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Circumferences of 3-connected claw-free graphs, II

Zhi-Hong Chen∗†, Butler University, Indianapolis, IN 46208, U.S.A.

April 4, 2017

Abstract

For a graph H, the circumference of H, denoted by c(H), is the length of a longest cycle in

H. It is proved in [4] that if H is a 3-connected claw-free garph of order n with δ ≥ 8, then

c(H) ≥ min{9δ − 3, n}. In [11], Li conjectured that every 3-connected k-regular claw-free graph

H of order n has c(H) ≥ min{10k − 4, n}. Later, Li posed an open problem in [12]: how long

is the best possible circumference for a 3-connected regular claw-free graph? In this paper, we

study the circumference of 3-connected claw-free graphs without the restriction on regularity and

provide a solution to the conjecture and the open problem above. We determine five families Fi

(1 ≤ i ≤ 5) of 3-connected claw-free graphs which are characterized by graphs contractible to the

Petersen graph and show that if H is a 3-connected claw-free graph of order n with δ ≥ 16, then

one of the following holds:

(a) either c(H) ≥ min{10δ − 3, n} or H ∈ F1.

(b) either c(H) ≥ min{11δ− 7, n} or H ∈ F1 ∪ F2.

(c) either c(H) ≥ min{11δ − 3, n} or H ∈ F1 ∪ F2 ∪ F3.

(d) either c(H) ≥ min{12δ− 10, n} or H ∈ F1 ∪ F2 ∪ F3 ∪ F4.

(e) if δ ≥ 23 then either c(H) ≥ min{12δ− 7, n} or H ∈ F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5.

This is also an improvement of the prior results in [4, 10, 13, 14].

Keywords: Claw-free graph; Circumference; Minimum degree; Petersen graph

1 Introduction

Graphs considered in this paper are finite and loopless. A graph is called a multigraph if it contains

multiple edges. A graph without multiple edges is called a simple graph or simply a graph. As in [1],

κ′(G) and dG(v) denote the edge-connectivity of G and the degree of a vertex v in G, respectively. The

minimum degree of a graph G is denoted by δ(G) or δ. For a vertex v ∈ V(G), let EG(v) be the set

of edges in G incident with v. Thus, when G is a simple graph, |EG(v)| = dG(v). An edge cut X of a

graph G is essential if each of the components of G − X contains an edge. A graph G is essentially

k-edge-connected if G is connected and does not have an essential edge cut of size less than k. A

vertex set U ⊆ V(G) is called a covering of G if every edge of G is incident with a vertex in U. The

minimum number of vertices in a covering of G is called the covering number of G and denoted by

β(G). An edge e = uv is called a pendant edge if min{dG(u), dG(v)} = 1.

A trail T is a finite sequence T = u0e1u1e2u2 · · · erur, whose terms are alternately vertices and

edges, with ei = ui−1ui (1 ≤ i ≤ r), where the edges are distinct. A trail T is a closed trail if u0 = ur

∗E-mail address: chen@butler.edu
†Research is supported by Butler University Academic Grant (2016)
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and is called a (u, v)-trail if u = u0 and v = ur. A trail or closed trail T in a graph G is called a spanning

trail (ST) or a spanning closed trail (SCT) of G if V(G) = V(T ) and is called a dominating trail (DT)

or a dominating closed trail (DCT) if E(G − V(T )) = ∅. The family of graphs with SCTs is denoted

by SL. A graph G is called a DCT graph if G has a DCT.

The circumference of a graph H, denoted by c(H), is the length of a longest cycle in H. A graph

H is claw-free if H does not contain an induced subgraph isomorphic to K1,3. In this paper, we will

be concerned with the circumference of 3-connected claw-free graphs.

In [14], Matthews and Sumner proved that every 2-connected claw-free graph H of order n has

c(H) ≥ min{n, 2δ + 4}. Li, et al. [13] proved that every 3-connected claw-free graph H of order n has

c(H) ≥ min{n, 6δ − 15}. Solving a conjecture posed in [13], we proved the following.

Theorem 1.1 ([4]). If H is a 3-connected claw-free graph of order n and δ ≥ 8, c(H) ≥ min{n, 9δ−3}.

Theorem 1.1 is best possible in the sense that if Hr = L(Gr) where Gr is obtained from the Petersen

graph P by adding r > 0 pendant edges at each vertex of P, then c(Hr) = 9δ(Hr) − 3.

For regular claw-free graphs, Li posed the following conjecture in [11].

Conjecture 1.2 (Li, Conjecture 6 [11]). Every 3-connected k-regular claw-free graph H on n vertices

has c(H) ≥ min{10k − 4, n}.

In [12], Li restated the conjecture with a different lower bound on c(H).

Conjecture 1.3 (Li, Conjecture 5.17 [12]). Every 3-connected k-regular claw-free graph H on n

vertices has c(H) ≥ min{12k − 7, n}.

It was stated in [12] that Conjecture 1.3 was from [11]. However, Conjecture 1.2 is the only

conjecture in [11]. We don’t know why “10k − 4” is changed to “12k − 7” in Conjecture 1.3. Maybe

it is more proper to treat them as open problems. In fact, Li posed an open problem in [12].

Problem 1.4 (Li, Problem 5.18 [12]). How long is the best possible circumference for a 3-connected

regular claw-free graph?

Note that Hr mentioned above is a non-regular claw-free graph. These conjectures and the

open problem suggest a more general problem: how long is the best possible circumference for a

3-connected claw-free graph H if H , Hr?

In this paper, using much improved techniques employed in [4], we provide solutions to these

open problems and conjectures. Our results are given in next section.

2 Main results and Ryjác̆ek’s closure concept

For a graph G, the line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where two

vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent. As we know that

all line graphs are claw-free and a connected line graph H , K3 has a unique graph G with H = L(G).

We call G the preimage graph of H. Ryjáček [16] defined the closure cl(H) of a claw-free graph H to

be one obtained by recursively adding edges to join two nonadjacent vertices in the neighborhood of

any locally connected vertex of H as long as this is possible, and H is said to be closed if H = cl(H).
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Theorem 2.1. (Ryjáček [16]). Let H be a claw-free graph and cl(H) its closure. Then

(a) cl(H) is well defined, and κ(cl(H)) ≥ κ(H);

(b) there is a K3-free simple graph G such that cl(H) = L(G);

(c) for every cycle C0 in L(G), there exists a cycle C in H with V(C0) ⊆ V(C).

Let P be the Petersen graph. Let Φa and Φb be two connected K3-free simple graphs. Let

P(Φa,Φb) be an essentially 3-edge-connected K3-free simple graph obtained from P by replacing

a vertex va in P by Φa and replacing a vertex vb in P by Φb, and by adding at least r > 0 pendant edges

at each vertex of V(P) − {va, vb} and subdividing m edges of P for m = 0, 1, · · · , 15.

LetΠa and Πb be two families of K3-free graphs. Define P(Πa,Πb) be the family of graphs below:

P(Πa,Πb) = {G | G = P(Φa,Φb) where Φa ∈ Πa and Φb ∈ Πb } (see Fig. 2.1. for examples).

Here is a list of families of K3-free graphs that will be used for Πa or Πb.

• LetK1,r be the family of stars K1,r with r ≥ 1 edges.

• LetK2,r be the family of spanning connected subgraphs of K2,r for some r ≥ 2.

• Let Qt be the family of K3-free connected simple graphs G with α′(G) = t.

Note that Kt,s ∈ Qt for t ≤ s and Kt,s = Qt for t ∈ {1, 2} and s ≥ t (see Proposition 3.3).

For essentially 3-edge-connected K3-free simple graphs, we define the following families:

• P1 = P(K1,r,K1,r).

• P2 = P(K2,r,K1,r).

• P3 = P(Q3,K1,r).

• P4 = P(K2,r,K2,r).

• P5 = P(Q4,K1,r).

• P6 = P(Q3,K2,r).

For each i (1 ≤ i ≤ 6), we define a family Fi of 3-connected claw-free graphs according to Pi:

Fi = {H : H is a 3-connected claw-free graph with cl(H) = L(G) and G ∈ Pi}.

Here is our main result.

Theorem 2.2. Let H be a 3-connected claw-free simple graph of order n with δ(H) ≥ 16.

(a) Either c(H) ≥ min{10δ(H) − 3, n} or H ∈ F1.

(b) Either c(H) ≥ min{11δ(H) − 7, n} or H ∈ F1 ∪ F2.

(c) Either c(H) ≥ min{11δ(H) − 3, n} or H ∈ F1 ∪ F2 ∪ F3.

(d) Either c(H) ≥ min{12δ(H) − 10, n} or H ∈ F1 ∪ F2 ∪ F3 ∪ F4.

(e) If δ(H) ≥ 23, then either c(H) ≥ min{12δ(H) − 7, n} or H ∈ F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5.

The theorem below shows a relationship between DCTs and Hamiltonian cycles.

Theorem 2.3. (Harary and Nash-Williams [9]). The line graph H = L(G) of a graph G with at least

three edges is Hamiltonian if and only if G has a DCT.

For a graph G, define

σ2(G) = min{dG(u) + dG(v) | for every edge uv ∈ E(G)}. (1)

If cl(H) = L(G) is k-connected and L(G) is not complete, then G is essentially k-edge-connected

and δ(cl(H)) = min{dG(x) + dG(y) − 2 | xy ∈ E(G)}. Thus, σ2(G) = δ(cl(H)) + 2 ≥ δ(H) + 2.

By Theorems 2.1 and 2.3, to prove Theorem 2.2, it suffices to show the following.
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Theorem 2.4. Let G be an essentially 3-edge-connected K3-free simple graph with |E(G)| = n and

σ2(G) ≥ 18.

(a) Either G has a DCT subgraph Θ with |E(Θ)| ≥ min{10σ2(G) − 23, n} or G ∈ P1.

(b) Either G has a DCT subgraph Θ with |E(Θ)| ≥ min{11σ2(G) − 29, n} or G ∈ P1 ∪ P2.

(c) Either G has a DCT subgraph Θ with |E(Θ)| ≥ min{11σ2(G) − 25, n} or G ∈ P1 ∪ P2 ∪ P3.

(d) Either G has a DCT subgraph Θ with |E(Θ)| ≥ min{12σ2(G) − 34, n} or G ∈
⋃4

i=1 Pi.

(e) If σ2(G) ≥ 25, then either G has a DCT subgraph Θ with |E(Θ)| ≥ min{12σ2(G) − 31, n} or

G ∈
⋃5

i=1Pi.

With Theorem 2.4 we can prove Theorem 2.2.

Proof of Theorem 2.2. We prove the case (a) only. The other cases can be proved in the same way.

Let H be a 3-connected claw-free simple graph of order n with δ(H) ≥ 16 and cl(H) its closure. By

Theorem 2.1, cl(H) is 3-connected and there is a K3-free simple graph G such that cl(H) = L(G). Then

G is essentially 3-edge-connected and has size |E(G)| = n and σ2(G) = δ(cl(H)) + 2 ≥ δ(H) + 2 ≥ 18.

By Theorem 2.4, one of the following holds.

