_{G}(v) \leq d_{G_{0}^{\prime}}(y)+|V(\Gamma(y))|-1 . \tag{9}
\end{equation*}
$$

For each $u v \in M_{b}^{0}$ and its corresponding edge $x y \in M_{b}^{\prime}$, by (9)

$$
\begin{equation*}
d_{G}(u)+d_{G}(v) \leq d_{G_{0}^{\prime}}(x)+d_{G_{0}^{\prime}}(y)+|V(\Gamma(x))|+|V(\Gamma(y))|-2 . \tag{10}
\end{equation*}
$$

Since $V_{r} \cap V\left(M_{b}^{\prime}\right)=\emptyset, M=M_{r} \cup M_{b}^{0}$ is a matching in G with $m=|M|=r+b \geq t$. By (4),

$$
\begin{equation*}
\sum_{x y \in M}\left(d_{G}(x)+d_{G}(y)\right) \geq|M| \frac{\sigma_{t}(H)+2 t}{t} . \tag{11}
\end{equation*}
$$

Since $M=M_{r} \cup M_{b}^{0}$ and $b=\left|M_{b}^{\prime}\right|$, by (11), (8) and (10)

$$
\begin{aligned}
|M| \frac{\sigma_{t}(H)+2 t}{t} & \leq \sum_{x y \in M} d_{G}(x)+d_{G}(y)=\sum_{x_{i} y_{i} \in M_{r}}\left(d_{G}\left(x_{i}\right)+d_{G}\left(y_{i}\right)\right)+\sum_{u v \in M_{b}^{0}}\left(d_{G}(u)+d_{G}(v)\right) \\
& \leq \sum_{v_{i} \in V_{r}}\left(d_{G_{0}^{\prime}}\left(v_{i}\right)+\left|V\left(\Gamma\left(v_{i}\right)\right)\right|\right)+\sum_{x y \in M_{b}^{\prime}}\left(d_{G_{0}^{\prime}}(x)+d_{G_{0}^{\prime}}(y)+|V(\Gamma(x))|+|V(\Gamma(y))|-2\right) ; \\
|M| \frac{\sigma_{t}(H)+2 t}{t}+2 b & \leq \sum_{v_{i} \in V_{r}}\left(d_{G_{0}^{\prime}}\left(v_{i}\right)+\left|V\left(\Gamma\left(v_{i}\right)\right)\right|\right)+\sum_{x y \in M_{b}^{\prime}}\left(d_{G_{0}^{\prime}}(x)+d_{G_{0}^{\prime}}(y)+|V(\Gamma(x))|+|V(\Gamma(y))|\right) .
\end{aligned}
$$

Case (b) is proved.
(c). By way of contradiction, suppose that $r=\left|D_{2}\left(G_{0}^{\prime}\right)\right|>p$. Since $\bar{\sigma}_{2}(G) \geq 5, D_{2}\left(G_{0}^{\prime}\right) \subseteq S_{1}$. Let $V_{r}=D_{2}\left(G_{0}^{\prime}\right)$. By $p \geq t$ and (b) above with $M_{b}^{\prime}=\emptyset$ and $d_{G_{0}^{\prime}}\left(v_{i}\right)=2$ for $v_{i} \in D_{2}\left(G_{0}^{\prime}\right)$,

$$
\begin{align*}
\sum_{v_{i} \in V_{r}}\left|V\left(\Gamma\left(v_{i}\right)\right)\right|+2 r & =\sum_{v_{i} \in V_{r}}\left(\left|V\left(\Gamma\left(v_{i}\right)\right)\right|+d_{G_{0}^{\prime}}\left(v_{i}\right)\right) \geq \frac{r\left(\sigma_{t}(H)+2 t\right)}{t} ; \\
\sum_{v_{i} \in V_{r}}\left|V\left(\Gamma\left(v_{i}\right)\right)\right| & \geq \frac{r \sigma_{t}(H)}{t} . \tag{12}
\end{align*}
$$

Since G is not a tree, $|E(G)| \geq|V(G)|$. Since $|V(G)| \geq \sum_{v \in V_{r}}|V(\Gamma(v))|$, by (12), (1) and $n=|E(G)|$

$$
\begin{aligned}
n=|E(G)| & \geq \sum_{v \in V_{r}}|V(\Gamma(v))| \geq r \frac{\sigma_{t}(H)}{t} \geq r \frac{\frac{t(n+\epsilon)}{p}}{t}=\frac{r}{p}(n+\epsilon) ; \\
r & \leq p+\frac{-\epsilon p}{n+\epsilon} .
\end{aligned}
$$

Thus, when $n>-\epsilon(p+1),\left|D_{2}\left(G_{0}^{\prime}\right)\right|=r \leq p$. Case (c) is proved.

4 Proof of Theorem 1.8

Proof of Theorem 1.8. Suppose that H is not Hamiltonian. By Theorem 2.1, there is an essentially k-edge-connected K_{3}-free graph G such that the closure $c l(H)=L(G)$. Then $L(G)$ is not completed and $|E(G)|=n=|V(H)|$. Let G_{0} be the core of G. Let G_{0}^{\prime} be the reduction of G_{0} and $c=\left|V\left(G_{0}^{\prime}\right)\right|$. By Theorem 2.4, G_{0}^{\prime} does not have an SCT and $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq \kappa^{\prime}\left(G_{0}\right) \geq \min \{3, k\}$. For $k=2$, let $r=\left|D_{2}\left(G_{0}^{\prime}\right)\right|$.

If $G_{0}^{\prime}=K_{2, a}$, then by Lemma 3.1(c), $a=\left|D_{2}\left(G_{0}^{\prime}\right)\right| \leq p$. Theorem 1.8(a) holds for this case.
Next, we assume $G_{0}^{\prime} \neq K_{2, a}$. Let M be a maximum matching in G_{0}^{\prime}. By Theorem 2.3(e)

$$
\begin{equation*}
c \leq \max \{3|M|+r-5,2|M|+1\} . \tag{13}
\end{equation*}
$$

Case 1. $|M| \leq t-1$. By (13), $c \leq \max \{3 t+r-8,2 t-1\}$. Since $t \leq p$, if $k=3, c \leq \max \{3 p-8,2 p-1\}$; if $k=2$, by Lemma 3.1(c), $r=\left|D_{2}\left(G_{0}^{\prime}\right)\right| \leq p, c \leq \max \{4 p-8,2 p-1\}$. Theorem 1.8(a) holds.

