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On extremal nonsupereulerian graphs

with clique number m

Zhi-Hong Chen, Department of Mathematics
Wayne State University, Detroit, MI 48202

Abstract

A graph G is supereulerian if it contains a spanning eulerian subgraph. Let n, m
and p be natural numbers, m,p > 2. Let G be a 2-edge-connected simple graph on
n > p + 6 vertices containing no K,,11. We prove that if

|E<G>|z<”‘p;1"“>+<m—1><’“;1>+2p—4, 1)

where k = L%MJ , then either G is supereulerian, or G can be contracted to a
nonsupereulerian graph of order less than p, or equality holds in (1) and G can be
contracted to Ks ;2 (p is odd) by contracting a complete m-partite graph Ty, 5,—p41 of

order n — p+ 1 in G. This is a generalization of the previous results in [3] and [5].

1. Introduction

We follow the notation of Bondy and Murty [1], except that graphs have no loops. For
a graph G, the order of the maximum complete subgraph of G is called clique number of
G and denoted by cl(G). A graph is eulerian if it is connected and every vertex has even
degree. A graph G is called supereulerian if it has a spanning eulerian subgraph H. A

cycle C of G is called a hamiltonian cycle if V/(C) = V(G) and is called dominating cycle

if E(G—V(C))=0. A graph is hamiltonian if it contains a hamiltonian cycle. Obviously,

hamiltonian graphs are special supereulerian graphs.

There is rich literature on the following extremal graph theory problems: for a given fam-
ily F of graphs and for a natural number n, what is the maximum size of simple graphs of or-
der n which are not in F. For example, when F = {graphs with clique number at least m},
this is Turdn’s Theorem. In this note, we consider the family

F = {supereulerian graphs with clique number m}.

In fact, our results are related to Turan’s Theorem.



Let G be a graph, and let H be a connected subgraph of G. The contraction G/H is the
graph obtained from G by contracting all edges of H, and by deleting any resulting loops.
Even when G is simple, G/H may not be.

Here are some prior results related to our subject.
Theorem A (Ore [8] and Bondy [2]). Let G be a simple graph on n vertices. If

|Ewﬂz(”;1)+z ©)

then exactly one of the following holds:
(a) G is hamiltonian;
(b) Equality holds in (2), and G € {K; V (K; + K,_2), Ko + K5} (where K¥ is the
complement of K3). O

Theorem B (Veldman [10]). Let G be a 2-edge-connected simple graph of order n. If

|Ewnz(”;4>+n,

then G has a dominating cycle.O

Theorem C (Cai [3]). Let G be 2-edge-connected simple graph on n vertices. If

|Ewﬂz(”;4)+a ®)

then exactly one of the following holds:
(a) G is supereulerian;
(b) G = Ka5;
(c) Equality holds in (3), and either G = Q3 — v (the cube minus a vertex), or G contains
a complete subgraph H = K,,_4 such that G/H = Ky 3. O

Theorem D (Catlin and Chen [5]). Let G be a 3-edge-connected simple graph on n vertices.

If
|Ewnz(”;9)+m,

then G is supereulerian. O

In this paper, following closely the method of [5], we shall generalize Theorem C and
Theorem D. In particular, we found that if a graph G is K3-free or has small clique num-

ber then the lower bound of the inequalities in Theorem C and Theorem D can be improved.



2. Notation and Turan’s Theorem

Let n and m be natural numbers, we define ¢(m, n) as the following;

t(m,n):(n;k)—l—(m—l)(k;—l),

where k = | Z|. It is easy to see that if m =n or m > n then k = 1 or k = 0, respectively,

n
and so the right side of the equation above is equal to ( 5 ) . If m = 2 then

n2 . .

2 if nis even;
t(27 ’I’L) = n24—1 . . 7

1 if n is odd.

Note that for m > n,

t(2,n) <t(3,n)<---<tln—1,n) < t(n,n)=1t(m,n) = ( Z ) . (4)

One can see that t(m,n) is related to the Turdn numbers below.