Case 1. G has a DCT subgraph Θ with |E(Θ)| ≥ min{10σ2(G) − 23, n}.

Let H1 = L(Θ), the line graph of Θ. Then H1 is a subgraph of L(G) = cl(H) and V(H1) ⊆

V(cl(H)) = V(H) and |V(H1)| = |E(Θ)|. Since Θ has a DCT, by Theorem 2.3, H1 has a Hamiltonian

cycle C0, which is a cycle with length |E(Θ)| in L(G). By Theorem 2.1, there is a cycle C in H

such that V(C0) ⊆ V(C). Therefore, since σ2(G) ≥ δ(H) + 2, c(H) ≥ |V(C)| ≥ |V(C0)| = |E(Θ)| ≥

min{10σ2(G) − 23, n} ≥ min{10δ(H) − 3, n}.

Case 2. G ∈ P1. Then H ∈ F1. This proves Theorem 2.2(a). �

Remark 2.5. For a claw-free graph H, no matter whether H is regular or not, its closure cl(H) can

be obtained in polynomial time [16] and the preimage graph G of a line graph L(G) can be obtained

in linear time [15]. Thus, we can compute G efficiently for cl(H) = L(G). Theorems 2.2 and 2.4 show

that the lower bound of c(H) of a 3-connected claw-free graph H with cl(H) = L(G) can be obtained

by checking if the graph G is in Pi for some i . Since the size of a maximum matching of a graph can

be determined in polynomial time, one can find the expected lower bound of c(H) by checking if the

graph G is in Pi in polynomial time.

(a) Ga = P(K2,r+1,K1,r)

qg
B
B
BB

�
�

�qg
Q

Q
Q

qg
qg� qgqg�����

�
�qg
@

B
B
BB
qgqg r rr

r
�

�





JJ

JJ





q q q q
K2,r+1
BBM

(b) Gb = P(K3,r , K1,r)
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(c) Gc = P(K4,r − e, K1,r)
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Fig. 2.1: Graphs in P2, P3, P5 and P(Πa ,Πb), respectively.

Remark 2.6. For the graphs in Fig. 2.1, each vertex marked by
⊙

is incident with r > 0 pendant

edges. Each of them has a DCT subgraphΘ that contains all the edges except r pendant edges incident

with a
⊙

vertex. Thus, Theorem 2.2 and Theorem 2.4 are the best possible in some sense.

(a) Graph Ga is a graph of order n = 11r + 17 in P2 that has a DCT subgraph Θa with |E(Θa)| =

10r + 17 = 10σ2(Ga) − 23 where σ2(Ga) = r + 4. Then Ha = L(Ga) has c(Ha) = 10δ(Ha) − 3.
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(b) Graph Gb is a graph in P3 with σ2(Gb) = r + 4 and has a DCT subgraph Θb with |E(Θb)| =

11r + 15 = 11σ2(Gb) − 29. Then Hb = L(Gb) has c(Hb) = 11δ(Hb) − 7.

(c) For graph Gc in Fig. 2.1(c), edge yz is deleted from K4,r (r ≥ 4), and y and z are incident with two

of the three edges connecting K4,r−yz and Gc−V(K4,r −yz). Then Gc is inP5 with σ2(Gc) = 4+r and

has a DCT subgraph Θc with |E(Θc)| = 12σ2(Gc) − 34. Then Hc = L(Gc) has c(Hc) = 12δ(Hc) − 10.

(d) Let Gd = P(K2,r+1K2,r+1) (Fig. 2.1(d) with Φa = Φb = K2,r+1). Then Gd ∈ P4 with σ2(Gd) = r + 4

and has a DCT subgraphΘd with |E(Θd)| = 11σ2(Gd)−25. Then Hd = L(Gd) has c(Hd) = 11δ(Hd)−3.

(e) Let Ge = P(K3,r,K2,r+1) (Fig 2.1(d) with Φa = K3,r and Φb = K2,r+1). Then Ge ∈ P6 and has a

DCT subgraphΘe with |E(Θe)| = 12σ2(Ge) − 31. Then He = L(Ge) has c(He) = 12δ(He) − 7.

The following corollary of Theorem 2.2 is an improvement of a main result in [10].

Corollary 2.7. If H is a 3-connected claw-free simple graph of order n ≥ 148 and if δ(H) ≥ n+3
10 , then

either H is Hamiltonian, or H ∈ F1.

Proof. Since n ≥ 148 and δ(H) ≥ n+3
10 > 15, δ(H) ≥ 16 and 10δ(H) − 3 ≥ n. By Theorem 2.2, either

H has c(H) ≥ n and so H is Hamiltonian, or H ∈ F1. �

Remark 2.8. Lai, et al., in [10] prove Corollary 2.7 for n ≥ 196 and δ(H) ≥ n+5
10

. More results on

conditions involved δ for the Hamiltonicity of 3-connected claw-free graphs can be found in [8, 12].

3 Graph contraction and Catlin’s reduction method

Let G be a connected multigraph. For X ⊆ E(G), the contraction G/X is the multigraph obtained from

G by identifying the two ends of each edge e ∈ X and deleting the resulting loops. Note that multiple

edges may arise by the identification even G is a simple graph. If Γ is a connected subgraph of G, we

write G/Γ for G/E(Γ) and say that G/Γ is obtained from G by contracting Γ.

Let G and GT be two connected graphs. We say that G is contractible to GT if GT is a graph

obtained from G by successively contracting a collection of pairwise vertex disjoint connected sub-

graphs, and call GT the contraction graph of G. For a vertex v ∈ V(GT ), there is a connected subgraph

G(v) in G such that v is obtained by contracting G(v). We call G(v) the preimage of v in G and call v

the contraction image of G(v) in GT .

Let O(G) be the set of vertices of odd degree in G. A graph G is collapsible if for every even subset

R ⊆ V(G), there is a spanning connected subgraph ΓR of G with O(ΓR) = R. Note that if R = {x, y}

then ΓR is a spanning (x, y)-trail; and if R = ∅ then ΓR is an SCT in G.

Catlin [2] showed that every multigraph G has a unique collection of pairwise disjoint maximal

collapsible subgraphs Γ1, Γ2, · · · , Γc such that V(G) = ∪c
i=1

V(Γi). The reduction of G is a graph

obtained from G by contracting each Γi into a vertex vi (1 ≤ i ≤ c) and is denoted by G′. Thus, the

reduction G′ of G is a special type of contraction graph of G. Although multiple edges may arise by

contracting an edge, contracting a maximal collapsible graph will not generate multiple edges.

We regard the edges in E(G′) as the edges in E(G). Thus, E(G) = E(G′) ∪c
i=1

E(Γi). For a vertex

v ∈ V(G′), there is a unique maximal collapsible subgraph Γ0(v) in G such that v is the contraction

image of Γ0(v) and Γ0(v) is the preimage of v. A vertex v ∈ V(G′) is a contracted vertex if Γ0(v) , K1.

A graph is reduced if G = G′. We regard K1 as a closed trail with κ′(K1) = ∞.
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Let G be a connected simple graph. Define

Di(G) = {v ∈ V(G) | dG(v) = i};

D∗i (G) = {v ∈ V(G) | dG(v) ≥ i}.

Some results on Catlin’s reduction method that will be needed are summarized below:

Theorem 3.1. Let G be a connected multigraph and let G′ be the reduction of G. Let Γ be a collapsible

subgraph in G. Then each of the following holds:

(a) ([2]). G ∈ SL if and only if G/Γ ∈ SL. In particular, G ∈ SL if and only if G′ ∈ SL.

(b) ([2]). G has a DCT (or DT) if and only if G′ has a DCT (or a DT) containing all the contracted

vertices of G′ .

(c) ([2, 3]). G′ is simple and K3-free with δ(G′) ≤ 3, and any subgraph of G′ is reduced. Further-

more, if G′ < {K1,K2,K2,s} (s ≥ 2), then |E(G′)| ≤ 2|V(G′)| − 5.

(d) ([6]). If G , K1 is reduced with |V(G)| ≤ 7 and κ′(G) ≥ 2, then |D2(G)| ≥ 3. Furthermore, if

|D2(G)| = 3, then G ∈ {K2,3,K1,3(1, 1, 1), J′(1, 1)} (see Fig 3.1).

(e) ([5]). Let G be a connected reduced graph of order n with δ(G) ≥ 2 and G , K2,b (b ≥ 2). Let

M be a maximum matching in G and |D2(G)| = l. Then |M| ≥ min{ n−1
2
, n+5−l

3
}.

(a) K1,3(1, 1, 1)

rr rr
r

rr��
HH

��

��
HH

HH

(b) J′(1, 1)

rr r rr
r r

HH

��

A
A

�
�

�
�

A
A

Fig. 3.1: Two reduced graphs G of order 7 with |D2(G)| = 3.

Let G be an essentially 3-edge-connected simple graph. Then D1(G) ∪ D2(G) is an independent

set. Let E1 be the set of pendant edges in G. For each x ∈ D2(G), there are two edges e1
x and e2

x

incident with x. Let X2(G) = {e1
x |x ∈ D2(G)}. Thus |X2(G)| = |D2(G)|. Define

G1 = G/E1 and G0 = G1/X2(G).

Since G is essentially 3-edge-connected, G1 is essentially 3-edge-connected and 2-edge-connected,

and G0 is 3-edge-connected.

In [17], Shao defined G0 for essentially 3-edge-connected graphs G and called G0 the core of G.

Although G is simple, G0 may not be simple. But by Theorem 3.1, G′0 is simple and K3-free.

For a vertex v ∈ V(G′
0
), let Γ0(v) be the collapsible preimage of v in G0, let Γ1(v) be the preimage

of v in G1 and let Γ(v) be the preimage of v in G. Then Γ(v) is a subgraph induced by E(Γ0(v)) and

some edges in E1 ∪ X2(G). By the definitions, we have the following:

(a) Γ1(v) = Γ(v)/(E1 ∩ E(Γ(v))) (it is still K3-free);

(b) Γ0(v) = Γ1(v)/(X2(G) ∩ E(Γ1(v))) (it may not be K3-free).

A vertex v ∈ V(G′
0
) (or V(G0)) is a contracted vertex if |V(Γ(v))| > 1. A vertex v ∈ V(G′

0
) (or

V(G0)) is nontrivial in G′
0

(or in G0) if |V(Γ(v))| > 1 or |V(Γ(v))| = 1 and v is adjacent to a vertex in

D2(G). A vertex v in G′
0

is trivial if dG′
0
(v) = dG(v) and v is not adjacent to a vertex in D2(G). For

instance, if x ∈ D2(G) with NG(x) = {u, v}, and if ux is a vertex in G0 obtained by contracting ux, then

both ux and v are nontrivial in G0 but ux is a contracted vertex and v is not a contracted vertex in G0.

Using Theorem 3.1(b), Shao [17] proved the following:

6



Theorem 3.2. ([17]). Let G be an essentially 3-edge-connected graph and L(G) is not complete. Let

G0 be the core of graph G, and let G′
0

be the reduction of G0, then the following holds:

(a) G0 is well defined, nontrivial and δ(G0) = κ′(G0) ≥ 3 and so κ′(G′
0
) ≥ κ′(G0) ≥ 3;

(b) G has a DCT if and only if G′
0

has a DCT containing all the nontrivial vertices in G′
0
.

