

On extremal nonsupereulerian graphs with clique number m

Zhi-Hong Chen
Butler University, chen@butler.edu

Follow this and additional works at: https://digitalcommons.butler.edu/facsch_papers
Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation

Chen, Zhi-Hong, "On extremal nonsupereulerian graphs with clique number m" Ars Combinatoria / (1993): 161-169.
Available at https://digitalcommons.butler.edu/facsch_papers/1056

This Article is brought to you for free and open access by the College of Liberal Arts \& Sciences at Digital Commons @ Butler University. It has been accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler University. For more information, please contact digitalscholarship@butler.edu.

On extremal nonsupereulerian graphs with clique number m

Zhi-Hong Chen, Department of Mathematics
Wayne State University, Detroit, MI 48202

Abstract

A graph G is supereulerian if it contains a spanning eulerian subgraph. Let n, m and p be natural numbers, $m, p \geq 2$. Let G be a 2 -edge-connected simple graph on $n>p+6$ vertices containing no K_{m+1}. We prove that if $$
\begin{equation*} |E(G)| \geq\binom{ n-p+1-k}{2}+(m-1)\binom{k+1}{2}+2 p-4, \tag{1} \end{equation*}
$$ where $k=\left\lfloor\frac{n-p+1}{m}\right\rfloor$, then either G is supereulerian, or G can be contracted to a nonsupereulerian graph of order less than p, or equality holds in (1) and G can be contracted to $K_{2, p-2}$ (p is odd) by contracting a complete m-partite graph $T_{m, n-p+1}$ of order $n-p+1$ in G. This is a generalization of the previous results in [3] and [5].

1. Introduction

We follow the notation of Bondy and Murty [1], except that graphs have no loops. For a graph G, the order of the maximum complete subgraph of G is called clique number of G and denoted by $c l(G)$. A graph is eulerian if it is connected and every vertex has even degree. A graph G is called supereulerian if it has a spanning eulerian subgraph H. A cycle C of G is called a hamiltonian cycle if $V(C)=V(G)$ and is called dominating cycle if $E(G-V(C))=\emptyset$. A graph is hamiltonian if it contains a hamiltonian cycle. Obviously, hamiltonian graphs are special supereulerian graphs.

There is rich literature on the following extremal graph theory problems: for a given family \mathcal{F} of graphs and for a natural number n, what is the maximum size of simple graphs of order n which are not in \mathcal{F}. For example, when $\mathcal{F}=\{$ graphs with clique number at least $m\}$, this is Turán's Theorem. In this note, we consider the family

$$
\mathcal{F}=\{\text { supereulerian graphs with clique number } m\} .
$$

In fact, our results are related to Turán's Theorem.

Let G be a graph, and let H be a connected subgraph of G. The contraction G / H is the graph obtained from G by contracting all edges of H, and by deleting any resulting loops. Even when G is simple, G / H may not be.

Here are some prior results related to our subject.
Theorem A (Ore [8] and Bondy [2]). Let G be a simple graph on n vertices. If

$$
\begin{equation*}
|E(G)| \geq\binom{ n-1}{2}+2, \tag{2}
\end{equation*}
$$

then exactly one of the following holds:
(a) G is hamiltonian;
(b) Equality holds in (2), and $G \in\left\{K_{1} \vee\left(K_{1}+K_{n-2}\right), K_{2}+K_{3}^{c}\right\}$ (where K_{3}^{c} is the complement of K_{3}).

Theorem B (Veldman [10]). Let G be a 2-edge-connected simple graph of order n. If

$$
|E(G)| \geq\binom{ n-4}{2}+11
$$

then G has a dominating cycle. \square
Theorem C (Cai [3]). Let G be 2-edge-connected simple graph on n vertices. If

$$
\begin{equation*}
|E(G)| \geq\binom{ n-4}{2}+6 \tag{3}
\end{equation*}
$$

then exactly one of the following holds:
(a) G is supereulerian;
(b) $G=K_{2,5}$;
(c) Equality holds in (3), and either $G=Q_{3}-v$ (the cube minus a vertex), or G contains a complete subgraph $H=K_{n-4}$ such that $G / H=K_{2,3}$.

Theorem D (Catlin and Chen [5]). Let G be a 3-edge-connected simple graph on n vertices. If

$$
|E(G)| \geq\binom{ n-9}{2}+16
$$

then G is supereulerian.
In this paper, following closely the method of [5], we shall generalize Theorem C and Theorem D. In particular, we found that if a graph G is K_{3}-free or has small clique number then the lower bound of the inequalities in Theorem C and Theorem D can be improved.