For m < n, denote by T, , the complete m-partite graph of order n with

il e

vertices in the various independent classes. Note that T}, ,, is the unique complete m-partite

graph of order n whose independent classes are as equal as possible and T}, , = K. Let

k=|2], it is known that the size of T}, is

|E(Tm,n)|=t(m,n):(n;k ) 1) ( k:42—1 )

Theorem E (Turdn [9]). Let m and n be natural numbers, m > 2. Then every graph of
order n and size greater than |E(T),,)| contains a K,,;i. Furthermore, T}, is the only

graph of order n and size |E (T}, )| that does not contain a K,41. O

Remark. Let G be a graph of order n with maximum size that does not contain a K, y1.
n

If m > n then |E(G)| = 5 | If m <n then by Theorem E |E(G)| < |E(Ty,)|. Thus,

if G is a graph containing no K,,+; then |E(G)| < t(m,n). For convenience, we define

B T ifm<n;
e K, ifm>n.



3. Catlin’s Reduction Method

The following concept was given by Catlin [4].

For a graph G, let O(G) denoted the set of vertices of odd degree in G. A graph G is
called collapsible if for every even set X C V(@) there is a spanning connected subgraph
Hx of G, such that O(Hx) = X. The trivial graph K is both supereulerian and collapsible.
The cycles Co and C3 are collapsible, but Cy is not if £ > 4. In fact, if G is collapsible then
G contains a spanning (u, v)-trail for any u,v € V(G). In particular, a collapsible graph is

supereulerian.

In [4], Catlin showed that every graph G has a unique collection of disjoint maximal
collapsible subgraphs Hy, Ho, - - -, H.. Define G’ to be the graph obtained from G by con-
tracting each H; into a single vertex, (1 < i < ¢). Since V(G) = V(H;)U--- UV (H,), the
graph G’ has order c. We call the graph G’ the reduction of G. Any graph G has a unique
reduction G’ [4]. A graph G is reduced if G = G'.

We shall make use of the following theorems:
Theorem F (Catlin [4]) Let G be a graph. Let G’ be the reduction of G.

(a) Let H be a collapsible subgraph of G. Then G is collapsible if and only if G/H is
collapsible. In particular, G is collapsible if and only if G’ = Kj.

(b) G is supereulerian if and only if G’ is supereulerian.

(c) If G is a reduced graph of order n, then G is simple and Ks-free with §(G) < 3 and
either G € {K7, Ks}, or
|E(G)| < 2n—4.0

Theorem G (Catlin and H.-J. Lai [6]). Let G be a connected reduced graph of order n.
Then |E(G)| =2n —4 if and only if G = Ky ,,_2. O

4. Main Result and Consequences

The set of natural numbers is denoted by N. Let K be a graph. A graph G is called
K-free if it contains no subgraph K.

Here is our main result:

Theorem 1. Let n, m and p be natural numbers, m,p > 2. Let G be a 2-edge-connected



simple graph of order n with cl(G) = m. If
|E(G)] = t(mn—p+1)+2p—4, (5)

then exactly one of the following holds:

(a) The reduction of G has order less than p;

(b) Equality holds in (5), p > 4 and G contains a subgraph H = H,, ,,_p4+1 such that the
reduction of G is G' = G/H = Ka _;

(¢c) cl(G) =3,n=p+3,p>3and G contains a subgraph H = K3 such that G’ = G/H =
Ko p-1;

(d) G is a reduced graph with order n such that n > 4 andn € {p+ 1,p+2,p+3,p+
4,p+5,p+ 6} and

2n—4 ifn=6+p;
2n—5 ifn=>5+p;
2n—6 ifn=i+p,i€{2,3,4};
2n—5 ifn=1+np.

o — 4> |E(G)| >

Note that Ky .o is supereulerian if ¢ is even. If n > p + 6 then conclusions (c) and (d)

of Theorem 1 are precluded. Hence, by Theorem F (b) we have following easy corollary:

Corollary 1. Let n, m and p be natural numbers, m,p > 2. Let G be a 2-edge-connected

simple graph of order n > p + 6 with ¢l(G) = m. If
|E(G)] > t(m,n—p+1)+2p—4, (6)

then exactly one of the following holds:
(a) G is supereulerian;
(b) The reduction of G is a nonsupereulerian graph of order less than p;

(b) p is an odd number and equality holds in (6) and G contains a subgraph H = Hp, p—pt1
such that the reduction of G is G’ = G/H = Ky }_9. O

In the following, we state some consequences of Theorem 1 first. The proof of Theorem

1 is given in the next section.