Let GT be a contraction graph of G. Let v be a vertex in GT and let G(v) be the preimage of v in

G. Let Θ(v) be a connected subgraph of G(v). Define

EG(v)(Θ(v)) = {e ∈ E(G(v)) | e is incident with some vertices in Θ(v)}. (2)

For a vertex x ∈ V(G(v)), let i(x) be the number of edges in E(GT ) incident with x in G (see Fig.

3.2). For a vertex subset S ⊆ V(G(v)), let i(S ) =
∑

x∈S i(x), which is the number of edges in E(GT ) that

are incident with some vertices in S . When Θ(v) is a subgraph of G(v), we use i(Θ(v)) for i(V(Θ(v))).

Then for any x ∈ V(Θ(v)) ⊆ V(G(v)),

dG(x) = i(x) + |NG(v)(x)| = i(x) + dG(v)(x) and i(x) ≤
∑

w∈V(Θ(v))

i(w) = i(Θ(v)) ≤ dGT
(v). (3)

When GT = G′
0

and G(v) = Γ(v) with a subgraph Θ(v), i(x) ≤ i(Θ(v)) ≤ dG′
0
(v) (See Fig. 3.2).
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(v) = 4
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Fig. 3.2. Description of edges and vertices in G′0 and G that are related to i(x) and i(Θ(v))

Proposition 3.3. Let G be an essentially 3-edge-connected K3-free simple graph with σ2(G) ≥ 7. Let

GT be the contraction graph of G. For a vertex v ∈ V(GT ) with dGT
(v) = 3, let EGT

(v) be the set of

the three edges incident with v in GT and let G(v) be the preimage of v in G. If α′(G(v)) ∈ {1, 2}, then

for any two edges in EGT
(v), G(v) has a dominating (x, y)-trail Tv where x, y are incident with the two

edges and that each of the following holds:

(a) if α′(G(v)) = 1, then G(v) ∈ K1,r and |E(G(v))| = |EG(v)(Tv)| ≥ σ2(G) − 4;

(b) if α′(G(v)) = 2, then G(v) ∈ K2,r and |E(G(v))| = |EG(v)(Tv)| ≥ 2σ2(G) − 3 − i(Tv).

Proof. If α′(G(v)) = 1, then since G is essentially 3-edge-connected, K3-free and simple, G(v) = K1,r.

Then Tv = K1. Let V(Tv) = {x}. Then |E(G(v))| = |EG(v)(Tv)| = |NG(v)(x)| = r and i(x) = dGT
(v) = 3.

Let xy be an edge in E(G(v)) with dG(v)(x) = r and dG(y) = 1. Since dG(x) = dG(v)(x) + i(x) = r + 3

and dG(x) + dG(y) ≥ σ2(G), r ≥ σ2(G) − 4 and (a) is proved.

Next, we assume that α′(G(v)) = 2. Then G(v) has a cycle. Let Cs = u1u2 · · · usu1 be a cycle in

G(v). Since G(v) is simple and K3-free and α′(G(v)) = 2, 4 ≤ s ≤ 5.

Note that EGT
(v) is the set of edges outside of G(v) incident with some vertices in G(v). Since

|EGT
(v)| = 3 and |V(Cs)| = s ≥ 4, a vertex (say u1) in V(Cs) is not incident with any edge in

EGT
(v). Then dG(u1) = dG(v)(u1). Since G is an essentially 3-edge-connected K3-free simple graph

and α′(G(v)) = 2, NG(u1) = NG(v)(u1) = {u2, us} and dG(u1) = 2.

Since i(u2)+i(us) ≤ dGT
(v) = 3, we may assume that i(u2) ≤ 1. Sinceσ2(G) ≥ 7, dG(u2) ≥ σ2(G)−

dG(u1) ≥ σ2(G) − 2 ≥ 5. Then |NG(v)(u2)| = dG(v)(u2) = dG(u2) − i(u2) ≥ 4. Let z ∈ NG(v)(u2) − V(Cs).

If s = 5, then {u1u5, u2z, u3u4} is a matching in G(v), a contradiction. Thus s = 5 is impossible.
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Hence, s = 4. If there is a vertex z1 in NG(v)(u3) − {u2, u4}, then {u1u4, zu2, z1u3} is a matching in

G(v), a contradiction. Thus, NG(v)(u3) = {u2, u4}.

Let X = {u2, u4} and Y = NG(v)(u2) ∪ NG(v)(u4). Then since G is K3-free, G(v) ∈ K2,r with

V(G(v)) = X ∪ Y. Since dG(u1) = 2, only u2, u3 and u4 are the possible nontrivial vertices in G(v)

and may be incident with the edges in EGT
(v). By inspection, for any given two edges in EGT

(v),

G(v) has a dominating (x, y)-trail Tv containing all the nontrivial vertices of G(v) where x and y are

incident with the two given edges. Thus, i(Tv) ≥ 2 and {u2, u4} ⊆ V(Tv). Next, we shall prove that

|EG(v)(Tv)| ≥ 2σ2(G) − 3 − i(Tv).

Since {u2, u4} ⊆ V(Tv) and EG(v)(u2) ∩ EG(v)(u4) = ∅, EG(v)(u2) ∪ EG(v)(u4) ⊆ EG(v)(Tv) and

|EG(v)(Tv)| ≥ |EG(v)(u2)| + |EG(v)(u4)| = dG(v)(u2) + dG(v)(u4). (4)

For u ∈ {u2, u4} and a vertex w ∈ NG(v)(u), since dG(w) + dG(u) ≥ σ2(G), by (3),

dG(v)(u) = dG(u) − i(u) ≥ σ2(G) − dG(w) − i(u). (5)

For each z ∈ NG(v)(u) where u ∈ {u2, u4}, since G is K3-free and α′(G(v)) = 2, NG(v)(z) ⊆ {u2, u4},

and either dG(v)(z) = 1 or dG(v)(z) = 2.

Case 1. There is a vertex z in NG(v)(u) where u ∈ {u2, u4} (say u = u2) such that dG(v)(z) = 1.

We have the following two sub cases:

Subcase 1.1. dG(z) = dG(v)(z) = 1. Then zu2 is a pendant edge. By (5) with u = u2 and w = z,

dG(v)(u2) ≥ σ2(G) − 1 − i(u2). Since u1 ∈ NG(v)(u4) and dG(u1) = 2, by (5) with u = u4 and w = u1,

dG(v)(u4) ≥ σ2(G) − 2 − i(u4). By (4) and i(u2) + i(u4) ≤ i(Tv),

|EG(v)(Tv)| ≥ dG(v)(u2) + dG(v)(u4) ≥ (σ2(G) − 1 − i(u2)) + (σ2(G) − 2 − i(u4)) ≥ 2σ2(G) − 3 − i(Tv).

In the following, we assume that no vertices in V(C4) are incident with a pendant edge in G.

Subcase 1.2. dG(v)(z) = 1 and dG(z) , 1.

Since G is essentially 3-edge-connected and α′(G(v)) = 2, z must be incident with an edge in

EGT
(v) ∩ X2(G) and dG(z) = 2 and i(z) = 1.

Let Zi be the set of vertices in NG(v)(ui) that are incident with an edge in EGT
(v)∩X2(G) (i = 2, 4).

Then |Z2 | + |Z4| ≥ i(z) = 1 and |Z2| + i(u2) + |Z4| + i(u4) ≤ dGT
(v) = 3. Without loss of generality, we

assume that |Z2| + i(u2) ≤ 1.

Let W = NG(v)(u2)∩ NG(v)(u4). Then |NG(v)(ui)| = |W |+ |Zi | and |NG(ui)| = |NG(v)(ui)|+ i(ui) for i ∈

{2, 4}. By (5) with u = u2 and w = u1, dG(v)(u2) ≥ σ2(G)−2−i(u2). Hence, |W | ≥ σ2(G)−2−|Z2 |−i(u2).

Then by (4) and 2(|Z2| + i(u2)) ≤ 2 ≤ i(Tv),

|EG(v)(Tv)| ≥ |NG(v)(u2)| + |NG(v)(u4)| = 2|W | + |Z2| + |Z4| ≥ 2|W | + 1

≥ 2(σ2(G) − 2 − |Z2| − i(u2)) + 1 = 2σ2(G) − 3 − 2(|Z2| + i(u2)) ≥ 2σ2(G) − 3 − i(Tv).

We are done for this case.

Case 2. For any z in NG(v)(u2) ∪ NG(v)(u4), dG(v)(z) = 2.

Then NG(v)(z) = {u2, u4} and NG(v)(u2) = NG(v)(u4). We have a Tv trail containing the vertices that

are incident with the three edges in EGT
(v). Thus, i(u2) + i(u4) ≤ i(Tv) = 3. We assume i(u2) ≤ 1.

By (5) with u ∈ {u2, u4} and w = u1, and by i(u2) ≤ 1 and dG(u1) = 2, dG(v)(u2) = dG(u2) − i(u2) ≥

σ2(G) − dG(u1) − 1 = σ2(G) − 2 − i(u2). Therefore, by (4) and 2i(u2) + 1 ≤ 3 = i(Tv),

|EG(v)(Tv)| ≥ |EG(v)(u2)| + |EG(v)(u4)| = |NG(v)(u2)| + |NG(v)(u4)| = 2|NG(v)(u2)|

≥ 2(σ2(G) − 2 − i(u2)) = 2σ2(G) − 3 − (1 + 2i(u2)) ≥ 2σ2(G) − 3 − i(Tv).

The proof is complete. �
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4 Associated Theorems and the proof of Theorem 2.4

The following theorem plays an important role in our approach to prove Theorem 2.4.

Theorem 4.1. ([7]). Let G be a 3-edge-connected simple graph. Let S ⊆ V(G) be a vertex subset

with |S | ≤ 12. Then either G has a closed trail C such that S ⊆ V(C), or G can be contracted to P in

such a way that the preimage of each vertex of P contains at least one vertex in S .

We shall choose a subset S of V(G′
0
) that allow us to find a DCT subgraph in G with large size

according to whether G′
0

is contractible to the Petersen graph or G′
0

has a closed trail containing S .

Let G be an essentially 3-edge-connected K3-free graph. We will use the following notation:

• S 0 = {v ∈ V(G′
0
) | v is a contracted vertex in G′

0
, i.e., Γ(v) , K1};

• S 1 = V(G′
0
) − S 0, (then dG(v) = dG0

(v) = dG′
0
(v) if v ∈ S 1);

• S ∗1 = {v ∈ S 1 − D3(G′0) | dG′
0
(v) ≥ σ2(G) − 3};

• S 2 = V(G′
0
) − (S 0 ∪ S ∗

1
);

• Φ = G′
0
[S 2], the subgraph induced by S 2 in G′

0
;

• let MΦ be a maximum matching in Φ and let S M be the set of end vertices of the edges in MΦ;

• let S 3 = V(G′
0
) − (S 0 ∪ S ∗

1
∪ S M), and so S 3 = V(Φ) − S M = S 2 − S M;

• let Va = S 0 ∪ S ∗
1
∪ S M.

