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Fan-Type Conditions for Collapsible Graphs 

Zhi-Hong Chen* 

Department of Mathematics/Computer Science 
Butler University, Indianapolis, IN 46208 

email: Chen@butler.edu 

ABSTRACT. A graph G is collapsible if for every even subset R <;; 
V ( G), there is a spanning connected subgraph of G whose set of 
odd degree vertices is R. A graph is supereulerian if it contains 
a spanning closed trail. It is known that every collapsible graph 
is supereulerian. A graph G of order n is said to satisfy a Fan
type condition if max{d(u),d(v)} 2: n/(g - 2)p - E for each 
pair of vertices u, v at distance two1 

where g E {3, 4} is the 
girth of G, and p 2: 2 and , 2: 0 are fixed numbers. In this 
paper, we study the Fan-type conditions for collapsible graphs 
and supereulerian graphs. 

1 Introduction 

We follow the notation of Bondy and Murty [2], except that graphs have 
no loops. Let G be a graph. A cycle of order n is denoted by Cn. The 
distance, denoted dist(u, v), between two vertices u and v of a connected 
graph is the minimum length of all paths joining u and v. For a graph G,

let u be a vertex in G. Define Na(u) = {v E V(G) luv E E(G)}. A graph 
G is called harniltonian if G has a cycle containing every vertex of G. Let 
i<'(G) denote the edge-connectivity of G, and let O(G) denote the set of 
vertices of odd degree in G. A graph G is eulerian if it is connected with 
0( G) = 0. A graph G is called supereulerian if it has a spanning eulerian 
subgraph. A graph G is called collapsible if for every even set X c:;; V(G) 
there is a spanning connected subgraph Hx of G, such that O(Hx) = X. 
Examples of collapsible graphs include Kn with n 2: 3, C2, and C3, but not 
C, with t ;::: 4. It is known that all collapsible graphs are supereulerian (see 
[3],[4]). The trivial graph K1 is both supereulerian and collapsible, and is 
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regarded as having infinite edge-connectivity. The line graph of G, denoted 
by L(G), has E(G) as its set of vertices, where two vertices are adjacent 
in L( G) if and only if the corresponding edges are adjacent in G. Harary 
and Nash-Williams [13] showed that if G has at least 3 edges, then L(G) 
is hamHtonian if and only if G has an eulerian subgraph that contains at 
least one end of every edge in G.

Various sufficient degree conditions for the existence of spanning eulerian 
subgraphs and hamiltonian line graphs have been derived. 

Theorem A. (Lesniak-Foster and Williamson [15]). Let G be a graph of 
order n <". 6. If 8( G) <". 2 and if any pair u, v of non-adjacent vertices of 
G, d( u) + d( v) <': n - 1 then G is supereulerian. □ 

Theorem B. (Catlin [5]). Let G be a simple graph of order n with edge-
connectivity ,o'(G) = k E {2, 3}. If n is sufficiently large and if any pair 
u, v of non-a vertices of G, d(u)+d(v) > (k�1)s -2, then G is supereulerian.
□ 

Theorem C. (Chen, Lai [10], and Veldman [16]). Let G be a 3-edge
connected simple graph of order n. If n is sufficiently large and if for every 
edge uv E E(G), d(u) + d(v) > 'g - 2, then G is supereulerian. □

Theorem D. (Lai [14]). Let G be a 2-edge-connected simple graph of 
order n. If for every edge uv E E(G), max{d(u), d(v)} <". n/5 - 1, then for 
n large, L( G) is hamiltonian except for a class of well cbaracterized graphs. 
□ 

In the study of hamiltonian graphs, Fan [11] proved the following: 

Theorem E. If G is 2-connected simple graph of order n and max{d(u), 
d(v)} <". n/2 for every pair of vertices u, v with dist(u, v) = 2 in G, then G 
is hamiltonian. □

A simple graph G of order n is said to satisfy a Fan-type condition if for 
every pair of vertices u, v with dist(u, v) = 2 in G 

n 
max{d(u), d(v)} <". 