Corollary 2. Let G be a 2-edge-connected simple graph on n vertices, and let p € N — {1}.
If cI(G) =m > 3 and if

[E(G)] = t(m,n—p+1)+2p—4, (7)

then exactly one of the following holds;



(a) The reduction of G has order less than p;

(b) Equality holds in (7) and G contains a subgraph H = T}, ,—p+1 such that the reduction
of Gis G'=G/H = K .

(c) cl(G) =3 and n = p+ 3 and G contains a H = K3 such that the reduction of G is
G' =G/H =Ky ).

Proof. Let G be a graph satisfying the hypothesis of Corollary 2. Then G is not reduced
since cl(G) > 3, and so (d) and (e) of Theorem 1 are precluded. It follows from Theorem 1
that the conclusion of Corollary 2 holds. O

Corollary 3. Let G be a 3-edge-connected simple graph of order n, and G’ the reduction of
G. If

then exactly one of the following holds:
(a) G is collapsible;
(b) 1 < |V(G")| < p.
(c) G is a reduced graph of order n such that n € {p+1,p+2,p+3,p+4,p+ 5} and

2n—5 ifn=>5+p;
2n—5>|E(G)|> ¢ 2n—6 ifn=1i+p,ic{2,3,4};
2n—5 ifn=1+np.

Proof. Suppose that (a) fails. Then by Theorem F(a) |V(G’)] > 1. By the definition of
contraction, '(G') > k/(G) > 3. Therefore, G’ # K3 5. The conclusions (b) and (c) of
Theorem 1 are precluded. If Theorem 1(a) holds then |V (G’)| < p and so (b) of the corol-
lary holds. Suppose that Theorem 1(d) holds. By Theorem G the case |E(G)| = 2n — 4 is
impossible, and so (c) of the corollary holds.O

Corollary 4. Let G be a 2-edge-connected simple K3-free graph of order n and let p €
N -—{1}. If

E(G)|zt(2,n—p+1)+2p—4, (8)

then exactly one of the following holds:
(a) The reduction of G has order less than p;
(b) Equality holds in (8) and G contains a subgraph H = T5 ,,_,11 such that the reduction
of Gis G’ =G/H = Ky p_2;



(c) G is a reduced graph of order n such that n € {p+ 1,p+2,p+3,p+4,p+5,p+ 6}

and
2n—4 ifn=6+4+p;

2n—5 ifn=>5+p;
2n—6 ifn=i+p,i€{2,3,4};
2n—5 ifn=1+np.

o — 4> |E(G)| >

Proof. Since G is Ks-free, cI(G) = m = 2. Then the conclusion (c¢) of Theorem 1 are
precluded. Note that the inequality (8) is a special case of (5) with m = 2 in Theorem 1.
Obviously, Corollary 4 follows from Theorem 1. O

Corollary 5 (Catlin and Chen [5]). Let G be a 2-edge-connected simple graph of order n
and let p e N — {1}. If

|E<G>|z(”‘§“)+2p—4, ©

then exactly one of these holds:
(a) The reduction of G has order less than p;
(b) Equality holds in (9), G has a complete subgraph H of order n—p+1, and the reduction
of Gis ' =G/H = Ky 9.
(c) G is a reduced graph such that either

|E(G)|e{2n—4,2n—5} and n € {p+1,p+ 2}

or
|[E(G)|=2n—4and n=p+ 3.

Proof. Choose m in Theorem 1 so that m > n —p+ 1. Then (5) and (4) together imply
(9). Note that m > n — p+ 1 implies that Hy, ,—p+1 = Kp—py1. Sincem >n—p+1, (c)
of Theorem 1 is impossible.

If (d) of Theorem 1 holds then G is a reduced graph with order n > p+ 1. By Theorem
F(c) and (9),

— 1
o — 4> |E(G) > (” 12” )+2p—4.