2. Notation and Turán's Theorem

Let n and m be natural numbers, we define $t(m, n)$ as the following;

$$
t(m, n)=\binom{n-k}{2}+(m-1)\binom{k+1}{2}
$$

where $k=\left\lfloor\frac{n}{m}\right\rfloor$. It is easy to see that if $m=n$ or $m>n$ then $k=1$ or $k=0$, respectively, and so the right side of the equation above is equal to $\binom{n}{2}$. If $m=2$ then

$$
t(2, n)=\left\{\begin{array}{cl}
\frac{n^{2}}{4} & \text { if } n \text { is even } \\
\frac{n^{2}-1}{4} & \text { if } n \text { is odd }
\end{array}\right.
$$

Note that for $m>n$,

$$
\begin{equation*}
t(2, n)<t(3, n)<\cdots<t(n-1, n)<t(n, n)=t(m, n)=\binom{n}{2} \tag{4}
\end{equation*}
$$

One can see that $t(m, n)$ is related to the Turán numbers below.
For $m \leq n$, denote by $T_{m, n}$ the complete m-partite graph of order n with

$$
\left\lfloor\frac{n}{m}\right\rfloor,\left\lfloor\frac{n+1}{m}\right\rfloor, \cdots,\left\lfloor\frac{n+m-1}{m}\right\rfloor
$$

vertices in the various independent classes. Note that $T_{m, n}$ is the unique complete m-partite graph of order n whose independent classes are as equal as possible and $T_{n, n}=K_{n}$. Let $k=\left\lfloor\frac{n}{m}\right\rfloor$, it is known that the size of $T_{m, n}$ is

$$
\left|E\left(T_{m, n}\right)\right|=t(m, n)=\binom{n-k}{2}+(m-1)\binom{k+1}{2} .
$$

Theorem E (Turán [9]). Let m and n be natural numbers, $m \geq 2$. Then every graph of order n and size greater than $\left|E\left(T_{m, n}\right)\right|$ contains a K_{m+1}. Furthermore, $T_{m, n}$ is the only graph of order n and size $\left|E\left(T_{m, n}\right)\right|$ that does not contain a K_{m+1}.

Remark. Let G be a graph of order n with maximum size that does not contain a K_{m+1}. If $m>n$ then $|E(G)|=\binom{n}{2}$. If $m \leq n$ then by Theorem $\mathrm{E}|E(G)| \leq\left|E\left(T_{m, n}\right)\right|$. Thus, if G is a graph containing no K_{m+1} then $|E(G)| \leq t(m, n)$. For convenience, we define

$$
H_{m, n}= \begin{cases}T_{m, n} & \text { if } m<n \\ K_{n} & \text { if } m \geq n\end{cases}
$$

3. Catlin's Reduction Method

The following concept was given by Catlin [4].
For a graph G, let $O(G)$ denoted the set of vertices of odd degree in G. A graph G is called collapsible if for every even set $X \subseteq V(G)$ there is a spanning connected subgraph H_{X} of G, such that $O\left(H_{X}\right)=X$. The trivial graph K_{1} is both supereulerian and collapsible. The cycles C_{2} and C_{3} are collapsible, but C_{t} is not if $t \geq 4$. In fact, if G is collapsible then G contains a spanning (u, v)-trail for any $u, v \in V(G)$. In particular, a collapsible graph is supereulerian.

In [4], Catlin showed that every graph G has a unique collection of disjoint maximal collapsible subgraphs $H_{1}, H_{2}, \cdots, H_{c}$. Define G^{\prime} to be the graph obtained from G by contracting each H_{i} into a single vertex, $(1 \leq i \leq c)$. Since $V(G)=V\left(H_{1}\right) \cup \cdots \cup V\left(H_{c}\right)$, the graph G^{\prime} has order c. We call the graph G^{\prime} the reduction of G. Any graph G has a unique reduction $G^{\prime}[4]$. A graph G is reduced if $G=G^{\prime}$.