(g-2)p 
-<, 

where g is the girth of G, p <". 2 and < > 0 are fixed numbers. 

(1) 

Note that it is easy to show that for a simple graph G of order n, if 
max{ d(u), d(v)} <". n/m for every pair of distance-2 vertices u, v in G, where 
mis a fixed number, and if n is large, then G has girth at most 4. Thus, 
we only consider g E {3,4} in (1). 

In this paper, we shall use Catlin's reduction technique [3] to study 
the Fan-type conditions for collapsible graphs and supereulerian graphs. 
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Catlin's reduction technique. In section 3, we study the structures of the 
reduction graphs of graphs satisfying (1). Our main results are presented 
in section 4. 

2 Catlin's reduction technique 

Let G be a graph, and let H be a connected subgraph of G. The con
traction G / H is the graph obtained from G by contracting all edges of 
H, and by deleting any resulting loops. In [3], Catlin showed that every 
graph G has a unique collection of vertex-disjoint maximal collapsible sub
graphs H,, H2, • • • , He such that U:-, V(H,) = V(G). The reduction of G,
denoted by G', is the graph obtained from G by successively contracting 
Hi, H2 , • • • , H0 • Since V(G) = U:-, V(H,), IV(G')I = c. Let v be the ver
tex in G' that is the contraction image of a subgraph H(v). Then H(v) is 
called the preimage of v. If H(v) = Ki , we say H(v) is the trivial preimage 
of v and we call v a trivial vertex. A graph G is reduced if G = G'. Note 
that a reduced graph is a simple and Ks-free graph, and every subgraph of 
a reduced graph is also reduced [3]. By the definition of contraction and 
,;;'(Ki) = oo, we have K'(G') ;:: ,;;'(G). It is known that the smallest 2-
edge-connected reduced non-supereulerian graph is K2,s, and the smallest 
3-edge-connected reduced non-supereulerian graph is the Petersen graph
[9]. 

Throughout this paper, we let d(v) and d'(v) denote the degree of v in 
G and G', respectively. Let E(G') be the edge set of G'. We regard E(G') 
as a subset of E(G). Note that E(G') = E(G) - LJ1 E(H,). For a vertex 
v E V(G), we define 

I(v) = {u E V(G')I uv E E(G')}.

Define i(v) = II(v)I, which is the number of edges in G' incident with v in 
G. Note that since each edge uv E E(G') is also an edge in E(G), we also
view as a subset of V(G). We define Na-I(v)(v) = Na(v) - I(v), where 
v E V(G). Thus, for any v E V(G),

d(v) = i(v) + INa-I(v)(v)I. (2) 

As an example, consider a graph Go of order n ::C: 15 obtained from K2,3 
by replacing each vertex of K2,3 by a complete graph of order n/5 in the 
way as shown in Figure 1 below (where each circle in Go represent a Kn;5 

subgraph). Then Go has five vertex-disjoint maximal collapsible subgraphs 
H; = Kn/5 (1 :'., i :'., 5), and so G�, the reduction of Go, is K2,3, and 
E(G�) = {a, b, c, d, e, /} = E(Go) - LJf E(H,). For a vertex v E Go, if vis
not incident with any edges in {a, b, c, d, e, /}, then I(v) = 0. For instance, 
from the figure below, we can see that i(vo) = 0, but i(v,) = i(v2) = 1, and 
i(vs) =3. 
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Figure 1 

We shall make use of the following theorem: 

Theorem F. (Catlin (3],[6]). Let G be a connected graph and let G' be 
the reduction of G. 

(a) Let H be a collapsible subgraph of G. Then G is collapsible if and
only if G / H is collapsible. In particular, G is collapsible if and only
ifG'=K1.

(b) G is supereulerian if and only if G' is supereulerian.

(c) G' is a simple graph with 8(G') $ 3, and G' contains no Ks or K3 ,3 -e
as a subgraph, and either G' E {K1 , K2} or 

IE(G')I $ 2IV(G')l-4. 