Then
dn—p)=(n—p)(n—p+1).



Since n > p+1, we get p+3 > n > p+1. By (9) and routine computation, we can see that
(c) of Corollary 5 holds. O

Remark. The case p = 5 of Corollary 3 is Theorem D which is a main result of Cai [3].
The case p = 10 of Corollary 3 for 3-edge-connected graph is Theorem E (Catlin and Chen
[5]), which was a conjecture of Cai [3]. By (4), one can see that if cl/(G)=m <n—p+1
then inequalities in Corollaries 2, 3, and 4 have better lower bound than inequality (9) in
Corollary 5. In the following we give some more results which improve the lower bounds of

the inequalities in Theorem C and Theorem D.

We shall make use of the following lemma:
Lemma 1 (Chen [6]). Let G be a 3-edge-connected simple graph on n < 11 vertices. Then
either G is collapsible or GG is the Petersen graph. O

Corollary 6. Let G be a 2-edge connected simple graph of order n, and c¢l(G) =m > 3. If
|[E(G)| = t(m,n — 4) + 6, (10)

then exactly one of the following holds:
(a) G is supereulerian;
(b) Equality holds in (10) and G has a subgraph H = H,, ,,—4 such that the reduction of
GisG' = G/H = Ky,

Proof. Set p =5 in Corollary 2. Let G’ be the reduction of G. If conclusion (a) of Corollary
2 holds, then G’ has order at most 4. Note that any 2-edge-connected simple graph of order
at most 4 are supereulerian, and so G’ is supereulerian in this case. If (¢) of Corollary 2
holds, then the reduction G’ of G is K3 4, which is also a supereulerian graph. By Theorem
F(b), we can see that conclusion (a) of Corollary 4 holds if (a) or (c) of Corollary 2 holds.

If conclusion (b) of Corollary 2 holds, then G’ is a nonsupereulerian graph K3 3, and so
(b) of the corollary holds. O

Corollary 7. Let G be a 3-edge-connected simple graph of order n with cl(G) =m > 3. If
|E(G)| Zt(mvn_9)+16v (11)

then G is collapsible.

Proof. Set p = 10 in Corollary 3. Since cl(G) > 3, conclusion (c¢) of Corollary 3 is precluded.
Let G’ be the reduction of G. Suppose that G is not collapsible. Then (b) of Corollary
3 holds, and so G’ has order less than p = 10. By Lemma 1, G’ is collapsible, and so by
Theorem F(a) G’ = K1, a contradiction. This proves the corollary. O



Corollary 8. Let G be a 2-edge-connected simple Ks-free graph of order n. If n > 12 and
|E(G)| > t(2,n —4) +6, (12)

then exactly one of the following holds:
(a) G is supereulerian;
(b) Equality holds in (12) and G contains a H = T3 ,_4 such that the reduction of G is
G' =G/H =K.

Proof. Set p = 5 in of Corollary 4. Since n > 12 = p + 7, (c¢) of Corollary 4 is impossi-
ble. Note that any 2-edge-connected simple graph on ¢ < 4 vertices is supereulerian. By

Corollary 4, the statement follows. O.

Corollary 9. Let G be a 3-edge-connected simple K3-free graph on n vertices. If n > 16

and
B(G)| > t(2,n—9) + 16,

then G is collapsible.

Proof. Set p = 10 in of Corollary 3. Conclusion (c¢) of Corollary 3 is precluded by the
hypothesis n > 16. Let G’ be the reduction of G. Suppose that G is not collapsible. Then
(b) of Corollary 3 holds, i.e., 1 < |[V(G")| < 10. Since £'(G’) > /(G) > 3, by Lemma 1, G’
is collapsible. By Theorem F(a) G’ = K7, a contradiction. O

Remark. Let G be the simple graph obtained from the Petersen graph and the complete
m-partite graph T}, ,,—9 by identifying one vertex from each graph. Then G has order
n=(n—-9)+10—1, and G is 3-edge-connected. The size of G is

|E(G)| =t(m,n—9) + 15.
Since the reduction of G is the Petersen graph, G is not collapsible. Hence, (11) and (13)

are sharp.