We shall make use of the following theorems:
Theorem F (Catlin [4]) Let G be a graph. Let G^{\prime} be the reduction of G.
(a) Let H be a collapsible subgraph of G. Then G is collapsible if and only if G / H is collapsible. In particular, G is collapsible if and only if $G^{\prime}=K_{1}$.
(b) G is supereulerian if and only if G^{\prime} is supereulerian.
(c) If G is a reduced graph of order n, then G is simple and K_{3}-free with $\delta(G) \leq 3$ and either $G \in\left\{K_{1}, K_{2}\right\}$, or

$$
|E(G)| \leq 2 n-4
$$

Theorem G (Catlin and H.-J. Lai [6]). Let G be a connected reduced graph of order n. Then $|E(G)|=2 n-4$ if and only if $G=K_{2, n-2}$.

4. Main Result and Consequences

The set of natural numbers is denoted by \mathbf{N}. Let K be a graph. A graph G is called K-free if it contains no subgraph K.

Here is our main result:
Theorem 1. Let n, m and p be natural numbers, $m, p \geq 2$. Let G be a 2-edge-connected
simple graph of order n with $\operatorname{cl}(G)=m$. If

$$
\begin{equation*}
|E(G)| \geq t(m, n-p+1)+2 p-4, \tag{5}
\end{equation*}
$$

then exactly one of the following holds:
(a) The reduction of G has order less than p;
(b) Equality holds in (5), $p \geq 4$ and G contains a subgraph $H=H_{m, n-p+1}$ such that the reduction of G is $G^{\prime}=G / H=K_{2, p-2}$;
(c) $\operatorname{cl}(G)=3, n=p+3, p \geq 3$ and G contains a subgraph $H=K_{3}$ such that $G^{\prime}=G / H=$ $K_{2, p-1} ;$
(d) G is a reduced graph with order n such that $n \geq 4$ and $n \in\{p+1, p+2, p+3, p+$ $4, p+5, p+6\}$ and

$$
2 n-4 \geq|E(G)| \geq \begin{cases}2 n-4 & \text { if } n=6+p \\ 2 n-5 & \text { if } n=5+p \\ 2 n-6 & \text { if } n=i+p, i \in\{2,3,4\} \\ 2 n-5 & \text { if } n=1+p\end{cases}
$$

Note that $K_{2, c-2}$ is supereulerian if c is even. If $n>p+6$ then conclusions (c) and (d) of Theorem 1 are precluded. Hence, by Theorem F (b) we have following easy corollary:

Corollary 1. Let n, m and p be natural numbers, $m, p \geq 2$. Let G be a 2-edge-connected simple graph of order $n>p+6$ with $\operatorname{cl}(G)=m$. If

$$
\begin{equation*}
|E(G)| \geq t(m, n-p+1)+2 p-4, \tag{6}
\end{equation*}
$$

then exactly one of the following holds:
(a) G is supereulerian;
(b) The reduction of G is a nonsupereulerian graph of order less than p;
(b) p is an odd number and equality holds in (6) and G contains a subgraph $H=H_{m, n-p+1}$ such that the reduction of G is $G^{\prime}=G / H=K_{2, p-2}$.

In the following, we state some consequences of Theorem 1 first. The proof of Theorem 1 is given in the next section.

Corollary 2. Let G be a 2-edge-connected simple graph on n vertices, and let $p \in N-\{1\}$. If $c l(G)=m \geq 3$ and if

$$
\begin{equation*}
|E(G)| \geq t(m, n-p+1)+2 p-4, \tag{7}
\end{equation*}
$$

then exactly one of the following holds;
(a) The reduction of G has order less than p;
(b) Equality holds in (7) and G contains a subgraph $H=T_{m, n-p+1}$ such that the reduction of G is $G^{\prime}=G / H=K_{2, p-2}$.
(c) $\operatorname{cl}(G)=3$ and $n=p+3$ and G contains a $H=K_{3}$ such that the reduction of G is $G^{\prime}=G / H=K_{2, p-1}$.

Proof. Let G be a graph satisfying the hypothesis of Corollary 2. Then G is not reduced since $\operatorname{cl}(G) \geq 3$, and so (d) and (e) of Theorem 1 are precluded. It follows from Theorem 1 that the conclusion of Corollary 2 holds.