Case 2. $|M| \geq t$. Let $m=|M|$. Note that an edge $e=x y$ in M can be viewed as an edge $e=u v$ in G and

$$
\begin{equation*}
d_{G}(u)+d_{G}(v) \leq|V(\Gamma(x))|+|V(\Gamma(y))|+d_{G_{0}^{\prime}}(x)+d_{G_{0}^{\prime}}(y)-2 . \tag{14}
\end{equation*}
$$

Let $M_{G}=\{u v \mid u v$ is an edge in G corresponding to an edge $x y$ in $M\}$. Then M_{G} is a matching with $\left|M_{G}\right|=|M| \geq t$. By Lemma 3.1(a) and (14),

$$
\begin{align*}
& \frac{m\left(\sigma_{t}(H)+2 t\right)}{t}+2 m \leq \sum_{u v \in M_{G}}\left(d_{G}(u)+d_{G}(v)+2\right) \\
& \frac{m\left(\sigma_{t}(H)+4 t\right)}{t} \leq \sum_{x y \in M}\left(|V(\Gamma(x))|+|V(\Gamma(y))|+d_{G_{0}^{\prime}}(x)+d_{G_{0}^{\prime}}(y)\right) \leq|V(G)|+\sum_{v \in V\left(G_{0}^{\prime}\right)} d_{G_{0}^{\prime}}(v) \tag{15}
\end{align*}
$$

Since G is not a tree, $|E(G)| \geq|V(G)|$. By (1), (15) and by $2\left|E\left(G_{0}^{\prime}\right)\right|=\sum_{v \in V\left(G_{0}^{\prime}\right)} d_{G_{0}^{\prime}}(v)$,

$$
\begin{equation*}
m\left(\frac{n+\epsilon}{p}+4\right) \leq \frac{m\left(\sigma_{t}(H)+4 t\right)}{t} \leq|V(G)|+\sum_{v \in V\left(G_{0}^{\prime}\right)} d_{G_{0}^{\prime}}(v) \leq|E(G)|+2\left|E\left(G_{0}^{\prime}\right)\right| \tag{16}
\end{equation*}
$$

Claim 1. $\left|E\left(G_{0}^{\prime}\right)\right| \leq \max \{20 p-15,12 p-3\}$.
By (1), (16), and by $\left|E\left(G_{0}^{\prime}\right)\right| \leq|E(G)|=n, m\left(\frac{n+\epsilon}{p}+4\right) \leq|E(G)|+2\left|E\left(G_{0}^{\prime}\right)\right| \leq 3 n$, and so

$$
m \leq 3 p-\frac{3 p(\epsilon+4 p)}{n+\epsilon+4 p}
$$

Therefore, $m \leq 3 p$ since $n>N(p, \epsilon) \geq(3 p+1)(-\epsilon-4 p)$. By (13) and $r \leq p, c \leq \max \{3 m+r-$ $5,2 m+1\} \leq \max \{9 p+r-5,6 p+1\} \leq \max \{10 p-5,6 p+1\}$. By Theorem 2.2 and $G_{0}^{\prime} \neq K_{2, a}$,

$$
\begin{equation*}
\left|E\left(G_{0}^{\prime}\right)\right| \leq 2\left|V\left(G_{0}^{\prime}\right)\right|-5 \leq 2 \max \{10 p-5,6 p+1\}-5=\max \{20 p-15,12 p-3\} \tag{17}
\end{equation*}
$$

Claim 1 is proved.
By (16), (17), and by $|V(G)| \leq|E(G)|=n$,

$$
\begin{aligned}
m\left(\frac{n+\epsilon}{p}+4\right) & \leq|E(G)|+2\left|E\left(G_{0}^{\prime}\right)\right| \leq n+2 \max \{20 p-15,12 p-3\} \\
m & \leq \frac{n p+2 p \max \{20 p-15,12 p-3\}}{n+\epsilon+4 p}=p+\frac{p \max \{40 p-30,24 p-6\}-(\epsilon+4 p) p}{n+\epsilon+4 p} \\
& \leq p+\frac{p \max \{36 p-30-\epsilon, 20 p-6-\epsilon\}}{n+\epsilon+4 p}
\end{aligned}
$$

Thus, $m \leq p$ since $n>N(p, \epsilon) \geq p \max \{36 p-30-\epsilon, 20 p-6-\epsilon\}-\epsilon-4 p$. By (13) and $r \leq p$, if $k=2, c \leq \max \{4 p-5,2 p+1\}$; if $k=3, c \leq \max \{3 p-5,2 p+1\}$. Theorem 1.8 is proved.

Remark. The expression $N(p, \epsilon)$ defined by (2) is for the convenience in the proofs above. To avoid a lengthy case by case checking, we did not make efforts to get a best possible bound for this quantity.

5 Properties of G_{0}^{\prime} for graphs G satisfying Theorem 1.8

The following lemma will be needed for the proofs of Theorems 1.9 and 1.10
Lemma 5.1. Let H be a graph of order n that satisfies Theorem 1.8 with the given numbers k, p, t and ϵ, where $k \in\{2,3\}, p \geq 3(k-1)$ and $p \geq t$. Suppose that H is nonhamiltonian with $c l(H)=L(G)$. Let G_{0} be the core of G. Let G_{0}^{\prime} the reduction of G_{0}. Let $S_{0}, S_{1}, S_{2}, M_{0}, V_{0}$ and U_{0} be the sets defined in Section 2. If $n>N(p, \epsilon)$ and $G_{0}^{\prime} \neq K_{2, a}$, then each of the following holds:
(a) $\left|S_{1}\right|+\left|M_{0}\right| \leq p$.
(b) If $\left|S_{1}\right|+\left|M_{0}\right|=p$, then $\left|E\left(G_{0}^{\prime}\right)\right| \geq 2 p+\epsilon-\left|S_{1}\right|+\sum_{v \in U_{0}} d_{G}(v)$. Furthermore, if $\left|M_{0}\right|=0$, then $V\left(G_{0}^{\prime}\right)=S_{1} \cup U_{0},\left|E\left(G_{0}^{\prime}\right)\right| \geq \epsilon+p+\sum_{v \in U_{0}} d_{G}(v)$ and $\left|V\left(G_{0}^{\prime}\right)\right| \leq 2 p-\epsilon-5$.
(c) $\left|U_{0}\right| \leq 2\left|S_{1}\right|+3\left|M_{0}\right|-5$ and $\left|V\left(G_{0}^{\prime}\right)\right| \leq 3\left|S_{1}\right|+5\left|M_{0}\right|-5$.
(d) If $\delta(H) \geq 3 p-6$ when $k=3$ or if $\delta(H) \geq 4 p-6$ when $k=2$, then $M_{0}=\emptyset$ and $S_{2}=\emptyset$.