5. The Proof of Theorem 1

Proof of Theorem 1. Let G’ be the reduction of G and let |V(G’)| = ¢. If ¢ = 1 then
G is collapsible and (a) of Theorem 1 holds. Suppose that ¢ > 1 i.e., G’ # K;. Since G
is 2-edge-connected and by the definition of contraction, we have «'(G’) > «/(G) > 2. By
Theorem F(c), G’ is K3-free, and so

c>4, (13)



and
|E(G)| < 2¢— 4. (14)

Let V(G') = {v1, v, -, v}, and let Hy, Ho, - -, H. be the preimages of v}s (1 <i < ¢).
Suppose that G has the maximum size among all K, 1-free graphs which have the reduction
G’. Then at most one H; (1 <14 < ¢) is a nontrivial subgraph of G. Since G is K, 1-free,
this H; is also K,,,+1-free subgraph on n — ¢+ 1 vertices. Therefore, by the remark following
Theorem E and (14)

[E(G))

IN

|E(H;)| + |E(G)]
t(m,n—c+ 1)+ 2c—4, (15)

IN

with equality only if G has at most one subgraph H; and it is a complete m-partite graph
of order n — ¢+ 1, and its reduction graph G’ has size 2c — 4.
By (5) and (15)

ttm,n—p+1)+2p -4 <|E(G)| < t(m,n —c+ 1)+ 2c — 4, (16)
and so
t(tm,n—p+1)+2p <t(m,n—c+1)+2c. (17)

Define [(z) = V‘TMJ Then by (17) and the definition of t(m,n—x + 1) (x = p or ¢),

n—p+1—1I(p) I(p)+1
2p —I—( ) )—I—(m—l)( ) )

< 2C+(n—c—|—21—l(c) ) +(m_1)<l(c)2—|—1 )’

and so

+(m — 1) {( l(p);l ) - ( l(c);l )} <2(c—p).

Simplifying the inequality above, we have the following

{fc—p—(p)—1(c)}2n—p—c—I(p) = l(c)+1) +
+(m —1)(U(p) — 1(c))(U(p) + I(c) + 1) < 4(c —p). (18)

10



If ¢ < p, then (a) of Theorem 1 holds. If ¢ = p, then equality holds throughout (16).
Therefore, |[E(G')| = 2¢ — 4 = 2p — 4 in this case. By Theorem G, G’ = K3, 2. By (13),
p > 4. Thus (b) of Theorem 1 holds.

Next we consider the case

c>p.

Case Am>n—p+1.
If m =n—p+1 then l(p) = 1 and I(c) = 0 since ¢ > p. If m > n —p+ 1 then
I(p) =1(c) = 0. By (18), we have that in either case

2n<c+p+3.

If ¢ < n, then n > ¢+2 since G cannot have its reducton of order n—1. Hence n < p+1 < ¢,

a contradiction. It follows that n = ¢. Then G is reduced, and so m = 2. Then
p<n<p+m-—-1=p+1. (19)

Since G is reduced, (14) gives 2n — 4 > |E(G)|. By (13) n = ¢ > 4. By (5) and routine

computation, we have
2n—4>|EG)|>2n—-5 ifn=p+1,

and so (d) of Theorem 1 holds.

Case Bm<n—p+1.
By the definition of I(p) and [(c), we have that n —p+1=I(p)m+rpandn—c+1=
l(¢c)m + r. for some rp, 7. € {0,1,2,---,m —1}. Then

n—-p+1 r n—c+1 r
-l = — — -~ tm
— C_p_|_w7 (20)
m m

and

2n—p—c+2 1417,
I(p) +1(c) = =L _pTTe (21)

m m

where 7, 7. € {0,1,2,---,m — 1}.
By (18), (20) and (21),

- - M —p—c+t2
(c—p—c p—w)@n—p—c— nTpocet —I—TC—I_TP—I—l)
m m m m
c— Te—Tp 2n—p—c+2 1r.+r
Hm - 1)(=E 4 ey (R )
m m m m
<4(c—p). (22)

11



Simplifying the inequality (22), we have the following

(re —rp)(re+mp —m)

(1= )e=p)En—p—ct2) -

< 4(c—p). (23)
Since ¢ > p, and by (23)
4m (re —rp)(re+mrp, —m)
(2n—p—c—|—2)§m_1+ m—Dlc—p) (24)

where 7, 7. € {0,1,2,---,m —1}.