Theorem 2.4 can be proved by establishing the following two associated theorems.

Theorem 4.2. Let G be an essentially 3-edge-connected K3-free simple graph with |E(G)| = n. Let G′
0

be the reduction of G0. Suppose that G′
0
< SL ∪ {P} and G′

0
can not be contracted to P in such a way

that the preimage of each vertex in P contains at least one vertex in Va. Then each of the following

holds:

(a) if σ2(G) ≥ 18, then G has a DCT subgraph Θ with |E(Θ)| ≥ min{12σ2(G) − 34, n};

(b) if σ2(G) ≥ 25, then G has a DCT subgraph Θ with |E(Θ)| ≥ min{12σ2(G) − 31, n}.

Theorem 4.3. Let G be an essentially 3-edge-connected K3-free simple graph with |E(G)| = n and

σ2(G) ≥ 8. Let G′
0

be the reduction of G0. Let Va be the set defined above. If G′
0
= P or G′

0
can be

contracted to P in such a way that the preimage of each vertex in P contains at least one vertex in Va,

then each of the following holds:

(a) either G has a DCT subgraphΘ with |E(Θ)| ≥ min{10σ2(G) − 23, n} or G ∈ P1;

(b) either G has a DCT subgraphΘ with |E(Θ)| ≥ min{11σ2(G) − 29, n} or G ∈ P1 ∪ P2;

(c) if σ2(G) ≥ 9, then either G has a DCT subgraph Θ with |E(Θ)| ≥ min{11σ2(G) − 25, n} or

G ∈
⋃3

i=1Pi;

(d) either G has a DCT subgraphΘ with |E(Θ)| ≥ min{12σ2(G) − 34, n} or G ∈
⋃4

i=1Pi;

(e) if σ2(G) ≥ 12, then either G has a DCT subgraph Θ with |E(Θ)| ≥ min{12σ2(G) − 31, n} or

G ∈
⋃5

i=1Pi.

With Theorems 4.3 and 4.2 we can prove Theorem 2.4.

Proof of Theorem 2.4. By Theorem 3.2, G0 and G′
0

are 3-edge-connected. If G′
0
∈ SL, then by

Theorem 3.1, G0 ∈ SL. By Theorem 3.2, G has a DCT. Theorem 2.4 is proved for this case.

Next, we assume that G′
0
< SL. Let Va = S 0 ∪ S ∗

1
∪ S M be the subset of V(G′

0
) defined above.

If G′
0
= P or G′

0
can be contracted to P in the way stated in Theorem 4.3, then Theorem 2.4 follows

from Theorem 4.3. Otherwise, Theorem 2.4 follows from Theorem 4.2. �
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5 Technical lemmas

The following lemma will be needed which can be proved easily and a proof can be found in [4].

Lemma 5.1 ([4]). Let G be a 2-edge-connected graph. Let {x, y, z} be a set of vertices in G (possibly

x = y or x = z). Then for any two vertices (say x and y) in {x, y, z}, G has a (x, y)-trail containing z.

Lemma 5.2. Let G be a connected K3-free simple graph. Let GT be a contraction graph of G. For a

vertex v ∈ V(GT ), let G(v) be the preimage of v in G and let M be a matching of size t in G(v). Let

Θ(v) be a connected subgraph of G(v) and EG(v)(Θ(v)) contains all the edges of M. Then

|EG(v)(Θ(v))| ≥ tσ2(G) − t2 − i(Θ(v)) ≥ tσ2(G) − t2 − dGT
(v). (6)

Furthermore, each of the following holds:

(a) if GT = G′
0

and M is a matching of size t ≥ 3 in G(v) and all the edges in M are in G′
0
, then

|EG(v)(Θ(v))| ≥ tσ2(G) − 4t + 5 − i(Θ(v));

(b) if Θ(v) is a connected dominating subgraph of G(v) with i(Θ(v)) ≥ 2, dGT
(v) ≥ 3 and t =

α′(G(v)) ≥ 4, then |EG(v)(Θ(v))| ≥ tσ2(G) − t2 − i(Θ(v)) + 2.

Proof. Let M = {y1z1, y2z2, · · · , ytzt} be a matching in G(v) such thatEG(v)(Θ(v)) contains all the edges

in M. Let Y = {y1, · · · , yt} and Z = {z1, · · · , zt} and let GM = G[Y ∪ Z]. Note that each edge in GM

occurs in exactly two of the edge sets of {EG(yi), EG (zi) | 1 ≤ i ≤ t}. Thus,

t
∑

i=1

(|EG(yi)| + |EG(zi)|) − |E(GM )| ≤ |

t
⋃

i=1

(EG(yi) ∪ EG(zi))|. (7)

Let EGT
(v) be the set of edges in E(G) − E(G(v)) incident with some vertices in Θ(v). Let A(v) =

EGT
(v)∩
(

⋃t
i=1(EG(yi) ∪ EG(zi))

)

. Then
⋃t

i=1(EG(yi)∪EG (zi)) ⊆ A(v)∪EG(v)(Θ(v)) and |A(v)| = i(Θ(v)).

Since dG(yi) + dG(zi) ≥ σ2(G), by (7),

tσ2(G) − |E(GM )| ≤

t
∑

i=1

(|EG(yi)| + |EG(zi)|) − |E(GM )| ≤ i(Θ(v)) + |EG(v)(Θ(v))|. (8)

Now, we need to find |E(GM )| in terms of t, which is depended on how the edges in M are selected.

Since G is K3-free simple graph, GM is K3-free and simple. By Turán’s Theorem, GM has at most

t2 edges. Since |A(v)| = i(Θ(v)) ≤ dGT
(v) and |E(GM )| ≤ t2, (6) follows from (8).

If all the edges in M are the edges in G′
0
, we have a better estimate on |E(GM )| for t ≥ 3.

Note that we regard E(G′
0
) ⊆ E(G). Let M′ = {y′

1
z′

1
, y′

2
z′

2
, · · · , y′tz

′
t} be a matching in G′

0
, which are

the edges in G(v). Let Γ(y′
i
) and Γ(z′

i
) be the preimages of y′

i
and z′

i
(1 ≤ i ≤ t) in G, respectively. Then

for each y′
i
z′

i
in M′, there are yi in Γ(y′

i
) and zi in Γ(z′

i
) such that yizi is the edge in G corresponding

to y′
i
z′

i
in G′

0
. Thus, M = {y1z1, y2z2, · · · , ytzt} is a matching in G(v). Let Y′ = {y′

1
, · · · , y′t } and

Z′ = {z′
1
, · · · , z′t}. Let G′

M′
= G′

0
[Y′ ∪ Z′]. Since yi ∈ V(Γ(y′

i
)), the number of edges in EG(yi) (or

EG(zi)) incident with vertices in Y ∪ Z is no more than the number of edges in EG′
0
(y′

i
) incident with

vertices in Y′ ∪ Z′. Thus, |E(GM )| ≤ |E(G′
M′

)|. Since G′
M′

is a subgraph of G′
0
, G′

M′
is reduced.

Since t ≥ 3, G′
M′
< {K1,K2,K2,s}. By Theorem 3.1, |E(G′

M′
)| ≤ 2|V(G′

M′
)| − 5 = 4t − 5. By (8) and

|A(v)| = i(Θ(v)), |EG(v)(Θ(v))| ≥ tσ2(G) − 4t + 5 − i(Θ(v)). Case (a) is proved.

For (b), Θ(v) is a dominating subgraph of G(v) with i(θ(v)) ≥ 2, dGT
(v) ≥ 3 and t = α′(G(v)) ≥ 4.
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To the contrary, suppose that (b) is false, i.e.,

|EG(v)(Θ(v))| ≤ tσ2(G) − t2 − i(Θ(v)) + 1. (9)

By (8) and (9), |E(GM)| ≥ t2 − 1. We further assume that M is a maximum matching in G(v) with

|E(GM )| as small as possible.

Since |E(GM )| ≥ t2 − 1 and t ≥ 4, the total number of edge incidents in GM is
∑t

i=1(dGM
(yi) +

dGM
(zi)) = 2|E(GM )| ≥ 2t2 − 2. At least one vertex in Y is adjacent to all the vertices in Z (otherwise,

we relabel them). Since G is K3-free, Z is an independent set in G. Similarly, at least one vertex in Z

is adjacent to all the vertices in Y and so Y is an independent set in G.

Let U = V(Θ(v)) − (Y ∪ Z). Then we have the following facts:

Claim 1. (a) U is an independent set and so EG(v)(u1) ∩ EG(v)(u2) = ∅ for any u1 , u2 in U;

(b) each vertex v in Y ∪ Z is adjacent to at most one end of each edge in M and so dGM
(v) ≤ t.

(c) each u ∈ U is adjacent to one end of each edge in M and so dG(u) = t.

Proof of Claim 1. Since Θ(v) is a dominating subgraph of G(v), G is K3-free and M is a maximum

matching in Θ(v), (a) and (b) are trivially true. Thus, we only need to prove case (c).

To the contrary, suppose that u is not adjacent to either ends of an edge e, say e = y1z1.

Since U is independent, each u ∈ U is only adjacent to vertices in Y ∪ Z. Furthermore, u ∈ U is

adjacent to at least t − 1 vertices in Y ∪ Z. Otherwise, if u is only adjacent to at most t − 2 vertices in

Y ∪ Z (say u is adjacent to y3), then M1 = (M − {y3z3})∪ {uy3} is a maximum matching. Since at least

two edge-incidents at u are missing, |E(GM1
)| ≤ t2 − 2 < |E(GM )|, a contradiction.

Thus, u is adjacent to one end of each of the edges in {y2z2, · · · , ytzt}. We may assume that

uy2 ∈ E(G) and y2 is adjacent to all the vertices in Z. Since G is K3-free, u cannot adjacent to any

vertex in Z. Thus, u is adjacent to all the vertices in Y − {y1}.

If |E(GM )| = t2, then M1 = (M − {y2z2}) ∪ {uy2} is a maximum matching. Since u is not adjacent

to y1 and z1, |E(GM1
)| < |E(GM )|, a contradiction.

If |E(GM )| = t2 − 1, then a vertex y ∈ Y is not adjacent to a vertex z ∈ Z. If y , y1 (say y = y3),

then Mb = (M − {y3z3}) ∪ {uy3} is a maximum matching. Since one edge-incident is missing at u and

one edge-incident is missing at y3 and uy3 ∈ Mb, |E(GMb
)| < |E(GM )|, a contradiction.

If y = y1, the Mb = (M−{y4z4})∪{uy4} is a maximum matching. Again, since one edge-incident is

missing at u and one edge-incident is missing at y4 and uy4 ∈ Mb, |E(GMb
)| < |E(GM )|, a contradiction.

We reach contradiction for all the possible cases. Claim 1 is proved.