Proof. Since H is nonhamiltonian, by Theorem 2.4, G_{0}^{\prime} does not have a DCT containing S_{0}. Since $p \geq(k-1) 3, \max \{4 p-5,2 p+1\}=4 p-5$ when $k=2$ and $\max \{3 p-5,2 p+1\}=3 p-5$ when $k=3$. By Theorem 2.2 and $G_{0}^{\prime} \neq K_{2, a}$, and by Theorem 1.8,

$$
\left|E\left(G_{0}\right)\right| \leq 2\left|V\left(G_{0}^{\prime}\right)\right|-5 \leq\left\{\begin{array}{ll}
6 p-15 & \text { if } k=3 ; \tag{18}\\
8 p-15 & \text { if } k=2,
\end{array}\right\} \leq 8 p-15 .
$$

(a) Let $s=\left|S_{1}\right|$ and $m=\left|M_{0}\right|$. If $s+m<t$, then we are done. Thus, we assume $s+m \geq t$.

Since $S_{1} \cap V_{M_{0}}=\emptyset$, by Lemma 3.1(b) with $\left|S_{1}\right|+\left|M_{0}\right|=s+m \geq t$,

$$
\begin{align*}
& (s+m) \frac{\sigma_{t}(H)+2 t}{t}+2 m \leq \sum_{v_{i} \in S_{1}}\left(d_{G_{0}^{\prime}}\left(v_{i}\right)+\left|V\left(\Gamma\left(v_{i}\right)\right)\right|\right)+\sum_{x y \in M_{0}}\left(d_{G_{0}^{\prime}}(x)+d_{G_{0}^{\prime}}(y)+|V(\Gamma(x))|+|V(\Gamma(y))|\right) \\
& (s+m) \frac{\sigma_{t}(H)+2 t}{t}+2 m \leq \sum_{v_{i} \in S_{1} \cup V_{M_{0}}} d_{G_{0}^{\prime}}(v)+\sum_{v_{i} \in S_{1}}\left|V\left(\Gamma\left(v_{i}\right)\right)\right|+\sum_{x y \in M_{0}}(|V(\Gamma(x))|+|V(\Gamma(y))|) . \tag{19}
\end{align*}
$$

For each $x y \in M_{0}$, since x and y are vertices in $V_{0},|V(\Gamma(x))|=|V(\Gamma(y))|=1$. By (19),

$$
\begin{equation*}
(s+m) \frac{\sigma_{t}(H)+2 t}{t}-\sum_{v_{i} \in S_{1} \cup V_{M_{0}}} d_{G_{0}^{\prime}}(v) \leq \sum_{v_{i} \in S_{1}}\left|V\left(\Gamma\left(v_{i}\right)\right)\right| . \tag{20}
\end{equation*}
$$

Since $|E(\Gamma(v))| \geq|V(\Gamma(v))|-1$ for $v \in S_{1}$, by (20), $s=\left|S_{1}\right|$ and $n=|E(G)|$, we have

$$
\begin{align*}
|E(G)| & =\sum_{v \in S_{1}}|E(\Gamma(v))|+\left|E\left(G_{0}^{\prime}\right)\right| \geq \sum_{v \in S_{1}}(V(\Gamma(v)) \mid-1)+\left|E\left(G_{0}^{\prime}\right)\right| \\
& \geq \sum_{v \in S_{1}}|V(\Gamma(v))|-\left|S_{1}\right|+\left|E\left(G_{0}^{\prime}\right)\right| ; \\
n & \geq\left((s+m) \frac{\sigma_{t}(H)+2 t}{t}-\sum_{v_{i} \in S_{1} \cup V_{M_{0}}} d_{G_{0}^{\prime}}(v)\right)-s+\left|E\left(G_{0}^{\prime}\right)\right| . \tag{21}
\end{align*}
$$

Since $V\left(G_{0}^{\prime}\right)=S_{1} \cup V_{M_{0}} \cup U_{0}, 2\left|E\left(G_{0}^{\prime}\right)\right|=\sum_{v \in S_{1} \cup V_{M_{0}}} d_{G_{0}^{\prime}}(v)+\sum_{v \in U_{0}} d_{G_{0}^{\prime}}(v)$.

$$
\begin{equation*}
\sum_{v \in S_{1} \cup V_{M_{0}}} d_{G_{0}^{\prime}}(v)=2\left|E\left(G_{0}^{\prime}\right)\right|-\sum_{v \in U_{0}} d_{G_{0}^{\prime}}(v) \tag{22}
\end{equation*}
$$

By (21), (22) and (1),

$$
\begin{align*}
n & \geq\left((s+m) \frac{\sigma_{t}(H)+2 t}{t}-\left(2\left|E\left(G_{0}^{\prime}\right)\right|-\sum_{v \in U_{0}} d_{G_{0}^{\prime}}(v)\right)\right)-s+\left|E\left(G_{0}^{\prime}\right)\right| \\
n & \geq(s+m)\left(\frac{n+\epsilon}{p}+2\right)-\left|E\left(G_{0}^{\prime}\right)\right|+\sum_{v \in U_{0}} d_{G_{0}^{\prime}}(v)-s \\
n+\left|E\left(G_{0}^{\prime}\right)\right|+s & \geq(s+m)\left(\frac{n+\epsilon}{p}+2\right)+\sum_{v \in U_{0}} d_{G_{0}^{\prime}}(v) \geq(s+m)\left(\frac{n+\epsilon}{p}+2\right) . \tag{23}
\end{align*}
$$

By (23) and by (18) and $s \leq\left|V\left(G_{0}^{\prime}\right)\right| \leq 4 p-5$,

$$
s+m \leq \frac{p\left(n+\left|E\left(G_{0}^{\prime}\right)\right|+s\right)}{n+\epsilon+2 p} \leq \frac{p(n+12 p-20)}{n+\epsilon+2 p}=p+\frac{p(10 p-20-\epsilon)}{n+\epsilon+2 p}
$$

Thus, $(s+m) \leq p$ since $n>N(p, \epsilon)>10 p^{2}-22 p-(p+1) \epsilon$. Case (a) is proved.
(b) Since $s+m=p$, by (23),

$$
\begin{align*}
n+\left|E\left(G_{0}^{\prime}\right)\right|+s & \geq(s+m)\left(\frac{n+\epsilon}{p}+2\right)+\sum_{v \in U_{0}} d_{G_{0}^{\prime}}(v)=p\left(\frac{n+\epsilon}{p}+2\right)+\sum_{v \in U_{0}} d_{G_{0}^{\prime}}(v) \\
n+\left|E\left(G_{0}^{\prime}\right)\right|+s & \geq n+\epsilon+2 p+\sum_{v \in U_{0}} d_{G_{0}^{\prime}}(v) \\
\left|E\left(G_{0}^{\prime}\right)\right| & \geq \epsilon+2 p-s+\sum_{v \in U_{0}} d_{G_{0}^{\prime}}(v) \tag{24}
\end{align*}
$$