Corollary 3. Let G be a 3 -edge-connected simple graph of order n, and G^{\prime} the reduction of G. If

$$
|E(G)| \geq t(2, n-p+1)+2 p-4
$$

then exactly one of the following holds:
(a) G is collapsible;
(b) $1<\left|V\left(G^{\prime}\right)\right|<p$.
(c) G is a reduced graph of order n such that $n \in\{p+1, p+2, p+3, p+4, p+5\}$ and

$$
2 n-5 \geq|E(G)| \geq \begin{cases}2 n-5 & \text { if } n=5+p \\ 2 n-6 & \text { if } n=i+p, i \in\{2,3,4\} \\ 2 n-5 & \text { if } n=1+p\end{cases}
$$

Proof. Suppose that (a) fails. Then by Theorem $\mathrm{F}(\mathrm{a})\left|V\left(G^{\prime}\right)\right|>1$. By the definition of contraction, $\kappa^{\prime}\left(G^{\prime}\right) \geq \kappa^{\prime}(G) \geq 3$. Therefore, $G^{\prime} \neq K_{2, c-2}$. The conclusions (b) and (c) of Theorem 1 are precluded. If Theorem 1 (a) holds then $\left|V\left(G^{\prime}\right)\right|<p$ and so (b) of the corollary holds. Suppose that Theorem 1(d) holds. By Theorem G the case $|E(G)|=2 n-4$ is impossible, and so (c) of the corollary holds.
 $\mathbf{N}-\{1\}$. If

$$
\begin{equation*}
|E(G)| \geq t(2, n-p+1)+2 p-4 \tag{8}
\end{equation*}
$$

then exactly one of the following holds:
(a) The reduction of G has order less than p;
(b) Equality holds in (8) and G contains a subgraph $H=T_{2, n-p+1}$ such that the reduction of G is $G^{\prime}=G / H=K_{2, p-2}$;
(c) G is a reduced graph of order n such that $n \in\{p+1, p+2, p+3, p+4, p+5, p+6\}$ and

$$
2 n-4 \geq|E(G)| \geq \begin{cases}2 n-4 & \text { if } n=6+p \\ 2 n-5 & \text { if } n=5+p \\ 2 n-6 & \text { if } n=i+p, i \in\{2,3,4\} \\ 2 n-5 & \text { if } n=1+p\end{cases}
$$

Proof. Since G is K_{3}-free, $c l(G)=m=2$. Then the conclusion (c) of Theorem 1 are precluded. Note that the inequality (8) is a special case of (5) with $m=2$ in Theorem 1. Obviously, Corollary 4 follows from Theorem 1.

Corollary 5 (Catlin and Chen [5]). Let G be a 2-edge-connected simple graph of order n and let $p \in \mathbf{N}-\{1\}$. If

$$
\begin{equation*}
|E(G)| \geq\binom{ n-p+1}{2}+2 p-4 \tag{9}
\end{equation*}
$$

then exactly one of these holds:
(a) The reduction of G has order less than p;
(b) Equality holds in (9), G has a complete subgraph H of order $n-p+1$, and the reduction of G is $G^{\prime}=G / H=K_{2, p-2}$.
(c) G is a reduced graph such that either

$$
|E(G)| \in\{2 n-4,2 n-5\} \text { and } n \in\{p+1, p+2\}
$$

or

$$
|E(G)|=2 n-4 \text { and } n=p+3 .
$$

Proof. Choose m in Theorem 1 so that $m \geq n-p+1$. Then (5) and (4) together imply (9). Note that $m \geq n-p+1$ implies that $H_{m, n-p+1}=K_{n-p+1}$. Since $m \geq n-p+1$, (c) of Theorem 1 is impossible.

If (d) of Theorem 1 holds then G is a reduced graph with order $n \geq p+1$. By Theorem F(c) and (9),

$$
2 n-4 \geq|E(G)| \geq\binom{ n-p+1}{2}+2 p-4 .
$$

Then

$$
4(n-p) \geq(n-p)(n-p+1)
$$

Since $n \geq p+1$, we get $p+3 \geq n \geq p+1$. By (9) and routine computation, we can see that (c) of Corollary 5 holds.

Remark. The case $p=5$ of Corollary 3 is Theorem D which is a main result of Cai [3]. The case $p=10$ of Corollary 3 for 3-edge-connected graph is Theorem E (Catlin and Chen [5]), which was a conjecture of Cai [3]. By (4), one can see that if $\operatorname{cl}(G)=m<n-p+1$ then inequalities in Corollaries 2, 3, and 4 have better lower bound than inequality (9) in Corollary 5. In the following we give some more results which improve the lower bounds of the inequalities in Theorem C and Theorem D.