Let W = V(G(v)) − V(Θ(v)). Since Θ(v) is a dominating subgraph of G(v), an edge in G(v)

incident with a vertex in W must be incident with a vertex in Θ(v) and W is an independent set. Thus,

EG(v)(w1)∩EG(v)(w2) = ∅ for any w1 , w2 in W and ∪w∈W EG(v)(w) ⊆ EG(v)(Θ(v)). If i(Θ(v)) < dGT
(v),

then W , ∅. Since dGT
(v) ≥ 3 and i(Θ(v)) ≥ 2,

i(Θ(v)) + |W | ≥ 3. (10)

By Claim 1 and W is an independent set with ∪w∈WEG(v)(w) ⊆ EG(v)(Θ(v)), we have

|EG(v)(Θ(v))| = |E(GM )| +
∑

u∈U

dG(v)(u) +
∑

w∈W

dG(v)(w) ≥ |E(GM )| + t|U| + |W |. (11)

For each yizi in M, by Claim 1(c),

dG(y j) + dG(z j) = dGM
(y j) + dGM

(z j) + i(y j) + i(z j) + |U|. (12)
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Since t ≥ 4, at least one edge (say y4z4) in M is not adjacent to any edges in A(v). Thus i(y4) =

i(z4) = 0. Since max{dGM
(y4), dGM

(z4)} ≤ t, by (12)

σ2(G) ≤ dG(y4) + dG(z4) = dGM
(y4) + dGM

(z4) + i(y4) + i(z4) + |U| ≤ 2t + |U|. (13)

Since |E(GM )| ≥ t2 − 1, by (9), (11) and (13),

t2 − 1 + t|U| + |W | ≤ |EG(v)(Θ(v))| ≤ tσ2(G) − t2 − i(Θ(v)) + 1

≤ t(2t + |U|) − t2 − i(Θ(v)) + 1 = t2
+ t|U| − i(Θ(v)) + 1,

which yields |W | + i(Θ(v)) ≤ 2, contrary to (10). The proof is completed. �

Lemma 5.3. Let G be an essentially 3-edge-connected K3-free graph with σ2(G) ≥ 7. Let G′
0

be the

reduction of G0. For each v ∈ V(G′
0
), let Γ(v) be the preimage of v in G. Let S 0, S 1, S ∗

1
, S 2 and S 3 be

the sets defined in Section 4. Then each of the following holds:

(a) For each v ∈ S 0 and 1 ≤ t ≤ α′(Γ(v)), |E(Γ(v))| ≥ tσ2(G) − t2 − dG′
0
(v).

(b) For each v ∈ D3(G′
0
) ∩ S 1, NG′

0
(v) ⊆ S 0 ∪ S ∗

1
.

(c) S 3 is an independent set.

(d) All the vertices in S 2 are trivial vertices in G′
0

and so all the nontrivial vertices are in S 0 ∪ S ∗
1
.

Proof. (a) For each v ∈ S 0, since v is a contracted vertex in G′
0
, α′(Γ(v)) ≥ 1. This is the special case

of Lemma 5.2 with GT = G′
0

and Θ(v) = G(v) = Γ(v).

(b) If v ∈ D3(G′
0
) ∩ S 1, then dG′

0
(v) = dG(v) = 3. If u ∈ NG′

0
(v) and u < S 0, then dG′

0
(u) = dG(u) and

dG′
0
(v) + dG′

0
(u) = dG(v) + dG(u) ≥ σ2(G). Thus, dG′

0
(u) ≥ σ2(G) − 3 ≥ 4 and so u ∈ S ∗

1
. (b) is proved.

(c) Since S 3 = S 2 − S M and MΦ is a maximum matching in G′
0
[S 2], no edge has two ends in S 3.

(d) If v ∈ S 2 = V(G′
0
) − (S 0 ∪ S ∗

1
), then v is not a contracted vertex and so dG(v) = dG′

0
(v). To the

contrary, suppose that v is nontrivial. Then v is adjacent to a vertex u in D2(G). Then dG′
0
(v) + 2 =

dG(v) + dG(u) ≥ σ2(G) ≥ 7 and dG′
0
(v) ≥ σ2(G) − 2 > σ2(G) − 3. Hence, v ∈ S ∗

1
, a contradiction. �

6 Proof of Theorem 4.2

We prove the following lemma first.

Lemma 6.1. Let G′
0

be the reduction of the core G0 of an essentially 3-edge-connected graph G. Let

Φ be the subgraph of G′
0

defined in section 4, and let MΦ be a maximum matching in Φ. Then

|D3(G′0)| ≥ 10 + |MΦ|(σ2(G) − 8). (14)

Proof. Since δ(G′
0
) ≥ 3, G′

0
< {K1,K2,K2,s(s ≥ 2)}. By Theorem 3.1, |E(G′

0
)| ≤ 2|V(G′

0
)| − 5. Since

2|E(G′
0
)| =
∑

v∈V(G′
0
) dG′

0
(v) =

∑

i=3 i|Di(G
′
0
)| and |V(G′

0
)| =
∑

i=3 |Di(G
′
0
)|, we have

2|E(G′0)| ≤ 4|V(G′0)| − 10;

3|D3(G′0)| + 4|D4(G′0)| · · · + i|Di(G
′
0)| + · · · ≤ 4(|D3(G′0)| + |D4(G′0)| · · · + |Di(G0)| · · · ) − 10;

|D5(G′0)| + 2|D6(G′0)| · · · + (i − 4)|Di(G
′
0)| · · · ≤ |D3(G′0)| − 10. (15)
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Recall that S M is the set of the vertices in MΦ. Let DM
i
= Di(G

′
0
) ∩ S M. By the definition of MΦ, for

each uv ∈ MΦ, dG(u) = dG′
0
(u) ≥ 4, dG(v) = dG′

0
(v) ≥ 4, and so dG(u) + dG(v) ≥ σ2(G). By (15),

|MΦ|(σ2(G) − 8) ≤
∑

uv∈MΦ

(dG(u) − 4 + dG(v) − 4)

=

∑

x∈S M

(dG(x) − 4) = |DM
5 | + 2|DM

6 | + · · · + (i − 4)|DM
i | + · · ·

≤ |D5(G′0)| + 2|D6(G′0)| · · · + (i − 4)|Di(G
′
0)| · · · ≤ |D3(G′0)| − 10.

This proves Lemma 6.1. �

Proof of Theorem 4.2. Let Va = S 0 ∪ S ∗
1
∪ S M which are defined in Section 4. By Lemma 5.3,

S 3 = V(G′
0
) − Va is an independent set and all the nontrivial vertices are in S 0 ∪ S ∗

1
. Then Va is a

vertex covering of G′
0

containing all the nontrivial vertices of G′
0
.

Claim 1. If G′
0

has a vertex covering Vc with |Vc| ≤ 12 and Vc contains all the nontrivial vertices of

G′
0
, then G has a DCT.

By Theorem 3.2, κ′(G′0) ≥ 3. Since G′0 can not be contracted to the Petersen graph in the way

stated in Theorem 4.1 with S = Vc, G′
0

has a closed trail Θc such that Vc ⊆ V(Θc). Since Vc is a vertex

covering of G′
0
, Θc is a DCT of G′

0
. Since Vc contains all the nontrivial vertices of G′

0
, Θc contains all

the nontrivial vertices of G′
0
. By Theorem 3.2, G has a DCT. Claim 1 is proved.

If |Va| ≤ 12, then by Claim 1, G has a DCT. We are done for this case.

In the following, we assume that |S 0| + |S
∗
1
| + |S M | = |Va| ≥ 13.

Case 1. |S 0| + |S
∗
1
| ≤ 11.

Since |S 0| + |S
∗
1
| + |S M| = |Va| ≥ 13, |S M| ≥ 2. Thus, |MΦ| ≥ 1. By Lemma 6.1 and σ2(G) ≥ 18,

|D3(G′
0
)| ≥ 10 + |MΦ|(σ2(G) − 8) ≥ 20.

Let S 3
0
= D3(G′

0
) ∩ S 0, let S ∗

0
= S 0 − S 3

0
and let S 3

1
= D3(G′

0
) − S 3

0
. Then |S 0| = |S

3
0
| + |S ∗

0
| and

|S 3
1| = |D3(G′0)| − |S 3

0|. (16)

Note that S 3
1
= D3(G′

0
) ∩ S 1. Since σ2(G) ≥ 18, by Lemma 5.3(b), for each v ∈ S 3

1
, NG′

0
(v) ⊆

S 0 ∪ S ∗
1
. Thus S 3

1
is an independent set in G′

0
. Let Y = ∪v∈S 3

1
NG′

0
(v). Then Y ⊆ S 0 ∪ S ∗

1
and so

|Y| ≤ |S 0| + |S
∗
1|. (17)

Let Θb be the subgraph in G′
0

induced by the edges between S 3
1

and Y. Then |V(Θb)| = |S 3
1
| + |Y|.

Since dG′
0
(v) = 3 for each v ∈ S 3

1
and S 3

1
is an independent set, |E(Θb)| = 3|S 3

1
|. Since |S 3

0
| ≤ |S 0| ≤ 11

and |D3(G′
0
)| ≥ 20, |S 3

1
| = |D3(G′

0
)| − |S 3

0
| ≥ 9 and so Θb < {K1,K2,K2,s}. By Theorem 3.1, |E(Θb)| ≤

2|V(Θb)| − 5. By (16), (17) and |S 0| = |S
3
0
| + |S ∗

0
|,

3|S 3
1| = |E(Θb)| ≤ 2|V(Θb)| − 5 = 2|S 3

1| + 2|Y| − 5;

5 + |S 3
1| ≤ 2|Y| ≤ 2|S 0| + 2|S ∗1|;

5 + |D3(G′0)| − |S 3
0| ≤ 2|S 3

0| + 2|S ∗0| + 2|S ∗1|;

5 + |D3(G′0)| ≤ 3|S 3
0| + 2|S ∗0| + 2|S ∗1| ≤ 3|S 0| + 2|S ∗1|. (18)

By Lemma 6.1, |D3(G′
0
)| ≥ 10 + |MΦ|(σ2(G) − 8). By (18), σ2(G) ≥ 18 and |S 0| + |S

∗
1
| ≤ 11,

5 + (10 + |MΦ|(σ2(G) − 8)) ≤ 5 + |D3(G′0)| ≤ 3|S 0| + 2|S ∗1| ≤ 3(|S 0| + |S
∗
1|);

15 + 10|MΦ| ≤ 33.
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Since |MΦ| > 0 is an integer, |MΦ| = 1.

Let e = ab be the edge in MΦ. Since MΦ is a maximum matching in Φ = G′
0
[S 2], at most one (say

b) of the vertices of {a, b} may be adjacent to some vertices in S 2 − {a, b} and the other one (say a) is

not adjacent to vertices in S 2 − {a, b}. Thus, S 2 − {b} is an independent set.

Let Vb = S 0 ∪ S ∗
1
∪ {b}. Then Vb is a vertex covering of G′

0
and contains all the nontrivial vertices

in G′0. Since |S 0| + |S
∗
1| ≤ 11, |Vb| ≤ 12. By Claim 1, G has a DCT. We are done for this case.