□ 

3 The Fan-Type Conditions and the Reduction of a Graph 

Let G be a graph satisfying Fan-type condition (1). Let G' be the reduction 
of G. Define 

II(G') = {v' E V(G')ithere is ax E V(H(v')) such that d(x);;,: 
( 

n 
) 

- ,},
g-2p 

and define r(G') = V(G') -II(G'). 

Lemma 1. Let G be a k-edge-connected simple graph of order n satisfying 
(1) with girth g E {3, 4} and k E {2, 3}. Let G' be the reduction of G. Let
V(G') = {v\, v�, .. • ,v�}. Let H(v;) be the preimage of v: in G (1 $ i $ c).

(a). If v: E II(G'), then there is a ti; E V(H(vi)) such that 

n 
- E $ d(u,) $ i(u,) + 

IV(H(v:))I + g - 4.
(g- 2)p g- 2
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(b). If v/ E r(G') then there is au; E V(H(v:)) such that

k S d(u;) S i(u,) + IV(H(v:))1
2
+ g -4.

g-

Proof: The lemma is trivial if g = 3. Thus, we may assume g = 4. If 
IV(H(vD)I = 1 then (a) and (b) are trivially true. In the following, we 
assume that IV(H(vD)I > 1. Then since H(v:) is K3-free and collapsible, 
IV(H(v:l)I 2". 6 and IE(H(v:l)I > 1.

Case 1. v; E II(G'). 
Let x be a vertex in V ( H ( v:l) such that 

n 
(g _ 2)p - < S d(x) = INa(x)I. (3) 

Since i<'(G) 2". 2 and IV(H(v:))I 2". 6, INa--I(x)(x)I 2". 2. Let y and z be 
two vertices in Na-I(:)(x) with d(y) ;:o: d(z). Since G is K3-free, yxz is a 
length-2 path in G. Therefore, by (1), 

n 

(g-2)p 
-esd(y). (4) 

Since G is K3-free, Na-I(x)(x) n Na-I(y)(Y) = 0. Therefore, 

INa-I(x)(x)I + INa-I(y)(Y)I S IV(H(vDJI, (5) 

ml'n{IN (x)I IN ( )I}< IV(H(v:))I - IV(H(vD)I + g -4
G-I(:) , G-I(y) Y - 2 - g _ 2 ' 

Hence, Lemma l(a) follows from (3), (4), and (5). 
Case 2. v; E r(G').

Since IE(H(v:))I 2". 1, H(v:) contains an edge (say e = xy). Since G is 
K3-free, Na-I(x)(x) n Na-I(y)(Y) = 0. Then (5) still holds in this case. 
Since G is k-edge-connected, d(x) 2". k and d(y) 2". k, and so by (2) and (5), 
Lemma 1 (b) holds. □

Lemma 2. Let G be a graph satisfying (1). Let G' be the reduction of G. 
Let v' E r(G'). Then all vertices in Na,(v') except for at most one are in
II( G'). 

Proof: Let r = d'(v'). Let Na,(v') = {xi,x;, •· • ,x�}. Let H(v') be the 
preimage of v' in G. Let H(xl) be the preimages of x/ in G. Let v,x, be 
the corresponding edge of v'x; in G. 
Case 1. IV(H(v'))I = 1. 

In this case, v; = v; (1 S i,j Sr), and so V(H(v')) = {v'}. Then x,v'x; 
(i;ij)is alength-2 pathin G. Suppose thatd(x,) <n/(g-2)p-,. By(l), 
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d(x,) e: n/(g -2)p- E for all 2 Si Sr. This shows that {x;, x;, • • • , x�} �
II(G'). Thus, the lemma holds.
Case 2. IV(H(v'))I > 1.

Since IV(H(v'))I > 1 and V(H(v')) n V(H(x.)) = 0, for each v,x,, there
exists a vertex y, in V(H(v')) such that y,v,x, is a length-2 path in G.