We shall make use of the following lemma:
Lemma 1 (Chen [6]). Let G be a 3 -edge-connected simple graph on $n \leq 11$ vertices. Then either G is collapsible or G is the Petersen graph.

Corollary 6. Let G be a 2-edge connected simple graph of order n, and $\operatorname{cl}(G)=m \geq 3$. If

$$
\begin{equation*}
|E(G)| \geq t(m, n-4)+6 \tag{10}
\end{equation*}
$$

then exactly one of the following holds:
(a) G is supereulerian;
(b) Equality holds in (10) and G has a subgraph $H=H_{m, n-4}$ such that the reduction of G is $G^{\prime}=G / H=K_{2,3}$.

Proof. Set $p=5$ in Corollary 2. Let G^{\prime} be the reduction of G. If conclusion (a) of Corollary 2 holds, then G^{\prime} has order at most 4 . Note that any 2-edge-connected simple graph of order at most 4 are supereulerian, and so G^{\prime} is supereulerian in this case. If (c) of Corollary 2 holds, then the reduction G^{\prime} of G is $K_{2,4}$, which is also a supereulerian graph. By Theorem F (b), we can see that conclusion (a) of Corollary 4 holds if (a) or (c) of Corollary 2 holds.

If conclusion (b) of Corollary 2 holds, then G^{\prime} is a nonsupereulerian graph $K_{2,3}$, and so (b) of the corollary holds.

Corollary 7. Let G be a 3-edge-connected simple graph of order n with $\operatorname{cl}(G)=m \geq 3$. If

$$
\begin{equation*}
|E(G)| \geq t(m, n-9)+16, \tag{11}
\end{equation*}
$$

then G is collapsible.
Proof. Set $p=10$ in Corollary 3. Since $c l(G) \geq 3$, conclusion (c) of Corollary 3 is precluded. Let G^{\prime} be the reduction of G. Suppose that G is not collapsible. Then (b) of Corollary 3 holds, and so G^{\prime} has order less than $p=10$. By Lemma $1, G^{\prime}$ is collapsible, and so by Theorem $\mathrm{F}(\mathrm{a}) G^{\prime}=K_{1}$, a contradiction. This proves the corollary.

Corollary 8. Let G be a 2-edge-connected simple K_{3}-free graph of order n. If $n \geq 12$ and

$$
\begin{equation*}
|E(G)| \geq t(2, n-4)+6, \tag{12}
\end{equation*}
$$

then exactly one of the following holds:
(a) G is supereulerian;
(b) Equality holds in (12) and G contains a $H=T_{2, n-4}$ such that the reduction of G is $G^{\prime}=G / H=K_{2,3}$.

Proof. Set $p=5$ in of Corollary 4. Since $n \geq 12=p+7$, (c) of Corollary 4 is impossible. Note that any 2-edge-connected simple graph on $c \leq 4$ vertices is supereulerian. By Corollary 4, the statement follows. \square.

Corollary 9 . Let G be a 3 -edge-connected simple K_{3}-free graph on n vertices. If $n \geq 16$ and

$$
|E(G)| \geq t(2, n-9)+16,
$$

then G is collapsible.

Proof. Set $p=10$ in of Corollary 3. Conclusion (c) of Corollary 3 is precluded by the hypothesis $n \geq 16$. Let G^{\prime} be the reduction of G. Suppose that G is not collapsible. Then (b) of Corollary 3 holds, i.e., $1<\left|V\left(G^{\prime}\right)\right|<10$. Since $\kappa^{\prime}\left(G^{\prime}\right) \geq \kappa^{\prime}(G) \geq 3$, by Lemma $1, G^{\prime}$ is collapsible. By Theorem F (a) $G^{\prime}=K_{1}$, a contradiction.

Remark. Let G be the simple graph obtained from the Petersen graph and the complete m-partite graph $T_{m, n-9}$ by identifying one vertex from each graph. Then G has order $n=(n-9)+10-1$, and G is 3 -edge-connected. The size of G is

$$
|E(G)|=t(m, n-9)+15 .
$$

Since the reduction of G is the Petersen graph, G is not collapsible. Hence, (11) and (13) are sharp.