Consider the function f(x,y) = 22 — %2 — m(z — y) on domain D = {(z,9)|0 < x <
m—1,0 <y <m—1}. Note that the maximum value of f(z,y) can be obtained on the

boundery of its domain. It is routine to check that

m m
C%%bﬂ%y%aﬂQgﬂ—jf
Hence, we have that
m2
f(resmp) = (re =mp)(re +mp —m) < i (25)
By (24) and (25)
m2
2n—c— 2 < 2
n—c—p+2< —1+4(m—1)(c—p)’ (26)
and so
4 m 1 1
N <24+c+p+ + + + . 27
=1 de—p) " Ae—p) " A= p)(m—1) &)

Subcase B1 Suppose that ¢ < n. Since G is simple, G cannot have its reduction of order

n — 1. Hence,
n>c+2. (28)
If m = 2, then G is Ks-free. By (27)
1
M <64p+ct+ —.
c—p
Since p+ 1 < ¢, by (28), we have

1
n§4—|—p—|—c—§4—|—p—|—1§4—|—6. (29)
-Dp

12



But in this case G is simple and K3-free, and so G has no nontrivial collapsible subgraph
of order less than 6. Hence, the reduction of G cannot have order ¢ > n — 4, contrary to

inequality (29).

If m > 3 and G has a complete subgraph K, then ¢ < |V(G/K,,)|. If follows that in

this case we have
c<|V(G/Kp)|=n—m+1. (30)

By (27), (28) and (30),

<pt3-m4—— gy 1 :
n<p+3-m )
m—1 " 4lc—p) 4(c—p) 4c—p)(m-1)
If m > 4 then by ¢ > p+ 1 and (30),
p+d=(p+1)+4-1<c+m—-1<n.

From another way, by (31) and ¢ —p > 1,

4 m 1
n < p+3-m+s+—+-+-—

< p+3 3 +5
n —-m+
= P ATy
3 5 5
< 3—4)+== =
n < p+ 4()+3 p—|—3,

a contradiction.

If m = 3, then by (28) and ¢ > p + 1, we have n > 3 + p. Hence n = p + 3, and so
¢ = n — 2. This shows that G contains a triangle H = K3 such that G’ = G/H on p + 1

vertices and

B(G)| = |B(G)|-3.

As a special case of (16), we have that

tB,n—p+1)+2p—4 < |E(G)|<t(3,n—c+1)+2c—4,

and so,
t(3,4)+2(n—3) —4 < |E(G)| < t(3,3)+2(n—2) — 4.
Therefore,
|E(G)| = 2n — 5.
Hence,

|E(G|=|E(G)]-3=(2n—-5)—-3=2(n—2)—4=2c—4.

13



By Theorem G and c =p+1, G’ = Ky .92 = K2 1. By (13),p=c—1 > 3 and so (c) of
Theorem 1 holds.

Subcase B2 ¢ = n. Then by (13) n > 4 and G is a reduced graph. By Theorem F(c) G
is Ks-free. Hence m = 2. By (14)

|E(G)| < 2n — 4. (32)
By (31),
1
n<2+p+4+ ——. (33)
n—p
If n = p+ 1 then by the hypothesis of Case B, 2 =m < n —p+ 1 = 2, a contradiction.

If n > p+ 2. Then by (33),

1
p+2 < n§2—|—p—|—4—|—§. (34)

p+2 < n<6+np. (35)

By (35), (5) and routine computation, we have the following;

2n—4 ifn=6+p;
2n—4>|E(G)| >3 2n—5 ifn=5+p;
2n—6 ifn=1i+p,i€{2,3,4};

The conclusion (d) of Theorem 1 holds.
The proof of Theorem 1 is complete. O
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