The first part of case (b) is proved.
If $\left|M_{0}\right|=0$, then $V_{M_{0}}=\emptyset$ and $\left|S_{1}\right|=p$. Since $D_{2}\left(G_{0}^{\prime}\right) \subseteq S_{1}, d_{G_{0}^{\prime}}(v) \geq 3$ for any $v \in U_{0}$. By (24),

$$
\begin{equation*}
\left|E\left(G_{0}^{\prime}\right)\right| \geq \epsilon+p+\sum_{v \in U_{0}} d_{G_{0}^{\prime}}(v) \geq \epsilon+p+3\left|U_{0}\right| \tag{25}
\end{equation*}
$$

Since $G_{0}^{\prime} \neq K_{2, a}$, by Theorem 2.2, $\left|E\left(G_{0}^{\prime}\right)\right| \leq 2\left|V\left(G_{0}^{\prime}\right)\right|-5=2\left(\left|S_{1}\right|+\left|U_{0}\right|\right)-5$. By (25) and $\left|S_{1}\right|=p$,

$$
\begin{aligned}
\epsilon+p+3\left|U_{0}\right| & \leq\left|E\left(G_{0}^{\prime}\right)\right| \leq 2\left(\left|S_{1}\right|+\left|U_{0}\right|\right)-5=2 p+2\left|U_{0}\right|-5 \\
\left|U_{0}\right| & \leq p-5-\epsilon
\end{aligned}
$$

Thus, $\left|V\left(G_{0}^{\prime}\right)\right|=p+\left|U_{0}\right| \leq 2 p-5-\epsilon$. Case (b) is proved.
(c) Let Φ_{1} be the subgraph in G_{0}^{\prime} induced by the edges in M_{0} and the edges between U_{0} and $S_{1} \cup V_{M_{0}}$. Then $V\left(\Phi_{1}\right)=V\left(G_{0}^{\prime}\right)$ and $\left|E\left(\Phi_{1}\right)\right| \leq\left|E\left(G_{0}^{\prime}\right)\right|$. Since $D_{2}\left(G_{0}^{\prime}\right) \subseteq S_{1}, d_{G_{0}^{\prime}}(v) \geq 3$ for $v \in U_{0}$. Then
$\left|E\left(\Phi_{1}\right)\right| \geq 3\left|U_{0}\right|+\left|M_{0}\right|$. Since $G_{0}^{\prime} \neq K_{2, a}$, by Theorem 2.2, $\left|E\left(G_{0}^{\prime}\right)\right| \leq 2\left|V\left(G_{0}^{\prime}\right)\right|-5$. Since $\left|E\left(\Phi_{1}\right)\right| \leq$ $\left|E\left(G_{0}^{\prime}\right)\right|$ and $\left|V_{M_{0}}\right|=2\left|M_{0}\right|$,

$$
\begin{aligned}
3\left|U_{0}\right|+\left|M_{0}\right| & \leq\left|E\left(\Phi_{1}\right)\right| \leq 2\left|V\left(G_{0}^{\prime}\right)\right|-5=2\left(\left|S_{1}\right|+\left|V_{M_{0}}\right|+\left|U_{0}\right|\right)-5=2\left|S_{1}\right|+4\left|M_{0}\right|+2\left|U_{0}\right|-5 ; \\
\left|U_{0}\right| & \leq 2\left|S_{1}\right|+3\left|M_{0}\right|-5 .
\end{aligned}
$$

Therefore, $\left|V\left(G_{0}^{\prime}\right)\right|=\left|S_{1}\right|+\left|V_{M_{0}}\right|+\left|U_{0}\right| \leq 3\left|S_{1}\right|+5\left|M_{0}\right|-5$.
(d) If $M_{0} \neq \emptyset$, let $x y$ be an edge in M_{0}. Then $\Gamma(x)=\Gamma(y)=K_{1}$ in G. Thus, $d_{G}(x)+d_{G}(y)=d_{G_{0}^{\prime}}(x)+$ $d_{G_{0}^{\prime}}(y)$. Since G_{0}^{\prime} is K_{3}-free, $N_{G_{0}^{\prime}}(x) \cup N_{G_{0}^{\prime}}(y) \subseteq V\left(G_{0}^{\prime}\right)$ and $N_{G_{0}^{\prime}}(x) \cap N_{G_{0}^{\prime}}(y)=\emptyset . d_{G_{0}^{\prime}}(x)+d_{G_{0}^{\prime}}(y) \leq$ $\left|V\left(G_{0}^{\prime}\right)\right|$. Hence, $\delta(H)+2=\bar{\sigma}_{2}\left(G_{0}^{\prime}\right) \leq d_{G}(x)+d_{G}(y)=d_{G_{0}^{\prime}}(x)+d_{G_{0}^{\prime}}(y) \leq\left|V\left(G_{0}^{\prime}\right)\right|$.

If $S_{2} \neq \emptyset$, let $u \in S_{2}$. Then u is adjacent to a vertex $v \in D_{2}(G)$ and $\Gamma(u)=K_{1}$. Since G_{0}^{\prime} is 2-edge-connected and K_{3}-free, $d_{G}(u)=d_{G_{0}^{\prime}}(u) \leq\left|V\left(G_{0}^{\prime}\right)\right|-2 . \delta(H)+2=\bar{\sigma}_{2}\left(G_{0}^{\prime}\right) \leq d_{G}(u)+d_{G}(v)=$ $d_{G_{0}^{\prime}}(u)+2 \leq\left|V\left(G_{0}^{\prime}\right)\right|-2+2=\left|V\left(G_{0}^{\prime}\right)\right|$. Thus, if $M_{0} \neq \emptyset$ or $S_{2} \neq \emptyset$,

$$
\begin{equation*}
\delta(H) \leq\left|V\left(G_{0}^{\prime}\right)\right|-2 . \tag{26}
\end{equation*}
$$

By Theorem 1.8. $\left|V\left(G_{0}^{\prime}\right)\right| \leq 3 p-5$ if $k=3$ and $\left|V\left(G_{0}^{\prime}\right)\right| \leq 4 p-5$ if $k=2$. By (26)

$$
\delta(H) \leq\left|V\left(G_{0}^{\prime}\right)\right|-2 \leq \begin{cases}3 p-7 & \text { if } k=3 \\ 4 p-7 & \text { if } k=2\end{cases}
$$

a contradiction. Thus, $M_{0}=\emptyset$ and $S_{2}=\emptyset$. Case (d) is proved.