Since v' </. II(G'), d(y,) < n/(g - 2)p - E. By (1), d(x,) e:: n/(g - 2)p - E 

for all 1 S i S r. This shows that { xL x�, • • • , x�} � II( G'). The proof is
complete. □

Lemma 3. Let G be a 2-edge-connected simple graph. For any v E V(G),
i(v) S III(G')I-
Proof: Let r = i(v). Let I(v) = {x;,x;, ·· • ,x�}. Let H be the maximal
collapsible subgraph of G containing v, and let v' be the contraction image
of H. Then I(v) � Na,(v'). Let H(x;) be the preimage of x:. For each
x:, there is a vertex x, in H(x;) such that vx; is the corresponding edge
of v'x: in G. Since V(H(x,)) n V(H(x;)) = 0 (i cJ j), x;x; ¢ E(G), and
so x,vx; is a length-2 path in G. By (1), all vertices in I(v) except for at
most one are in II(G'). If one of the vertices in I(v) is not in II(G'), say
xL then since 1<

1(G1
) e: 1<

1 (G) e: 2, INa,(xi) - {v'}I > 0. Let y' be a vertex
in Na,(x;) - {v'}. Since G' is Ks-free, y' ¢ I(v). Let y be the vertex in
H(y') such that x1y is the corresponding edge of x;y' in G. Then vx 1y is
a length-2 path in G. By (1), either v' E II(G') or y' E II(G'). We may
assume that y' E II( G'). Summing up above, we have

either I(v) � II(G') or (I(v)-{x;}) U {y'} � II(G').
Thus, i(v) S III(G')I. □ 

In the following, we use an abbreviated notation n > > p to say that n is
sufficiently large relative to p.

Lemma 4. Let G be a k-edge-connected simple noncollapsible graph of
order n with girth g E {3,4} and k E {2, 3}. Let G' be the reduction of G.
If G satisfies (1) and if n >> p e: 2 and n >> E1 then

2 S III(G')I Sp. (6)

Proof: The lower bound is trivial. In the following, we shall prove III( G') I S
p only. Let c = IV(G')I and t = III(G')I- Then lr(G')I = c- t. By Lemma
1, for each vertex u1 E II(G'), there is a vertex u in V(H(u')) such that

and so

n 
- E < d(u) < i(u) + IV(H(u'))I + g - 4 

(g - 2)p - - (g - 2) 
' 

n 
+ 4 - g _, < i(u) + 

IV(H(u'))I _
(g - 2)p (g - 2) - g - 2 
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Then by (7) and t = III(G')I,

t{ n
+ 

(4 -:) _ <} $ L i(u) + Lu'EII(G') l:(H(u'))I _ (8)
(g - 2)p (g - )p u'EIT(G') (g - ) 

For each v' E r(G'), by Lemma 1, there is a vertex v in V(H(v')) such that

k $ d(v) $ i(v) + IV(H(v'))I: g -4'
g-

and so
k 4 - g "( ) IV(H(v'))I 

+--2:c;,v+ 2 · g- g-

Then since Jr(G')I = c - t,

{k+ 4-g}(c-t) $ L i(v)+ Lv'ff(G')IV(H(v'))I_
g - 2 •'Er(G') (g - 2) 

By (8), and (9), and V(G') = II(G') U r(G'),
4-g n 4-g {k+ 
9

_2}(c-t)+t{
(g-2)p + 

9
_2 -e}

< °" "( ) Lv'EV(G') IV(H(v'))I 
- L.., •v+ 2 .

v'EV(G') g -

4-g n 
{k + -

2
}c+ t{

( 2) 
- (k +e)}

g- g- p 

< °" "( ) Lv'EV(G') IV(H(v'))I 
- L.., •v+ 2 .

v1EV(G') g -

Note that Lv'EV(G') i(v) $ Lv'EV(G') d'(v') = 2IE(G')I and

(9) 

(10)

Lv'EV(G') IV(H(v'))I = n. By Theorem F(c), IE(G')I $ 2c-4. By (10),
n 

{(g -2)k+4-g}c+t{- - (g-2)(k+e)} $ (g-2)(4c-8) +n, 
p n 

t{- - (g - 2)(k + e)} $ {(g - 2)(4 - k) -4 + g}c- 8(g - 2) + n.
p (11) 