5. The Proof of Theorem 1

Proof of Theorem 1. Let G^{\prime} be the reduction of G and let $\left|V\left(G^{\prime}\right)\right|=c$. If $c=1$ then G is collapsible and (a) of Theorem 1 holds. Suppose that $c>1$ i.e., $G^{\prime} \neq K_{1}$. Since G is 2-edge-connected and by the definition of contraction, we have $\kappa^{\prime}\left(G^{\prime}\right) \geq \kappa^{\prime}(G) \geq 2$. By Theorem F(c), G^{\prime} is K_{3}-free, and so

$$
\begin{equation*}
c \geq 4 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|E\left(G^{\prime}\right)\right| \leq 2 c-4 \tag{14}
\end{equation*}
$$

Let $V\left(G^{\prime}\right)=\left\{v_{1}, v_{2}, \cdots, v_{c}\right\}$, and let $H_{1}, H_{2}, \cdots, H_{c}$ be the preimages of $v_{i}^{\prime} s(1 \leq i \leq c)$. Suppose that G has the maximum size among all K_{m+1}-free graphs which have the reduction G^{\prime}. Then at most one $H_{i}(1 \leq i \leq c)$ is a nontrivial subgraph of G. Since G is K_{m+1}-free, this H_{i} is also K_{m+1}-free subgraph on $n-c+1$ vertices. Therefore, by the remark following Theorem E and (14)

$$
\begin{align*}
|E(G)| & \leq\left|E\left(H_{i}\right)\right|+\left|E\left(G^{\prime}\right)\right| \\
& \leq t(m, n-c+1)+2 c-4 \tag{15}
\end{align*}
$$

with equality only if G has at most one subgraph H_{i} and it is a complete m-partite graph of order $n-c+1$, and its reduction graph G^{\prime} has size $2 c-4$.
By (5) and (15)

$$
\begin{equation*}
t(m, n-p+1)+2 p-4 \leq|E(G)| \leq t(m, n-c+1)+2 c-4, \tag{16}
\end{equation*}
$$

and so

$$
\begin{equation*}
t(m, n-p+1)+2 p \leq t(m, n-c+1)+2 c . \tag{17}
\end{equation*}
$$

Define $l(x)=\left\lfloor\frac{n-x+1}{m}\right\rfloor$. Then by (17) and the definition of $t(m, n-x+1)(x=p$ or $c)$,

$$
\begin{aligned}
& 2 p+\binom{n-p+1-l(p)}{2}+(m-1)\binom{l(p)+1}{2} \\
& \leq \quad 2 c+\binom{n-c+1-l(c)}{2}+(m-1)\binom{l(c)+1}{2}
\end{aligned}
$$

and so

$$
\begin{aligned}
& \binom{n-p+1-l(p)}{2}-\binom{n-c+1-l(c)}{2} \\
& +(m-1)\left\{\binom{l(p)+1}{2}-\binom{l(c)+1}{2}\right\} \leq 2(c-p) .
\end{aligned}
$$

Simplifying the inequality above, we have the following

$$
\begin{align*}
& \{c-p-(l(p)-l(c))\}(2 n-p-c-l(p)-l(c)+1)+ \\
& \quad+(m-1)(l(p)-l(c))(l(p)+l(c)+1) \leq 4(c-p) . \tag{18}
\end{align*}
$$

If $c<p$, then (a) of Theorem 1 holds. If $c=p$, then equality holds throughout (16). Therefore, $\left|E\left(G^{\prime}\right)\right|=2 c-4=2 p-4$ in this case. By Theorem G, $G^{\prime}=K_{2, p-2}$. By (13), $p \geq 4$. Thus (b) of Theorem 1 holds.

Next we consider the case

$$
c>p .
$$

Case A $m \geq n-p+1$.
If $m=n-p+1$ then $l(p)=1$ and $l(c)=0$ since $c>p$. If $m>n-p+1$ then $l(p)=l(c)=0$. By (18), we have that in either case

$$
2 n \leq c+p+3
$$

If $c<n$, then $n \geq c+2$ since G cannot have its reducton of order $n-1$. Hence $n \leq p+1 \leq c$, a contradiction. It follows that $n=c$. Then G is reduced, and so $m=2$. Then

$$
\begin{equation*}
p<n \leq p+m-1=p+1 \tag{19}
\end{equation*}
$$

Since G is reduced, (14) gives $2 n-4 \geq|E(G)|$. By (13) $n=c \geq 4$. By (5) and routine computation, we have

$$
2 n-4 \geq|E(G)| \geq 2 n-5 \quad \text { if } n=p+1
$$

and so (d) of Theorem 1 holds.