6 Proofs of Theorem 1.9 and Theorem 1.10

Proof of Theorem 1.9. This is the special case of Theorem 1.8 with $p=4,1 \leq t \leq 4$ and $\epsilon=0$. Suppose that H is not Hamiltonian. By Theorem 2.1, $c l(H)=L(G)$ where G is an essentially 2-edge-connected K_{3}-free graph with $|E(G)|=n$. By Theorem 1.1, G does not have a DCT. Let G_{0}^{\prime} be the reduction of G_{0}. Since $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 2$, by Theorems 2.2(c) and $1.8,\left|E\left(G_{0}^{\prime}\right)\right| \leq 2\left|V\left(G_{0}^{\prime}\right)\right|-4 \leq$ $2(4 p-5)-4=18$. Note that $G_{0}^{\prime} \notin \mathcal{S L}$, by Theorem 2.3(a) $\left|V\left(G_{0}^{\prime}\right)\right| \geq 5$.

Let S_{0}, S_{1}, M_{0} and U_{0} be the sets defined above. By Theorem 2.4, G_{0}^{\prime} does not have a DCT containing S_{0}. When $n>18,\left|E\left(G_{0}^{\prime}\right)\right|<|E(G)|$. Thus, $\left|S_{1}\right| \geq 1$. By Lemma 5.1, $\left|S_{1}\right|+\left|M_{0}\right| \leq 4$.

Case 1. $G_{0}^{\prime} \neq K_{2, a}$.
If $\left|S_{1}\right|+\left|M_{0}\right| \leq 3$, then $\left|M_{0}\right| \leq 2$. By Lemma 5.1, $\left|V\left(G_{0}^{\prime}\right)\right| \leq 3\left|S_{1}\right|+5\left|M_{0}\right|-5=4+2\left|M_{0}\right| \leq 8$. By Theorem 2.3(b), $\left|D_{2}\left(G_{0}^{\prime}\right)\right| \geq 3$. Then $\left|S_{1}\right| \geq\left|D_{2}\left(G_{0}^{\prime}\right)\right| \geq 3$. Therefore, $\left|M_{0}\right|=0$. It follows that $\left|V\left(G_{0}^{\prime}\right)\right| \leq 3\left|S_{1}\right|+5\left|M_{0}\right|-5=4$, contrary to that $\left|V\left(G_{0}^{\prime}\right)\right| \geq 5$.

Thus, $\left|S_{1}\right|+\left|M_{0}\right|=4$. By Lemma 5.1(b) with $p=4$ and $\epsilon=0$, and by $\left|U_{0}\right|=\left|V\left(G_{0}^{\prime}\right)\right|-\left|S_{1}\right|-2\left|M_{0}\right|$,

$$
\begin{equation*}
\left|E\left(G_{0}^{\prime}\right)\right| \geq 8-\left|S_{1}\right|+3\left|U_{0}\right| \geq 3\left|V\left(G_{0}^{\prime}\right)\right|+8-4\left|S_{1}\right|-6\left|M_{0}\right| . \tag{27}
\end{equation*}
$$

By Theorem 2.2 and $G_{0}^{\prime} \neq K_{2, a},\left|E\left(G_{0}^{\prime}\right)\right| \leq 2\left|V\left(G_{0}^{\prime}\right)\right|-5$. By (27) and $\left|S_{1}\right|+\left|M_{0}\right|=4$,

$$
\begin{align*}
2\left|V\left(G_{0}^{\prime}\right)\right|-5 \geq\left|E\left(G_{0}^{\prime}\right)\right| & \geq 3\left|V\left(G_{0}^{\prime}\right)\right|+8-4\left|S_{1}\right|-6\left|M_{0}\right| ; \\
4\left(\left|S_{1}\right|+\left|M_{0}\right|\right)+2\left|M_{0}\right|=4\left|S_{1}\right|+6\left|M_{0}\right| & \geq\left|V\left(G_{0}^{\prime}\right)\right|+13 ; \\
16+2\left|M_{0}\right| & \geq\left|V\left(G_{0}^{\prime}\right)\right|+13 ; \\
3+2\left|M_{0}\right| & \geq\left|V\left(G_{0}^{\prime}\right)\right| . \tag{28}
\end{align*}
$$

Since $\left|S_{1}\right| \geq 1,\left|M_{0}\right| \leq 3$. By (28), $\left|V\left(G_{0}^{\prime}\right)\right| \leq 9$. By Theorem 2.3(b), $\left|D_{2}\left(G_{0}^{\prime}\right)\right| \geq 3$. Since $D_{2}\left(G_{0}^{\prime}\right) \subseteq$ $S_{1},\left|S_{1}\right| \geq 3$ and so $\left|M_{0}\right| \leq 1$. By (28), $\left|V\left(G_{0}^{\prime}\right)\right| \leq 5$. By Theorem 2.3(a), $G_{0}^{\prime}=K_{2,3}$, a contradiction.

Case 2. $G_{0}^{\prime}=K_{2, a}$ with $2 \leq a \leq p=4$.
Since G_{0}^{\prime} does not have an SCT, $G_{0}^{\prime}=K_{2,3}$. Since $D_{2}\left(G_{0}^{\prime}\right) \subseteq S_{1}, 3 \leq\left|S_{1}\right| \leq 4$. For $v \in S_{1}$, let $\Gamma(v)$ be the preimage of v in G. Then $|E(G)|=\left|E\left(K_{2,3}\right)\right|+\sum_{v \in S_{1}}|E(\Gamma(v))|=6+\sum_{v \in S_{1}}|E(\Gamma(v))|$.

If $\left|S_{1}\right|=4$, then let $S_{1}=D_{2}\left(G_{0}^{\prime}\right) \cup\{u\}$ where $d_{G_{0}^{\prime}}(u)=3$. By Lemma 3.1, $\sigma_{t}(H) \geq \frac{t n}{4}(1 \leq t \leq 4)$, $|E(\Gamma(v))| \geq|V(\Gamma(v))|-1$ and $n=|E(G)|$,

$$
\begin{aligned}
\left|S_{1}\right| \frac{\sigma_{t}(H)+2 t}{t} & \leq \sum_{v \in S_{1}}\left(d_{G_{0}^{\prime}}(v)+|V(\Gamma(v))|\right) \leq \sum_{v \in D_{2}\left(G_{G^{\prime}}\right) \cup\{u\}} d_{G_{0}^{\prime}}(v)+\sum_{v \in S_{1}}(|E(\Gamma(v))|+1) ; \\
n+8 & \leq 9+(|E(G)|-6)+4=n+7,
\end{aligned}
$$

a contradiction. This shows that $G_{0}^{\prime}=K_{2,3}$ with $\left|S_{1}\right|=4$ is impossible.
If $\left|S_{1}\right|=3$, then $S_{1}=D_{2}\left(K_{2,3}\right)$. Let $S_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$. To prove $c l(H)=L(G) \in Q_{2,3}\left(s_{1}, s_{2}, s_{3}, n\right)$, we only need to show that for each $v_{i} \in S_{1}, \Gamma\left(v_{i}\right)=K_{1, s}$ for some $s \geq 1$.