Since c $ n, by (11)
n t{-- (g - 2)(k + e)} $ {(g - 2)(4 - k) - 3 + g}n - 8(g - 2). (12)
p 
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Since g E {3,4} and k E {2,3}, 

By (12) and (13), 

(g - 2)(4 - k) - 3 + g $ 5. 

n 
t{- - (g -2)(k +<)} $ 5n- 8(g- 2), 

p 

5 
5p2(g - 2)(k + <) - B(g - 2)p 

t < p + ���--=---'i--�.- n-(g-2)(k+<)p

Therefore, when n > > p and n > > <, 

t $ 5p. 

(13) 

(14) 

By Lemma 3, i(v) $ III(G') I = t $ 5p. By (8), (14) and LvEII(G') IV(H(v)) I 
�n, 

t(n + (4 - g)p - (g - 2)p<) $ (g - 2)p L i(v) + np, 
vEIT(G') 

t(n + (4 - g)p - (g - 2)p<) $ (g - 2)5p2t + np, 
t{n + (4 - g)p - (g - 2)p< - 5(g - 2)p2 }::; np, 

p{(g -2)p(< + 5p) - (4 - g)p} 
t<p+--,-,c'-""---;:-;-�--::-7�-=,-';c-....,.,-�.,.--cc . - n - {(g - 2)p, + 5(g - 2)p2 - (4 - g)p}

Therefore, t $ p for n > > p and n > > <. The proof is complete. □ 

Remark. One can check that Lemma 4 holds if n satisfies the following: 1 (3+ ,)(p+ l)p -8p 
max{2(3 + <)p(3p + 1) - 16p, 2p(p + 1)(< + 3p)} 

n> 
max{(2 + <)p(2p + 1) -8p,p(p+ l)(2p + < - 1)} 
max{2(2 + <)p(5p + 1) - 16p, 2p(p + 1)(5p + ,)}

However, these bounds are not the best possible. 

ifk=3andg=3, 
if k=3 and g=4, 
if k=2 and g=3, 
if k=2 and g=4. 

Corollary 1. Let G be a graph satisfying the conditions of Lemma 4. Let 
v E II(G'). Let H(v) be the preimage of v in G. Then 

n 
IV(H(v))I � - + (4 - g) - (g - 2)(e + p). (15) 

p 

Furthermore, if JII(G')I = p then 

1r(G')I ::; p{(u - 2)(, + p) + u -4}. (16) 
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Proof: The inequality (15) follows from Lemmas 3 and 4, and (7) in the 
proof of Lemma 4. For the inequality (16), if III(G')I = p, then by (15) 

n = L IV(H(v))I = L IV(H(v))I + L IV(H(v))I 
vEV(G') vEII(G') 

n
� lr(G')I + p{- + (4 - g) - (g - 2)(< + p)}

p 

Thus, 1r(G')I ::; p{(g - 2)(, + p) + g -4}. □ 

Lemma 5. Let G be a graph satisfying the conditions in Lemma 4 Let G' 
be the reduction of G. Suppose that III( G') I = p and n > > p and n > > e. 
Let v1 E II(G'). 

(a). If g = 3 and Na,(v') n r(G') cf 0, then 

(b). If g = 4, then 

n 
IV(H(v'))I � - + 1 - <. 

p 

IV(H(v'))I � � - 2,. 
p 

(17) 

(18) 

Furthermore, if IV(H(v'))I = � -2,, then H(v') is a bipartite graph with 
p 

bipartition V(H(v')) =XU Y such that IXI =!YI= - -f, 

2p 

Proof: Since III(G')I = p, by Corollary 1, 

IV(G')I = III(G')I + lr(G')I ::; P + p{(g - 2)(, + p) + g -4}, (19) 

and so 

d'(v')::; IV(G')I - 1 ::; p + p{(g - 2)(< + p) + g - 4} -1. (20) 

There are two cases. Let us consider the case when g = 3 first. 
Case 1. g = 3. 