Case B $m<n-p+1$.
By the definition of $l(p)$ and $l(c)$, we have that $n-p+1=l(p) m+r_{p}$ and $n-c+1=$ $l(c) m+r_{c}$ for some $r_{p}, r_{c} \in\{0,1,2, \cdots, m-1\}$. Then

$$
\begin{align*}
l(p)-l(c) & =\frac{n-p+1}{m}-\frac{r_{p}}{m}-\frac{n-c+1}{m}+\frac{r_{c}}{m} \\
& =\frac{c-p}{m}+\frac{r_{c}-r_{p}}{m} \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
l(p)+l(c)=\frac{2 n-p-c+2}{m}-\frac{r_{p}+r_{c}}{m} \tag{21}
\end{equation*}
$$

where $r_{p}, r_{c} \in\{0,1,2, \cdots, m-1\}$.
By (18), (20) and (21),

$$
\begin{gather*}
\left(c-p-\frac{c-p}{m}-\frac{r_{c}-r_{p}}{m}\right)\left(2 n-p-c-\frac{2 n-p-c+2}{m}+\frac{r_{c}+r_{p}}{m}+1\right) \\
+(m-1)\left(\frac{c-p}{m}+\frac{r_{c}-r_{p}}{m}\right)\left(\frac{2 n-p-c+2}{m}-\frac{r_{c}+r_{p}}{m}+1\right) \\
\leq 4(c-p) . \tag{22}
\end{gather*}
$$

Simplifying the inequality (22), we have the following

$$
\begin{align*}
\left(1-\frac{1}{m}\right)(c-p)(2 n-p-c+2) & -\frac{\left(r_{c}-r_{p}\right)\left(r_{c}+r_{p}-m\right)}{m} \\
& \leq 4(c-p) . \tag{23}
\end{align*}
$$

Since $c>p$, and by (23)

$$
\begin{equation*}
(2 n-p-c+2) \leq \frac{4 m}{m-1}+\frac{\left(r_{c}-r_{p}\right)\left(r_{c}+r_{p}-m\right)}{(m-1)(c-p)} \tag{24}
\end{equation*}
$$

where $r_{p}, r_{c} \in\{0,1,2, \cdots, m-1\}$.

Consider the function $f(x, y)=x^{2}-y^{2}-m(x-y)$ on domain $D=\{(x, y) \mid 0 \leq x \leq$ $m-1,0 \leq y \leq m-1\}$. Note that the maximum value of $f(x, y)$ can be obtained on the boundery of its domain. It is routine to check that

$$
\max _{(x, y) \in D} f(x, y)=f\left(0, \frac{m}{2}\right)=\frac{m^{2}}{4}
$$

Hence, we have that

$$
\begin{equation*}
f\left(r_{c}, r_{p}\right)=\left(r_{c}-r_{p}\right)\left(r_{c}+r_{p}-m\right) \leq \frac{m^{2}}{4} . \tag{25}
\end{equation*}
$$

By (24) and (25)

$$
\begin{equation*}
2 n-c-p+2 \leq \frac{4 m}{m-1}+\frac{m^{2}}{4(m-1)(c-p)} \tag{26}
\end{equation*}
$$

and so

$$
\begin{equation*}
2 n \leq 2+c+p+\frac{4}{m-1}+\frac{m}{4(c-p)}+\frac{1}{4(c-p)}+\frac{1}{4(c-p)(m-1)} . \tag{27}
\end{equation*}
$$

Subcase B1 Suppose that $c<n$. Since G is simple, G cannot have its reduction of order $n-1$. Hence,

$$
\begin{equation*}
n \geq c+2 \tag{28}
\end{equation*}
$$

If $m=2$, then G is K_{3}-free. By (27)

$$
2 n \leq 6+p+c+\frac{1}{c-p}
$$

Since $p+1 \leq c$, by (28), we have

$$
\begin{equation*}
n \leq 4+p+\frac{1}{c-p} \leq 4+p+1 \leq 4+c . \tag{29}
\end{equation*}
$$

But in this case G is simple and K_{3}-free, and so G has no nontrivial collapsible subgraph of order less than 6 . Hence, the reduction of G cannot have order $c \geq n-4$, contrary to inequality (29).