By way of contradiction, we assume that $\Gamma\left(v_{1}\right) \neq K_{1, s}$. Let $e_{a}=v_{1} y_{1}$ and $e_{b}=v_{1} y_{2}$ be the two edges in G_{0}^{\prime} incident with v_{1} where y_{i} is a degree 3 vertex in $G_{0}^{\prime}=K_{2,3}$ and $d_{G}\left(y_{i}\right)=d_{G_{0}^{\prime}}\left(y_{i}\right)=3$ $(i=1,2)$. Then there are two vertices x_{1} and x_{2} in $V\left(\Gamma\left(v_{1}\right)\right)$ such that $x_{1} y_{1}=e_{a}$ and $x_{2} y_{2}=e_{b}$ in G.

Claim 1. $\Gamma\left(v_{1}\right)$ contains an edge that is adjacent to at most one of the edges in $\left\{e_{a}, e_{b}\right\}$.
By $\left|E\left(\Gamma\left(v_{1}\right)\right)\right| \geq 1, \Gamma\left(v_{1}\right) \neq K_{1, s}$ and G is an essentially 2 -edge-connected K_{3}-free graph with $\sigma_{2}(G) \geq 5$, if $x_{1}=x_{2}$, then $\Gamma\left(v_{1}\right)$ contains a cycle C of length at least 4 and so C has an edge that is not adjacent to either edge in $\left\{e_{a}, e_{b}\right\}$; if $x_{1} \neq x_{2}, \Gamma\left(v_{1}\right)$ has an edge that is adjacent to at most one of the edges $\left\{e_{a}, e_{b}\right\}$. The Claim is proved.

With Claim 1, we may let $e_{y}=x y$ be such an edge in $\Gamma\left(v_{1}\right)$ that is not adjacent to e_{b}. Let $e_{j}=w_{j} z_{j}$ be an edge in $E\left(\Gamma\left(v_{j}\right)\right)(j=2,3)$. Then $M_{a}=\left\{e_{y}, e_{b}, e_{2}, e_{3}\right\}$ is a matching in G.

For $e_{b}=x_{2} y_{2}, d_{G}\left(x_{2}\right)+d_{G}\left(y_{2}\right)=\left|E_{G}\left(x_{2}\right)\right|+3$. For $e_{y}=x y$, since G is $K_{3}-$ free, $\left|E_{G}(x) \cap E_{G}(y)\right|=1$ and $\left|\left(E_{G}(x) \cup E_{G}(y)\right) \cap E_{G}\left(x_{2}\right)\right| \leq 1$, and $\left.E_{G}(x) \cup E_{G}(y)\right) \cup E_{G}\left(x_{2}\right) \subseteq E\left(\Gamma\left(v_{1}\right)\right) \cup\left\{e_{a}, e_{b}\right\}$. Thus,

$$
\begin{aligned}
\left|E_{G}(x)\right|+\left|E_{G}(y)\right|+\left|E_{G}\left(x_{2}\right)\right|= & \left|E_{G}(x) \cup E_{G}(y) \cup E_{G}\left(x_{2}\right)\right|+\left|E_{G}(x) \cap E_{G}(y)\right| \\
& +\left|\left(E_{G}(x) \cup E_{G}(y)\right) \cap E_{G}\left(x_{2}\right)\right| \\
\leq & \left|E\left(\Gamma\left(v_{1}\right)\right)\right|+\left|\left\{e_{a}, e_{b}\right\}\right|+2=\left|E\left(\Gamma\left(v_{1}\right)\right)\right|+4 .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left(d_{G}(x)+d_{G}(y)\right)+\left(d_{G}\left(x_{2}\right)+d_{G}\left(y_{2}\right)\right)=\left|E_{G}(x)\right|+\left|E_{G}(y)\right|+\left|E_{G}\left(x_{2}\right)\right|+3 \leq\left|E\left(\Gamma\left(v_{1}\right)\right)\right|+7 . \tag{29}
\end{equation*}
$$

Since G is K_{3}-free, $E_{G}\left(w_{j}\right) \cap E_{G}\left(z_{j}\right)=\left\{w_{j} z_{j}\right\}$ and $E_{G}\left(w_{j}\right) \cup E_{G}\left(z_{j}\right) \leq E\left(\Gamma\left(v_{j}\right)\right) \cup E_{G_{0}^{\prime}}\left(v_{j}\right)$. Since $v_{j} \in S_{1}=D_{2}\left(K_{2,3}\right),\left|E_{G_{0}^{\prime}}\left(v_{j}\right)\right|=2$. Then

$$
\begin{equation*}
\left|E_{G}\left(w_{j}\right)\right|+\left|E_{G}\left(z_{j}\right)\right|=\left|E_{G}\left(w_{j}\right) \cup E_{G}\left(z_{j}\right)\right|+\left|E_{G}\left(w_{j}\right) \cap E_{G}\left(z_{j}\right)\right| \leq\left|E\left(\Gamma\left(v_{j}\right)\right)\right|+3 . \tag{30}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\sum_{j=2}^{3}\left(d_{G}\left(w_{j}\right)+d_{G}\left(z_{j}\right)\right) \leq \sum_{j=2}^{3}\left(\left|E_{G}\left(w_{j}\right)\right|+\left|E_{G}\left(z_{j}\right)\right|\right) \leq\left|E\left(\Gamma\left(v_{2}\right)\right)\right|+\left|E\left(\Gamma\left(v_{3}\right)\right)\right|+6 . \tag{31}
\end{equation*}
$$

By Lemma 3.1 with $\sigma_{t}(H) \geq \frac{t n}{4}$ and $\left|M_{a}\right|=4$, by (29), (30), (31) and $|E(G)|=6+\sum_{i=1}^{3}\left|E\left(\Gamma\left(v_{i}\right)\right)\right|$,

$$
\begin{aligned}
\left|M_{a}\right| \frac{\sigma_{t}(H)+2 t}{t} & \leq\left(d_{G}(x)+d_{G}(y)\right)+\left(d_{G}\left(x_{2}\right)+d_{G}\left(y_{2}\right)\right)+\sum_{j=2}^{3}\left(d_{G}\left(w_{j}\right)+d_{G}\left(z_{j}\right)\right) ; \\
n+8 & \leq\left|E\left(\Gamma\left(v_{1}\right)\right)\right|+7+\left|E\left(\Gamma\left(v_{2}\right)\right)\right|+\left|E\left(\Gamma\left(v_{3}\right)\right)\right|+6=|E(G)|-6+13=n+7,
\end{aligned}
$$

a contradiction. The proof is completed.