Let x' E Na,(v')n r(G'). Let xv be the edge in G corresponding to x'v' 
in E(G'). Then d(x) < n/p - < since x' ¢ II(G'). Let A= Na-I(v)(v). 
Then Ac;; V(H(v')) -I(v). Note that since G' is simple and K3-free, for 
any z EA, zx ¢ E(G), and so zvx is a length-2 path in G. 
Subase 1: There is a vertex yin A such that i(y) = 0. 

Since yvx is a length-2 path in G and since d(x) < n/p - <, by (1), 
i(y) = 0 and y EA c;; V(H(v')), 

n 
- - <::; d(y) :;; IV(H(v'))I - l.
p 
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Inequality (17) follows in this case. 
Subcase 2. Every vertex yin A has i(y) 'F 0. 

By the definition ofreduction, each vertex in Na,( v1 ) can only be adjacent 
to one vertex in V(H(v')), and so in this case IAI :c, INa,(v')I = d'(v'). By 
Lemmas 3 and 4, i(v) :c, III(G')I :c, p. Thus, by (2) and (20) with g = 3, 
and n >> p and n >> ,,

d(v) = i(v) + INa-I(v)(v)I = i(v) + IAI � III(G')I + d'(v') < :':. - •· 
P (21) 

Note that for any z E A, zvx is a length-2 path in G. By (1), since 
d(x) < n/p - ,, 

n 
INc(z)I = d(z) 2: - - •· 

p 

By (19) and g = 3, IV(G')I :c, p(e+p). When n is large, INa(z)I 2: n/p-• >
IV(G')I > d'(v) 2: IAI, andso there exists avertexuinNa(z)-Asuchthat 
i(u) = 0. Since uz E E(G), z E V(H(v')), and i(u) = 0, u E V(H(v')).
Therefore, since u t/. A and i(u) = 0, uv </. E(G), and so vzu is a length-2 
path in G. Thus, (21), (1) with g = 3, and i(u) = 0 implies that 

:':. - • :c, d(u) :c, i(u) + IV(H(v'))I - 1 = IV(H(v'))l -1. 
p 

This proves the lemma for g = 3. Next we consider the case when g = 4. 
Case 2. g=4. 

Since v' E II(G'), there is a vertex (say y) in V(H(v')) such that 
n 

INa(Y)I = d(y) 2: 2P 
- <.

ifi(y) = 0, then INa-1(,)(Y)I = INa(Y)l 2: n/2p-< > d'(v')+p. Ifi(y) 2: 1, 
then since i(y) :', p, INa-I(y)(Y)I = INa(Y)I - i(y) 2: n/2p- < -p > d'(v').
Note that each vertex in Na,(v') can be adjacent to only one vertex in 
H(v'). This shows that not matter whether y is adjacent to a vertex in 
Na,(v') or not, there are two vertices (say x1,x2) in Na-I(y)(Y) such that 
i(xt) = i(x2) = 0. Since G is Ks-free, x1x2 </. E(G), and so x1yx2 is 
a length-2 path in G. We may assume that d(x1) 2: d(x2). By (1) and 
i(xi) = 0, 

n 
INa(xi)I = d(xi) 2: 2P - <,

Na(x1) � V(H(v')).
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(22) 

(23)



By (22) and (23), similar to the argument above, there are two vertices (say
zi, z2) in N0 (xi) such that i(z1) = i(z2) = 0 and d(z1) 2 d(z2)- Thus, by
(1) and i(z1) = 0,

(24)

Na(zi) � V(H(v')). (25)
Since G is K3-free, and x1z1 E E(G), Na(x1) n Na(zi) = 0 Therefore, by
(22), (23), (24) and (25),

IV(H(v'))I 2 INa(x1)I + INa(z1)I 2 2(2
n - <) = !:: - 2E. (26)
p p 

Furthermore, if jV(H(v'))I = n/p -2<, then (26) holds with equality, and
so V(H(v')) = Na(xi)UNa(z1) with INa(x1)I = INa(z1)I = n/2p-E. The
proof is complete. □