If $m \geq 3$ and G has a complete subgraph K_{m} then $c \leq\left|V\left(G / K_{m}\right)\right|$. If follows that in this case we have

$$
\begin{equation*}
c \leq\left|V\left(G / K_{m}\right)\right|=n-m+1 \tag{30}
\end{equation*}
$$

By (27), (28) and (30),

$$
\begin{equation*}
n \leq p+3-m+\frac{4}{m-1}+\frac{m}{4(c-p)}+\frac{1}{4(c-p)}+\frac{1}{4(c-p)(m-1)} \tag{31}
\end{equation*}
$$

If $m \geq 4$ then by $c \geq p+1$ and (30),

$$
p+4=(p+1)+4-1 \leq c+m-1 \leq n
$$

From another way, by (31) and $c-p \geq 1$,

$$
\begin{aligned}
n & \leq p+3-m+\frac{4}{3}+\frac{m}{4}+\frac{1}{4}+\frac{1}{12} \\
n & \leq p+3-\frac{3}{4} m+\frac{5}{3} \\
n & \leq p+3-\frac{3}{4}(4)+\frac{5}{3}=p+\frac{5}{3}
\end{aligned}
$$

a contradiction.

If $m=3$, then by (28) and $c \geq p+1$, we have $n \geq 3+p$. Hence $n=p+3$, and so $c=n-2$. This shows that G contains a triangle $H=K_{3}$ such that $G^{\prime}=G / H$ on $p+1$ vertices and

$$
\left|E\left(G^{\prime}\right)\right|=|E(G)|-3
$$

As a special case of (16), we have that

$$
t(3, n-p+1)+2 p-4 \leq|E(G)| \leq t(3, n-c+1)+2 c-4
$$

and so,

$$
t(3,4)+2(n-3)-4 \leq|E(G)| \leq t(3,3)+2(n-2)-4
$$

Therefore,

$$
|E(G)|=2 n-5
$$

Hence,

$$
\left|E\left(G^{\prime}\right)\right|=|E(G)|-3=(2 n-5)-3=2(n-2)-4=2 c-4
$$

By Theorem G and $c=p+1, G^{\prime}=K_{2, c-2}=K_{2, p-1}$. By (13), $p=c-1 \geq 3$ and so (c) of Theorem 1 holds.

Subcase B2 $c=n$. Then by (13) $n \geq 4$ and G is a reduced graph. By Theorem F (c) G is K_{3}-free. Hence $m=2$. By (14)

$$
\begin{equation*}
|E(G)| \leq 2 n-4 \tag{32}
\end{equation*}
$$

By (31),

$$
\begin{equation*}
n \leq 2+p+4+\frac{1}{n-p} \tag{33}
\end{equation*}
$$

If $n=p+1$ then by the hypothesis of Case $\mathrm{B}, 2=m<n-p+1=2$, a contradiction.

If $n \geq p+2$. Then by (33),

$$
\begin{align*}
p+2 & \leq n \leq 2+p+4+\frac{1}{2} \tag{34}\\
p+2 & \leq n \leq 6+p \tag{35}
\end{align*}
$$

By (35), (5) and routine computation, we have the following;

$$
2 n-4 \geq|E(G)| \geq \begin{cases}2 n-4 & \text { if } n=6+p \\ 2 n-5 & \text { if } n=5+p \\ 2 n-6 & \text { if } n=i+p, i \in\{2,3,4\}\end{cases}
$$

The conclusion (d) of Theorem 1 holds.
The proof of Theorem 1 is complete.

4. REFERENCES

[1] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications". American Elsevier, New York (1976).
[2] J. A. Bondy, Variations on the hamiltonian theme. Canad. Math. Bull. Vol. 15 (1),(1972) 57-62
[3] X. T. Cai, Connected eulerian spanning subgraphs. Preprint.
[4] P. A. Catlin, A reduction method to find spanning eulerian subgraphs. J. Graph Theory 12 (1988) 29-45.
[5] P. A. Catlin and Z.-H. Chen, Nonsupereulerian graphs with large size. Proc. 2nd Intl. Conf. Graph Theory. San Fransisco, (July 1989), to appear.
[6] P. A. Catlin and H.-J. Lai, Spanning eulerian subgraphs and collapsible graphs. Submitted.
[7] Z.-H. Chen, Supereulerian graphs and the Petersen graph. J. of Combinatorial Mathematics and Combinatorial Computing, to appear.
[8] O. Ore, Arc coverings of graphs, Ann. Mat. Pura Appl. 55(1961), 315-321.
[9] P. Turán, On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok 48 (1941) 436-452.
[10] H. Veldman, Existence of dominating cycles and paths. Discrete Math. 43(1983) 281-296.