To prove Theorem 1.10, we need the following theorem:
Theorem 6.1. (Chen et al. [8]). Let G be a 3-edge-connected graph and let $S \subseteq V(G)$ be a vertex subset with $|S| \leq 12$. Then either G has a closed trail C such that $S \subseteq V(C)$, or G can be contracted to P in such a way that the preimage of each vertex of P contains at least one vertex in S.

Proof of Theorem 1.10. Suppose that H is not Hamiltonian. Let G be the preimage of $\operatorname{cl}(H)=$ $L(G)$. Then G is essentially 3-edge-connected. By Theorem 1.1, G does not have a DCT. Let S_{0}, S_{1}, S_{2}, M_{0} and U_{0} be the sets defined before, where S_{0} is the set of all the nontrivial vertices of G_{0}^{\prime}. By Theorem $2.4, \kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$ and G_{0}^{\prime} dose not have a DCT containing S_{0}. Hence, $G_{0}^{\prime} \neq K_{2, a}$.
(a) This is a special case of Theorem 1.8 with $k=3, p=10,1 \leq t \leq 10$ and $\epsilon=5$. By Lemma 5.1, since $\delta(H) \geq 24=3 p-6, M_{0}=\emptyset, S_{2}=\emptyset$ and $\left|S_{1}\right| \leq p=10$. Thus, $S_{0}=S_{1}$ and $U_{0}=V\left(G_{0}^{\prime}\right)-S_{0}$.

If $\left|S_{0}\right| \leq 9$, then by Theorem 6.1, G_{0}^{\prime} has a closed trail C such that $S_{0} \subseteq C$. Since U_{0} is an independent set, C is a DCT in G_{0}^{\prime} containing S_{0}, a contradiction.

Thus, $\left|S_{0}\right|=10$. By Lemma 5.1(b), $\left|V\left(G_{0}^{\prime}\right)\right| \leq 2 p-5-\epsilon=10$. By Theorem 2.3(c), $G_{0}^{\prime}=P$ and so $S_{0}=V\left(G_{0}^{\prime}\right)$. Let $V\left(G_{0}^{\prime}\right)=\left\{v_{1}, v_{2}, \cdots, v_{10}\right\}$. Let $\Gamma\left(v_{i}\right)$ be the preimage of v_{i} in G. We assume that

$$
\begin{equation*}
\left|V\left(\Gamma\left(v_{1}\right)\right)\right| \leq\left|V\left(\Gamma\left(v_{2}\right)\right)\right| \leq \cdots \leq\left|V\left(\Gamma\left(v_{10}\right)\right)\right| . \tag{32}
\end{equation*}
$$

By Lemma 3.1(a), $d_{G_{0}^{\prime}}(v)=3$ for any $v \in V\left(G_{0}^{\prime}\right),\left|V\left(G_{0}^{\prime}\right)\right|=10$ and $\sigma_{t}(H) \geq \frac{t(n+5)}{10}$,

$$
\begin{align*}
\sum_{v \in V\left(G_{0}^{\prime}\right)}|V(\Gamma(v))|+3\left|V\left(G_{0}^{\prime}\right)\right| & =\sum_{v \in V\left(G_{0}^{\prime}\right)}\left(|V(\Gamma(v))|+d_{G_{0}^{\prime}}(v)\right) \geq\left|V\left(G_{0}^{\prime}\right)\right| \frac{\sigma_{t}(H)+2 t}{t} \geq n+25 ; \\
\sum_{v \in V\left(G_{0}^{\prime}\right)}|V(\Gamma(v))| & \geq \frac{10 \sigma_{t}(H)}{t}-10=(n+5)-10=n-5 . \tag{33}
\end{align*}
$$

Since $\left|E\left(\Gamma\left(v_{i}\right)\right)\right| \geq \mid V\left(\Gamma\left(v_{i}\right) \mid-1\right.$, by (33), and by $n=|E(G)|$ and $\left|E\left(G_{0}^{\prime}\right)\right|=|E(P)|=15$,

$$
\begin{aligned}
n=|E(G)| & =\left|E\left(G_{0}^{\prime}\right)\right|+\sum_{i=1}^{10}\left|E\left(\Gamma\left(v_{i}\right)\right)\right| \geq 15+\sum_{i=1}^{10}\left(\left|V\left(\Gamma\left(v_{i}\right)\right)\right|-1\right) \\
& \geq 5+\sum_{i=1}^{10}\left|V\left(\Gamma\left(v_{i}\right)\right)\right|=5+(n-5)=n .
\end{aligned}
$$

Thus, the equalities of (32), (33), and $\left|E\left(\Gamma\left(v_{i}\right)\right)\right|=\left|V\left(\Gamma\left(v_{i}\right)\right)\right|-1$ must hold. Hence, $\Gamma\left(v_{i}\right)$ is a tree with $\left|E\left(\Gamma\left(v_{i}\right)\right)\right|=\left|V\left(\Gamma\left(v_{i}\right)\right)\right|-1=\frac{n-15}{10}$. Since G is essentially 3-edge-connected, $\Gamma\left(v_{i}\right)=K_{1, \frac{n-15}{10}}$. Theorem 1.10(a) is proved.
(b) This is a special case of Theorem 1.8 with $k=3, p=t=13$ and $\epsilon=6$. With $\delta(H) \geq 33=3 p-6$, by Lemma 5.1, $M_{0}=\emptyset, S_{2}=\emptyset$ and $\left|S_{1}\right| \leq p=13$. Hence, $S_{0}=S_{1}$ and $U_{0}=V\left(G_{0}^{\prime}\right)-S_{0}$.
Case 1. $\left|S_{0}\right|=\left|S_{1}\right| \leq 12$. Then by Theorem 6.1, we have two subcases:
Subcase (i). G_{0}^{\prime} has a closed trail C such that $S_{0} \subseteq C$.
Then C is a DCT in G_{0}^{\prime} that contains all the nontrivial vertices, a contradiction.
Subcase (ii). G_{0}^{\prime} can be contracted to P such that the preimage of each vertex of P contains at least one vertex in S_{0}. Thus, $G \in \mathcal{P}(n, 1)$ and so $\operatorname{cl}(H) \in Q_{P}(n, 1)$. Theorem 1.10 is proved for this case.