Case 2. |S 0| + |S
∗
1
| ≥ 12.

We prove the following claim first.

Claim 2. |S 0| ≥ 11. Furthermore if σ2(G) ≥ 25, |S 0| ≥ 12.

If |S ∗
1
| = 0, then |S 0| ≥ 12. Claim 2 is true trivially. In the following, we assume that S ∗

1
, ∅.

Combining (15) and (18), and by the definitions of Di(G
′
0
) and D∗

i
(G′

0
), for i ≥ 5, we have

15 + (i − 4)|D∗i (G′0)| ≤ 3|S 0| + 2|S ∗1|. (19)

Since σ2(G) ≥ 18, for each v ∈ S ∗
1
, dG′

0
(v) = dG(v) ≥ σ2(G) − 3 ≥ 15 and so v ∈ D∗

15
(G′

0
). Thus,

|S ∗
1
| ≤ |D∗

15
(G′

0
)|. By (19) with i = 15 and |S ∗

1
| ≥ 12 − |S 0|,

15 + 9|S ∗1| ≤ 15 + 11|D∗15(G′0)| − 2|S ∗1| ≤ 3|S 0|;

15 + 9(12 − |S 0|) ≤ 3|S 0|.

Thus, 123 ≤ 12|S 0| and so |S 0| ≥ 11.

Similarly, if σ2(G) ≥ 25, then i = 25 and so 243 ≤ 22|S 0|. Thus, |S 0| ≥ 12. The claim is proved.

Let V12 be a subset of Va with |V12| = 12 in which the vertices are chosen in the following way:

first pick vertices from S 0, then if |S 0| = 11 pick a vertex from S ∗1.

By Claim 2, V12 contains at most one vertex in S ∗
1
.

By Theorem 4.1, G′
0

has a closed trail Tb such that V12 ⊆ V(Tb). We assume that

Tb is a closed trail with V12 ⊆ V(Tb) and with as many vertices of V(G′
0
) as possible. (20)

Let Z0 = V12 ∩ S 0, and let Z1 = V12∩ S ∗
1
. Then V12 = Z0 ∪ Z1 and |Z1| ≤ 1. Let VT = V(Tb)−V12.

Then V(Tb) = V12 ∪ VT , VT ⊆ S 1 and

|V(Tb)| = |V12| + |VT | = 12 + |VT |, |Z0| + |Z1| = |V12| = 12 and |Z0| ≥ 11. (21)

Let Φ0 = G′
0
[V(Tb)], the graph induced by the vertex set V(Tb). Then V(Φ0) = V(Tb), E(Tb) ⊆

E(Φ0), and Tb is a spanning closed trail of Φ0. Thus,Φ0 ∈ SL.

For v ∈ Z0, let Γ0(v) be the collapsible preimage of v in G0. Let Φ1 = G[E(Φ0) ∪v∈Z0
E(Γ0(v))].

Then the reduction of Φ1 = Φ1/(∪v∈Z0
E(Γ0(v))) = Φ0 ∈ SL. By Theorem 3.1, Φ1 ∈ SL with

(

∪v∈Z0
V(Γ0(v))

)

∪ Z1 ∪ VT ⊆ V(Φ1).

For v ∈ V(Tb) ⊆ V(G′
0
), let E0(v) be the set of edges incident with v in Φ0. Then |E0(v)| = dΦ0

(v).

Let Γ+(v) be the subgraph induced by the edges of E(Γ(v)) and all the edges incident with v in G′
0
.

Then |E(Γ+(v))| = |E(Γ(v))| + dG′
0
(v). For any u, v ∈ Z0 and u , v,

(E(Γ+(u)) − E0(u)) ∩ (E(Γ+(v)) − E0(v)) = ∅. (22)

For v ∈ Z0, by Lemma 5.3(a), |E(Γ(v))| ≥ σ2(G) − dG′
0
(v) − 1. Then

|E(Γ+(v)) − E0(v)| ≥ (|E(Γ(v))| + dG′
0
(v)) − dΦ0

(v) ≥ σ2(G) − 1 − dΦ0
(v).
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Hence,

∑

v∈Z0

|E(Γ+(v)) − E0(v)| ≥ |Z0|(σ2(G) − 1) −
∑

v∈Z0

dΦ0
(v). (23)

For v ∈ Z1 ∪ VT , dG′
0
(v) = dG(v). For any u, v ∈ Z1 ∪ VT and u , v,

(EG(u) − E0(u)) ∩ (EG (v) − E0(v)) = ∅. (24)

For v ∈ Z1, dG(v) ≥ σ2(G) − 3 and |EG(v) − E0(v)| = dG(v) − dΦ0
(v) ≥ (σ2(G) − 3) − dΦ0

(v). Then

∑

v∈Z1

|EG(v) − E0(v)| =
∑

v∈Z1

(dG(v) − dΦ0
(v)) ≥ |Z1|(σ2(G) − 3) −

∑

v∈Z1

dΦ0
(v). (25)

For v ∈ VT ⊆ S 1, since dG(v) = dG0
(v) ≥ 3,

∑

v∈VT

dG(v) ≥ 3|VT |. (26)

LetΦ2 = G[E(Φ0)∪v∈Z0
E(Γ+(v))∪v∈Z1∪VT

EG(v)]. ThenΦ1 is a dominating subgraph inΦ2. Since

Φ1 has a SCT, Φ2 has a DCT and

E(Φ2) ⊇ E(Φ0) ∪v∈Z0
(E(Γ+(v)) − E0(v)) ∪v∈Z1∪VT

(EG(v) − E0(v)). (27)

By (27), (22) and (24), and by (23) and (25),

|E(Φ2)| ≥ |E(Φ0)| +
∑

v∈Z0

|E(Γ+(v)) − E0(v)| +
∑

v∈Z1∪VT

|EG(v) − E0(v)|

≥ |E(Φ0)| + |Z0|(σ2(G) − 1) −
∑

v∈Z0

dΦ0
(v)

+|Z1|(σ2(G) − 3) −
∑

v∈Z1

dΦ0
(v) +

∑

v∈VT

(dG(v) − dΦ0
(v)). (28)

Therefore, by (28),
∑

v∈V(Φ0) dΦ0
(v) = 2|E(Φ0)| and V(Φ0) = Z0 ∪ Z1 ∪ VT ,

|E(Φ2)| ≥ (|Z0| + |Z1|)σ2(G) − |Z0| − 3|Z1| + |E(Φ0)| −
∑

v∈V(Φ0)

dΦ0
(v) +

∑

v∈VT

dG(v);

|E(Φ2)| ≥ (|Z0| + |Z1|)σ2(G) − |Z0| − 3|Z1| − |E(Φ0)| +
∑

v∈VT

dG(v). (29)

Since |V(Φ0)| ≥ |V12| = 12, Φ0 < {K1,K2}. As a subgraph of G′
0
, Φ0 is a reduced graph. By

Theorem 3.1(c), |E(Φ0)| ≤ 2|V(Φ0)| − 4. Since |V(Φ0)| = |V(Tb)| = |V12| + |VT |,

|E(Φ0)| ≤ 2|V(Φ0)| − 4 = 2|V(Tb)| − 4 = 2|V12| + 2|VT | − 4 = 20 + 2|VT |. (30)

By (29), (30), (26), (21) |Z0| + |Z1| = 12 and |Z1| ≤ 1,

|E(Φ2)| ≥ (|Z0 | + |Z1|)σ2(G) − |Z0| − 3|Z1| − |E(Φ0)| +
∑

v∈VT

dG(v)

≥ 12σ2(G) − 12 − 2|Z1| − (20 + 2|VT |) + 3|VT |

≥ 12σ2(G) − 32 − 2|Z1| + |VT | ≥ 12σ2(G) − 34.
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Thus, Φ2 is a DCT subgraph Θ of G with |E(Θ)| ≥ 12σ2(G) − 34. Theorem 4.2(a) is proved.

For Theorem 4.2(b), we have σ2(G) ≥ 25. By Claim 2 above, |Z0| = |V12| = 12 and |Z1| = 0. Note

that by Theorem 3.1(c) either Φ0 = K2,r or |E(Φ0)| ≤ 2|V(Φ0)| − 5.

If |E(Φ0)| ≤ 2|V(Φ0)| − 5, then by (29) with |Z1 | = 0, |Z0| = 12 and |V(Φ0)| = |V(Tb)| = 12 + |VT |,

|E(Φ2)| ≥ |Z0|σ2(G) − |Z0| − |E(Φ0)| +
∑

v∈VT

dG(v)

≥ 12σ2(G) − 12 − (24 + 2|VT | − 5) + 3|VT | = 12σ2(G) − 31 + |VT | ≥ 12σ2(G) − 31.

Theorem 4.2(b) is proved for this case.

Next, we assume that Φ0 = K2,r where r = |V(Φ0)| − 2.

Claim 3. |VT | > 0.

To the contrary, suppose that |VT | = 0. Then |V(Φ0)| = |V(Tb)| = |V12| = 12 and so Φ0 = K2,10.

Let V(Φ0) = {x1, x2, · · · , x10, y1, y2} where dΦ0
(xi) = 2 (1 ≤ i ≤ 10) and dΦ0

(y j) = 10 ( j = 1, 2).

Since G′
0

is simple and K3-free with κ′(G′
0
) ≥ 3, x1 is adjacent to a vertex z < {x1, · · · , x10, y1, y2}.

Furthermore, G′
0
− zx1 is 2-edge-connected. Therefore, there is a path Pz in G′

0
− zx1 joining z to a

vertex in V(Φ0). We assume that Pz is a shortest path joining z to a vertex in V(Φ0).

If Pz is a path from z to x1 in G′
0
− zx1, then Tz = G′

0
[E(Tb) ∪ E(Pz) ∪ {zx1}] is a closed trail with

V(Tz) ⊇ V(Tb) ∪ {z} ⊃ V12, contrary to (20).

If Pz is a path from z to yi (i = 1, 2) (say y1) in G′
0
− zx1, then Tz = G′

0
[(E(Tb) − {x1y1})∪ E(Pz)∪

{zx1}] is a closed trail with V(Tz) ⊇ V(Tb) ∪ {z} ⊃ V12. contrary to (20).

If Pz is a path from z to x j (2 ≤ i ≤ 10) (say x2) in G′
0
− zx1, then Tz = G′

0
[(E(Tb) − {x1y1, x2y1})∪

E(Pz) ∪ {zx1}] is a closed trail with V(Tz) ⊇ V(Tb) ∪ {z} ⊃ V12, contrary to (20).

We reach contradictions for all the cases. Claim 3 is proved.

Since Φ0 = K2,r and |V(Φ0)| = 12 + |VT |, |E(Φ0)| = 2|V(Φ0)| − 4 = 20 + 2|VT |. By (29), |Z0| = 12,

|Z1| = 0 and by Claim 3 |VT | ≥ 1,

|E(Φ2)| ≥ (|Z0| + |Z1|)σ2(G) − |Z0| − 3|Z1| − |E(Φ0)| +
∑

v∈VT

dG(v)

≥ 12σ2(G) − 12 − (20 + 2|VT |) + 3|VT | ≥ 12σ2(G) − 12 − 20 + |VT | ≥ 12σ2(G) − 31.