4 The Fan-Type Conditions for Collapsible Graphs

We are now ready to prove our main results.
Theorem 1. Let G be a simple 2-edge-connected graph of order n satisfy
ing (1) with girth g = 3, p = 2, and E = 2. Ifn is sufficiently large (n > 30)
then either G is collapsible, or G can be contracted to C4 (4-cycle) in such
a way that the preimages of two vertices in C4 are Kr, or Kr -e, where
r = n/2 -1.
Proof: Let G' be the reduction of G. Suppose that G is not collapsible.
Then c = IV(G')I 2 4. By Lemma 4, t = III(G')I = 2. Let II(G') = {v\,vD.
Let H(v:) be the preimage of v; in G, (1 S i S 2). Since d'(v;) 2 2 and
III(G')I = 2, N0,(v:) n r(G') ,J 0. Therefore, by Lemma 5(a) with g = 3,
p= € = 2,

IV(H(v;))I 2 � -l.

Therefore,

n2 lr(G')I+ I;IV(H(v:))l 2 (c-2)+2(�-1) =c-4+n. (27)
i=l 

Since c 2 4, (27) holds with equality, and soc= jV(G')I = 4 and IV(H(v:Jll
= n/2 - 1 (1 Si S 2). This shows that G' = C4. By (1) with p = E = 2
and g = 3, H(v:) E {Kn/2-1, Kn/2-1 - e}. The proof is complete. □ 
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Theorem 2. Let G be a simple 2-edge-connected and Ks-free (g = 4)
graph of order n satisfying (1) with p = 2 and , = 1/2. If n is sufficiently
large (n > 126), then either G is collapsible, or G can be contracted to C4
in such a way that the preimages of two vertices in C4 are K,,s or K,,8 - e,
wheres= (n -2)/4. 
Proof: Since G is Ks-free, G has girth g = 4. Let G' be the reduction of 
G. Suppose that G is not collapsible. Then c = JV(G')I ?: 4. By Lemma
4, JII(G')I = 2. Let II(G') = {v;,v;}. Let H(v:) be the preimage of v/ in
G, (1 :5 i :5 2). Since d'(vi) ?: 2 and III(G')I = 2, Na,(v:) n r(G') # 0. By
Lemma 5(b) with g = 4, p = 2 and,= 1/2,

IV(H(vD)I ?: i -1. (28) 

Therefore, 
2 

n?: Jr(G')I + L JV(H(vi))I ?: c - 2 + 2(i -1) = c-4 + n. (29) 
i=l 

Hence, c = JV(G')I = 4, and so G' = C4. Then (28) and (29) hold 
with equality. By Lemma 5(b), H(v:) is a bipartite graph with biparti
tion V(H(v;)) =XU Y and IXI = IYI = (n -2)/4. By (1) with p = 2 and 
, = 1/2, this forces that H(v;) E {K,,.,K,,, - e}, wheres = (n- 2)/4. 
The proof is complete. □

Since collapsible graphs and C4 are supereulerian, by Theorem F(b), we 
have 
Corollary 2. A graph satisfying Theorem 1 or Theorem 2 is supereule
rian. □

Remark. Let V(K2,s) = {x,y,v1,v2,v3}, where d(x) = d(y) = 3 and 
d(v;) = 2. Let G be a graph obtained from K2,s by replacing vertices x and 
y by H(x) = K(n-S)/2 and H(y) = K(n-S)/2 (or K,,, wheres= (n-3)/4), 
respectively, and replacing each path xv,y by a path x,v,y; such that x; # x;
and Y; ,j, Y; (i ,j, j), where x, E V(H(x)) and Y; E V(H(y)). Then 
G is a 2-edge-connected simple (or Ks-free) graph of order n such that 
max{d(u),d(v)}?: (n-5)/2 (or max{d(u),d(v)}?: (n-3)/4) for each pair 
of distance-2 vertices u, v in G. The reduction of G is the non-supereulerian 
graph K2,s- Thus, Theorem 1, Theorem 2, and Corollary 2 are best possible. 