Case 2. $\left|S_{0}\right|=\left|S_{1}\right|=p=13$. By Lemma 5.1, $13 \leq\left|V\left(G_{0}^{\prime}\right)\right| \leq 2 p-5-\epsilon=15$ and

$$
\begin{equation*}
\left|E\left(G_{0}^{\prime}\right)\right| \geq \epsilon+p+\sum_{v \in U_{0}} d_{G_{0}^{\prime}}(v)=19+3\left|U_{0}\right| . \tag{34}
\end{equation*}
$$

If $13 \leq\left|V\left(G_{0}^{\prime}\right)\right| \leq 14$, then by Theorem 2.3(c). $G_{0}^{\prime}=P_{14}$. Then $\left|U_{0}\right|=1$. By (34), $\left|E\left(G_{0}^{\prime}\right)\right| \geq 22$, contrary to that $\left|E\left(G_{0}^{\prime}\right)\right|=\left|E\left(P_{14}\right)\right|=21$.

If $\left|V\left(G_{0}\right)\right|=15$, then $\left|U_{0}\right|=2$. By (34) $\left|E\left(G_{0}^{\prime}\right)\right| \geq 25$. By Theorem 2.3(d), $V\left(G_{0}^{\prime}\right)=D_{3}\left(G_{0}^{\prime}\right) \cup$ $D_{4}\left(G_{0}^{\prime}\right)$ with $\left|D_{4}\left(G_{0}^{\prime}\right)\right|=3$. Then $\left|E\left(G_{0}^{\prime}\right)\right|=24$, a contradiction. Thus, $\left|S_{0}\right|=13$ is impossible.

References

[1] D. Bauer, G. Fan and H.J. Veldman, Hamilton properties of graphs with large neighborhood unions, Discrete Math. 96 (1991) 33-49.
[2] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications". American Elsevier, New York (1976).
[3] H.J. Broersma, Sufficient conditions for hamiltonicity and traceability of $K_{1,3}$-free graphs, Hamilton cycles in graphs and related topics, Ph.D. Thesis, University of Twente, Netherlands, 1988, pp. 45-53 (Chapter 5).
[4] P. A. Catlin, A reduction method to find spanning Eulerian subgraphs. J. Graph Theory 12 (1988), 29-45.
[5] P. A. Catlin, Z. Han, and H.-J. Lai, Graphs without spanning eulerian trails. Discrete Math. 160 (1996) 81-91.
[6] Z.-H. Chen, Chvátal-Erdós type conditions for hamiltonicity of claw-free graphs, Graphs and Combinatorics, (2016) 32: 2253-2266.
[7] W.-G. Chen and Z.-H. Chen, Spanning Eulerian subgraphs and Catlin's reduced graphs, J. of Combinatorial Math. and Combinatorial Computing, 96 (2016) pp. 41-63.
[8] Z.-H. Chen, H.-J. Lai, X.W. Li, D.Y. Li, J. Z. Mao, Eulerian Sugraphs in 3-edge-connected graphs and Hamiltonian Line Graphs, J. Graph Theorey 42 (2003) 308-319.
[9] Z.-H. Chen, H.-J. Lai, L.M. Xiong, Minimum degree conditions for the Hamiltonicity of 3connected claw-free graphs, J. Combin. Theory Ser. B 122 (2017) 167-186.
[10] O. Favaron, E. Flandrin, H. Li, Z. Ryjác̆ek, Cliques covering and degree conditions for hamiltonicity in claw-free graphs, Discrete Math. 236 (2001) 65-80.
[11] R. Faudree, R. Gould, L. Lesniak and T. Lindquester, Generalized degree conditions for graphs with bounded independence number, J. Graph Theory 19 (1995) 397-409.
[12] R. Faudree, E. Flandrin, Z. Ryjác̆ek. Claw-Free Graphs-A survey, Discrete Math. 164 (1997) 87-147.
[13] O. Favaron, P. Fraisse, Hamiltonicity and minimum degree in 3-connected claw-free graphs, J. Combin. Theory Ser. B 82 (2001) 297-305.
[14] E. Flandrin, I. Fournier and A. Germa, Circumference and hamiltonism in $K_{1,3}$-free graphs, in: Graph Theory in Memory of G.A. Dirac (Sandbjerg, 1985), Ann. Discrete Math. vol. 41 (North-Hollad, Amsterdam, New York, 1989) 131-140.
[15] W. Frydrych, Nonhamiltonian 2-connected claw-free graphs with large 4-degree sum, Discrete Math. 236 (2001) 123-130.
[16] F. Harary and C. St. J. A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs. Canada Math. Bull. 8 (1965), 701-710.
[17] O. Kovářík, M. Mulac̆, Z. Ryjáček, A note on degree conditions for hamiltonicity in 2connected claw-free graphs, Discrete Math. 244 (2002) 253-268.
[18] H.-J. Lai, Y. Shao, M. Zhan, Hamiltonicity in 3-connected claw-free graphs, J. Combin. Theory Ser. B 96 (2006) 493-504.
[19] H. Li, Hamiltonian cycles in 2-connected claw-free graphs, J. Graph Theory 20 (1995), 447457.
[20] Hao Li, C. Virlouvet, Neighborhood conditions for claw-free hamiltonian graphs, Ars Combin. 29A (1990) 109-116.
[21] M. Li, Hamiltonian claw-free graphs involving minimum degrees, Discrete Applied Mathematics 161(2013) 1530-1537.
[22] Y. Liu, F. Tian, Z. Wu, Some results on longest paths and cycles in $K_{1,3}$-free graphs, J. Changsha Railway Inst. 4 (1986) 105-106.
[23] M.M. Mathews, D. P. Sumner, Longest paths and cycles in $K_{1,3}$-free graphs, J. Graph Theory 9 (1985) 269-277.
[24] N. D. Roussopoulos, A $\max \{m, n\}$ algorithm for determining the graph H from its line graph G, Information Processing Letters 2 (1973) 108-112.
[25] Z. Ryjáček, On a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70 (1997) 217-224.
[26] Y. Shao, Claw-free graphs and line graphs, Ph.D dissertation, West Virginia University, 2005.
[27] Z.S. Wu, Hamilton connectivity of $K_{1,3}$-free graphs, J. Math. Res. Exposition 9 (1989) 447-451 (In Chinese, English summary).
[28] H. J. Veldman, On dominating and spanning circuits in graphs. Discrete Math., 124 (1994), 229-239.
[29] C.-Q. Zhang, Hamilton cycles in claw-free graphs, J. Graph Theory 12 (1988) 209-216.