Thus, Φ2 is a DCT subgraph of G for Theorem 4.2(b). The proof is complete. �

7 Graphs that are contractible to the Petersen graph

In the following, we assume that G is an essentially 3-edge-connected K3-free simple graph with

σ2(G) ≥ 7. Let P0 be the Petersen graph with V(P0) = {v1, · · · , v10}. When we say P0 is a contraction

graph of a graph G, it means that P0 is obtained from G by the following sequence of contractions:

1) G1 = G/E1 ;

2) G0 = G1/X2(G);

3) G′
0
= G0/(E(Γ0

1
)∪ · · · ∪ E(Γ0

c )) where Γ0
i

(1 ≤ i ≤ c) is a maximum collapsible subgraph of G0;

4) P0 = G′
0
/(E(Γ1

0
(v1)) ∪ · · · ∪ E(Γ1

0
(v10))) where Γ1

0
(vi) is connected reduced subgraph of G′

0
.

For each v ∈ V(P0), we define the following:

• Γ1
0
(v) is the preimage of v in G′

0
(a reduced subgraph of G′

0
).

• For each u ∈ V(Γ1
0
(v)), let Γ0(u) be the collapsible preimage of u in G0.

• Γ2
0(v) = G0[∪u∈V(Γ1

0
(v))V(Γ0(u))] and so Γ1

0(v) is the reduction of Γ2
0(v).
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• Γ2
1
(v) is the preimage of v in G1. Thus, Γ2

0
(v) = Γ2

1
(v)/(X2(G) ∩ E(Γ2

1
(v)).

• Γ∗(v) is the preimage of v in G, which is the subgraph in G induced by the edges in E(Γ2
1
(v))

and the edges in E1 that are incident with some vertices in Γ2
1(v).

• ∂(Γ∗(v)) = {u ∈ V(Γ∗(v)) | u is incident with an edge of P0 }, the set of vertices in V(Γ∗(v)) that

are incident with some edges in EP(v). Then |∂(Γ∗(v))| ≤ 3.

If Γ1
0
(v) = K1, then Γ2

0
(v) = Γ0(v), Γ2

1
(v) = Γ1(v) and Γ∗(v) = Γ(v). Fig. 7.1 shows the contraction

process from G to P0.
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Fig. 7.1: A contraction process from G to a vertex v in P0.

Fact 7.1. For a vertex v ∈ V(P0), if Γ
j

0
(v) , K1 ( j = 1, 2), each of the following holds:

(i) Γ
j

0
(v) is 2-edge-connected and so d

Γ
j

0
(v)

(x) ≥ 2 for any x ∈ V(Γ
j

0
(v)).

(ii) D2(Γ
j

0
(v)) ⊆ ∂(Γ∗(v)) and so |D2(Γ

j

0
(v))| ≤ 3.

Proof. Since G is essentially 3-edge-connected, by Theorem 3.2 κ′(G′
0
) ≥ κ′(G0) ≥ 3. Since Γ1

0
(v) is

the reduction of Γ2
0
(v), κ′(Γ1

0
(v)) ≥ κ′(Γ2

0
(v)). We only need to prove (i) for the case Γ2

0
(v).

To the contrary, suppose that κ′(Γ2
0
(v)) = 1. Let Φ1 and Φ2 be the two components of Γ2

0
(v) − e

where e is an edge-cut. Since dP0
(v) = 3, only three edges of G0 outside of Γ2

0(v) incident with some

vertices in Γ2
0
(v). Of these three edges, at most one of them is incident with one ofΦi (i = 1, 2). Thus,

G0 is at most 2-edge-connected, contrary to that κ′(G0) ≥ 3. Case (i) is proved.

Case (ii) follows from the definition and the fact that κ′(G0) ≥ 3 and |∂(Γ∗(v))| ≤ dP0
(v) = 3. �

With P0 as a contraction graph of G, to find a DCT subgraph of G with large size, it is a reverse

process of the contraction sequence above. The following lemma will be needed when Γ1
0
(v) , K1.

Lemma 7.2. For a vertex v ∈ V(P0), let Γ1
0
(v) be the preimage of v in G′

0
and Γ1

0
(v) , K1. Then

D2(Γ1
0
(v)) ⊆ ∂(Γ∗(v)) and |∂(Γ∗(v))| ≤ 3. Furthermore, for any x, y, z ∈ ∂(Γ∗(v)) (x, y and z may not be

distinct) there is a (x, y)-trail Tv containing z such that α′(Tv) ≥ 2 and one of the following holds:

(a) Γ1
0
(v) ∈ {K2,3,K1,3(1, 1, 1), J′(1, 1)} and

|EΓ∗(v)(Tv)| ≥



















2σ2(G) − 2 if Γ1
0
(v) = K2,3 and α(Γ∗(v)) = 2;

3σ2(G) − 6 if Γ1
0
(v) ∈ {K2,3,K1,3(1, 1, 1)} and α(Γ∗(v)) = 3;

4σ2(G) − 10 if Γ1
0
(v) ∈ {K2,3,K1,3(1, 1, 1), J′(1, 1)} and α(Γ∗(v)) ≥ 4.

(b) |V(Γ1
0
(v))| ≥ 8. Then α′(Γ∗(v)) ≥ α′(Γ1

0
(v)) ≥ 4 and Γ1

0
(v) has an (x, y)-trail T0

v where x, y ∈

V(Γ1
0
(v)) that are incident with two of the edges in {e1

v, e
2
v , e

3
v} and |EΓ∗(v)(T

0
v )| ≥ 4σ2(G) − 14.

Proof. Since G′
0

is 3-edge-connected and K3-free and Γ1
0
(v) is a subgraph of G′

0
, Γ1

0
(v) is reduced

and K3-free. By Fact 7.1, Γ1
0(v) is 2-edge-connected, D2(Γ1

0(v)) ⊆ ∂(Γ∗(v)) and |∂(Γ∗(v))| ≤ 3. Let

∂(Γ∗(v)) = {x, y, z} (x, y and z may not be distinct). By Lemma 5.1, Γ1
0
(v) has a (x, y)-trail Tv containing

z. We assume that Tv is a longest one.

We prove α′(Tv) ≥ 2 first.
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To the contrary, suppose that α′(Tv) = 1. Then one of the following holds.

(1) Tv = xy (and so z ∈ {x, y}, say z = y); (2) Tv = xzy.

(1) Tv = xy with z = y. Since Γ1
0
(v) is 2-edge-connected and K3-free, there is a longer path in Γ1

0
(v)

joining x and y in Γ1
0
(v) − {xy}, contrary to that Tv is a longest one.

(2) Tv = xzy.

Since Γ1
0(v) is 2-edge-connected, x is adjacent to a vertex (say w) in N

Γ
1
0
(v)(x) − {z}. Since G′0 is

3-edge-connected, by Menger’s Theorem, there are at least three edge-disjoint paths joining w and a

vertex (say u) in G′
0
− V(Γ1

0
(v)). Since {x, y, z} is a vertex cut of G′

0
that separates w and u, there are

at least two edge-disjoint paths (say P1
w and P2

w) joining w to vertices in {x, y, z} in Γ1
0
(v) − {xw}. We

assume that Pi
w (i = 1, 2) is a shortest path joining w to a vertex in {x, y, z}.

If P1
w (or P2

w) is a (w, x)-path in Γ1
0
(v)− {xw}, then xwP1

w is a cycle and so Tx = G′
0
[{xw} ∪E(P1

w)∪

{zy}] is a (x, y)-trail containing z in Γ1
0
(v), contrary to that Tv is a longest one.

If P1
w (or P2

w) is a (w, z)-path in Γ1
0
(v) − {xw}, then Tx = G′

0
[{xw} ∪ E(P1

w) ∪ {zy}] is a (x, y)-trail

containing z in Γ1
0
(v), contrary to that Tv is a longest one.

If none of the P1
w and P2

w is a (w, x)- or (w, z)-path, then P1
w and P2

w are edge-disjoint (w, y)-paths

and so G′
0
[EG′

0
(P1

w)∪ EG′
0
(P2

w)] is a closed trail containing y. Then Ty = G′
0
[{xz, zy} ∪ E(P1

w)∪ E(P2
w)]

is a (x, y)-trail containing z in Γ1
0
(v) which has more vertices than Tv has, a contradiction.

Thus, α′(Tv) ≥ 2.

Next, we find the size of EΓ∗(v)(Tv) which is defined by (2) with Γ∗(v) = GT (v) and Tv = Θ(v).

Case (a) |V(Γ1
0
(v))| ≤ 7.

By Theorem 3.1(d), Γ1
0
(v) ∈ {K2,3,K1,3(1, 1, 1), J′(1, 1)}. For each edge zw ∈ E(Γ1

0
(v)), since

dG′
0
(z) + dG′

0
(w) ≤ 6 and σ2(G) ≥ 7, either z or w is a contracted vertex of G′

0
. Let W be the set of the

contracted vertices in Γ1
0
(v). Let β = β(Γ1

0
(v)) be the covering number of Γ1

0
(v). Then |W | ≥ β.

For a vertex w ∈ W, either Γ0(w) is a nontrivial collapsible preimage of w in G0 or Γ(w) = K1,s.

Then E(Γ(w)) ⊆ EΓ∗(v)(Tv). Since W ⊆ S 0, by Lemma 5.3(a) with t = 1, |E(Γ(w))| ≥ σ2(G) − 4.

For Γ1
0
(v) ∈ {K2,3,K1,3(1, 1, 1), J′(1, 1)}, since E(T0

v )
⋃

w∈W E(Γ(w)) ⊆ EΓ∗(v)(Tv)

|EΓ∗(v)(Tv)| ≥ |E(Γ1
0(v))| +

∑

w∈W

|E(Γ(w))| ≥ |E(Γ1
0(v))| + |W |σ2(G) − 4|W |. (31)

Picking an edge from Γ(w) for each w ∈ W, we have a matching of Γ∗(v). Thus, α′(Γ∗(v)) ≥ |W |.

Since β(K2,3) = 2, β(K1,3(1, 1, 1)) = 3 and β(J′(1, 1)) = 4, by (31), α′(Γ∗(v)) ≥ |W | ≥ β and 6 =

|E(K2,3)| < 9 = |E(K1,3(1, 1, 1))| = |E(J′(1, 1))| ,

|EΓ∗(v)(Tv)| ≥ |W |σ2(G) + |E(Γ1
0(v))| − 4|W | ≥ |W |σ2(G) + 6 − 4|W |

≥



















2σ2(G) − 2 if Γ1
0
(v) = K2,3 and α′(Γ∗(v)) = |W | = 2;

3σ2(G) − 6 if Γ1
0
(v) ∈ {K2,3,K1,3(1, 1, 1)} and α′(Γ∗(v)) = |W | = 3;

4σ2(G) − 10 if Γ1
0
(v) ∈ {K2,3,K1,3(1, 1, 1), J′(1, 1)} and α′(Γ∗(v)) ≥ 4.