For 3--edge-connected graphs, we have the following: 
Theorem 3. Let G be a 3-edge-connected simple graph of order n sat
isfying ( 1) with p = 4 and e = 9 / 4. If n is sufficiently large, then G is 
collapsible. 

To prove Theorem 3, the following lemma is needed. 
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Lemma 6. (Chen [9]). Let G be a 3-edge--connected simple graph on 
n :, 11 vertices. Then either G is collapsible or G is the Petersen graph. □

Proof of Theorem 3: Let G' be the reduction of G. Suppose that G is 
not collapsible. Then by Lemma 4, t = III(G')I :, 4, and by Lemma 6, 

c= JV(G')I;:: 10. (30) 

Claim 1. t = III( G') I = 4. 
By contradiction, suppose that t:, 3. Then by (30) lr(G')I = c- t;:: 7. 

Note that G is 3-edge--connected, and so is G'. Hence, d'(u) ;:: 3 for every 
u E V(G'). By Lemma 2, for every u E r(G'), all neighbors of u except
for most one are in II(G'). Since lr(G')I ;:: 7, and d'(u) ;:: 3 for every
u E r(G'), and V(G') = II(G') U r(G'), by observation, one can find that
G' contains either a Ks or a Ks,s - e as a subgraph, and so by Theorem
F( c) G' is not a reduced graph, a contradiction. Claim 1 is proved.
Claim 2. Let v' E II(G'). Then N0,(v') n r(G') cl 0. 

By contradiction, suppose that Na, (v') � II(G')-{ v'}. Then by Claim 1, 
INa,(v')I:, t-1 = 3. Since G' is 3-edge--connected, INa,(v')I = 3. Let S = 
V(G')-(N0,(v1)U{v'}). Since III(G')I = 4, S = r(G') and ISi = c-4;:: 6. 
Note that for any u E S = r(G'), uv' ¢ E(G'). Therefore, by Lemma 2, 
all neighbors of u except for at most one are in II(G') -{v'} = N0,(v'). 
Since INa,(v')I = 3 and ISi;:: 6, G' contains either a Ks or a Ks,s - e as a 
subgraph, contrary to that G' is a reduced graph. Claim 2 is proved. 

By Claims 1 and 2, Lemma 5(a) can be applied, and so IV(H(v))I ;:: 
(n -5)/4 for any v E II(G'). Therefore, 

"°' 
n-5

n;::c-t+ L, JV(H(v))l;c:c-4+4(-4-)=c-9+n,
vEII(G') 

and so c:, 9. This is contrary to (30). The proof is complete. □ 

Theorem 4. Let G be a 3-edge--connected simple and Ks-free (g = 4) 
graph of order n satisfying (1) with p = 4 and , = 5/8. Then G is collapsi
ble. 

Proof: By way of contradiction, suppose that G is not collapsible. Then 
by Lemma 6, c = JV(G')I ;:: 10. Similar to the proof in Theorem 3, t = 
III( G') I = 4 still holds. 

By Lemma 5(b), JV(H(v))I;:: (n-5)/4 for every v E II(G'). Therefore, 
since III( G') I = 4, 

"°' 
n-5

n;:: c-t+ L, JV(H(v))I ;::c-4+4(-4-) =c-9+n,
tJEII(G') 
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and so c � 9. This is contrary to c � 10. The proof is complete. D 

Remark. Let G be a graph obtained from the Petersen graph P by re
placing four vertices of P by H; = Kr (l � i � 4) where r = (n - 6)/4 (or 
H; = K,,s if g = 4 wheres= (n-6)/8) in an appropriate way (see Figure 2). 
Therefore, G is a 3-edge-connected simple (K3-free if g = 4) graph of order 
n such that max{d(u),d(v)} � (n-10)/4 (or max{d(u), d(v)} � (n- 6)/8 
if g = 4) for every pair of distanoo-2 vertices u, v in G. However, the reduc
tion of G is the Petersen graph. This shows that Theorem 3 and Theorem 
4 are best possible. 

Figure 2 
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