For |W | = 4 + j ( j ≥ 0), |W |σ2(G) + 6− 4|W | = 4σ2(G) − 10+ j(σ2(G) − 4) ≥ 4σ2(G) − 10. Thus,

|EΓ∗(v)(Tv)| ≥ 4σ2(G) − 10 if α′(Γ∗(v)) ≥ |W | ≥ 4. Lemma 7.2(a) is proved.

Case (b) n1 = |V(Γ1
0
(v))| ≥ 8.

Since l = |D2(Γ1
0
(v))| ≤ 3, Γ1

0
(v) , K2,s. By Theorem 3.1(e),

α′(Γ1
0(v)) ≥ min

{

n1 − 1

2
,

n1 + 5 − l

3

}

≥ min

{

8 − 1

2
,

8 + 5 − 3

3

}

> 3.
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Thus, α′(Γ1
0
(v)) ≥ 4.

Let M be a matching of size 4 in Γ1
0
(v) and let V8 be the set of the 8 vertices in M. Let vp be a

vertex in V(P0) −V(Γ1
0
(v)) and let S = V8 ∪ {vp}. Then |S | ≤ 9. By Theorem 4.1, G0 has a closed trail

T1 containing all the vertices in S . Then T1 contain exactly two of the edges in {e1
v, e

2
v , e

3
v}. We may

assume e1
i
= v2xi, e

2
i
= v3yi ∈ E(T1) where xi and yi are in Γ1

0
(v). Thus, edges in E(T1) ∩ E(Γ1

0
(v))

induced a (xi, yi)-trail T0
v containing all the vertices in V8. Since T0

v contains the vertices of a matching

of size 4, by Lemma 5.2(a) with t = 4 and i(T0
v ) ≤ dGT

(v) = dG′
0
(v) = 3, |EΓ∗(v)(T

0
v )| ≥ 4σ2(G)−14. �

Remark 7.3. When we say we have a Tv trail with the estimated size |EΓ∗(v)(Tv)| in Lemma 5.2 or

Lemma 7.2, it means that such trail Tv exists for any preselected two edges in EP(v). For the T0
v trail

in case (b) above, we only know that T0
v is incident with two edges in EP(v), not for any preselected

two edges. When |V(Γ1
0
(v))| ≥ 8, for any two preselected edges in EP(v), we can have a trail Tv for the

two selected edges but we only know that α′(Tv) ≥ 2 and by Lemma 5.2 |EΓ∗(v)(Tv)| ≥ 2σ2(G)− 7, that

is smaller than |EΓ∗(v)(T
0
v )| ≥ 4σ2(G) − 14. In the proof of Theorem 4.3, if a vertex v ∈ V(P0) has its

preimage Γ1
0(v) with |V(Γ1

0(v))| ≥ 8, we use a (x, y)-trail T0
v with |EΓ∗(v)(T

0
v )| ≥ 4σ2(G) − 14 given in

Lemma 7.2(b) and so we know the two edges in EP(v) incident with x and y in T0
v , respectively. Thus,

to select a dominating cycle Θ0 in P0, we pick the vertex v and the two edges first, and then pick the

rest of the vertices and edges to form the dominating cycle Θ0 in P0.

For each v ∈ V(P0), let EP(v) = {e1
v , e

2
v , e

3
v} be the set of three edges in P0 incident with v, which

is considered as a subset of E(G). We assume that ei
v is incident with xi

v in Γ2
1
(v) (i = 1, 2, 3) (note

that x1
v , x2

v and x3
v may not be distinct). If xi

v ∈ D2(G) ∩ V(Γ2
1
(v)), then let yi

vxi
v be an edge in X2(G)

with yi
v ∈ V(Γ2

1
(v)). Then yi

v is a nontrivial vertex and d
Γ2

1
(v)(x

i
v) = 1. Since G is essentially 3-edge-

connected, d
Γ

2
1
(v)(y

i
v) ≥ 3. If xi

v < D2(G), we use yi
v = xi

v in V(Γ2
1
(v)) (see Fig. 7.1 (a) and (d)).

The following is the procedures to construct a DCT in G from P0:

(a) Pick a 9 vertex cycle Θ0.

We assume that V(Θ0) = {v1, v2, · · · , v9} and E(Θ0) = {e1
v j
, e2

v j
| j = 1, · · ·9}. By Lemma 7.2 and

Remark 7.3, we assume that v1 is the vertex with largest α′(Γ1
0
(v)).

(b) For each v ∈ V(Θ0) with Γ2
0
(v) , K1 and with y1

v and y2
v in Γ2

0
(v) that are incident with the two

edges e1
v and e2

v in Θ0, we construct a (y1
v , y

2
v)-trail Tv according to Γ1

0
(v) = K1 or not:

(b1) If Γ1
0
(v) = K1 then Γ2

0
(v) = Γ0(v), a collapsible graph. Let R = {y1

v , y
2
v} if y1

v , y2
v ; and let

R = ∅ if y1
v = y2

v . Since Γ2
0
(v) is collapsible, Γ2

0
(v) has a spanning connected subgraph Ψv such

that O(Ψv) = R. Then Tv = Ψv is a spanning (y1
v , y

2
v)-trail in Γ2

0
(v). Thus, Tv is a dominating

(y1
v , y

2
v)-trail in Γ∗(v) and E(Γ∗(v)) = EΓ∗(v)(Tv).

(b2) If Γ1
0
(v) , K1, then we construct a (y1

v , y
2
v)-trail Tv as discussed in Lemma 7.2.

Since Γ2
0
(v) = Γ2

1
(v)/(X2(G) ∩ E(Γ2

1
(v)), Tv can be extended as (x1

v , x
2
v )-trail containing y3

v

in Γ2
1
(v) (and in Γ∗(v)). If y3

v , x3
v , then y3

v is a nontrivial vertex and i(Tv) = 2 since the edge

incident with x3
v in EP(v) is not incident with a vertex in Tv, but y3

v x3
v ∈ EΓ∗(v)(Tv). In the

following, for each v j = v ∈ V(P0), we use T j for Tv as the (x1
j
, x2

j
)-trail containing y3

j
in Γ∗(v j)

with |EΓ∗(v j)(T j)| as large as possible. (See Fig. 7.2 for an example).

(c) Let Θ1 = G[E(Θ0) ∪9
j=1

E(T j)] where T j = Tv j
found in step (b). Then Θ1 is a closed trail.

(d) Let Θ be the graph induced by all the edges in E(Θ1) and all the edges incident with vertices in

V(Θ1). Then Θ is a DCT subgraph of G since Θ1 is a DCT in Θ.

In Lemmas 5.2, i(T j), the number of the edges outside of Γ∗(v j) incident with some vertices in

V(T j), is not counted for |EΓ∗(v j)(T j)|. If i(T j) = 3, then EP(v j) ⊆ E(Θ). If i(T j) = 2, then maybe
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only two of the edges in EP(v j) are in E(Θ) but by Lemmas 5.2 the lower bound on |EΓ(v j)(T j)| is one

more than the case of i(T j) = 3. Thus, for counting the number of edges in E(Θ), we can assume that

i(T j) = 3 and so we assume E(P0) ⊆ E(Θ). Therefore,

E(Θ) ⊇ E(P0) ∪9
j=1 EΓ∗(v j)(T j). (32)
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Fig. 7.2: A process to obtain a DCT (marked by thick-lines) from P0 to G.

8 Proof of Theorem 4.3

Proof of Theorem 4.3. Without loss of generality, we assume that G does not have a DCT.

Let P0 be the Petersen graph with V(P0) = {v1, · · · , v10} as the contraction graph of G′
0

as stated.

Without loss of generality, we assume that |V(Γ∗(v10))| = min{|V(Γ∗(vi))| vi ∈ V(P0)}.

Claim 1. |V(Γ∗(v10))| > 1.

To the contrary, suppose that |V(Γ∗(v10))| = 1. Then dG′
0
(v10) = dG(v10) = dP0

(v10) = 3.

Case 1. G′
0
= P0, i.e., |V(Γ1

0
(vi))| = 1 for all vi ∈ V(P0) (1 ≤ i ≤ 10).

Since |V(Γ∗(v10))| = 1, dG(v10) = dG′
0
(v10) = 3. Since σ2(G) ≥ 7, v10 is not adjacent to any vertex

in D2(G) and so v10 is a trivial vertex in G′
0
. By inspection, G′

0
has a cycleΘ0 containing vi (1 ≤ i ≤ 9).

Then Θ0 contains all the nontrivial vertices of G′
0
. By Theorem 3.2(b), G has a DCT, a contradiction.

Case 2. G′
0

is contracted to P0 such that V(Γ1
0
(vi)) ∩ Va , ∅ for all vi ∈ V(P0) (1 ≤ i ≤ 10).

Since |V(Γ∗(v10))| = 1, V(Γ1
0(v10)) = {v10}. Thus, {v10} = V(Γ1

0(v10)) ∩ Va ⊆ Va = S 0 ∪ S ∗1 ∪ S M.

If v10 ∈ S 0, then v10 is a contracted vertex and so |V(Γ∗(v10))| > 1, a contradiction.

If v10 ∈ S ∗
1
, then since σ2(G) ≥ 7, dG′

0
(v10) ≥ σ2(G) − 3 ≥ 4, contrary to that dG′

0
(v10) = 3.

If v10 ∈ S M, then there is a non-contracted vertex z in S M such that zv10 ∈ E(G′
0
) ⊆ E(G) with

dG(v10) = dG′
0
(v10) and dG(z) = dG′

0
(z). Therefore, dG′

0
(v10)+ dG′

0
(z) = dG(v10)+ dG(z) ≥ σ2(G). Since

dG(v10) = 3, dG(z) ≥ σ2(G) − 3. Thus, z ∈ S ∗
1
, contrary to that z ∈ S M ⊆ V(G′

0
) − (S 0 ∪ S ∗

1
).

We reach a contradiction for each of the cases above. Claim 1 is proved.

If Γ∗(vi) = K1,r for all vi ∈ V(P0), then G ∈ P1. Theorem 4.3(a) is proved.

In the following we assume that Γ∗(v1) , K1,r. Then Γ∗(v1) is not a tree and Γ2
1
(v1) is a nontrivial

connected subgraph in G1 and so α′(T1) ≥ 1. But Γ1
0
(v1) may be either trivial or nontrivial.

Let Θ0, Θ1 and Θ be the subgraphs defined in Section 7. If there is a vertex v ∈ V(P0) with

|V(Γ1
0(v))| ≥ 8, Θ0 is the one defined in Remark 7.3 after Lemma 7.2.

For each vi ∈ V(P0), if Γ∗(vi) = K1,r. then Ti = K1. By Proposition 3.3, |EΓ∗(vi)(Ti)| ≥ σ2(G) − 4.

If Γ∗(vi) , K1,r , then by Lemmas 5.2 and 7.2, Γ∗(v) has a trail Ti as a part of the subgraph Θ1 with
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|EΓ∗(vi)(Ti)| ≥ 2σ2(G) − 7 ≥ σ2(G). Thus, for each vi ∈ V(P0), in the worst case,

|EΓ∗(vi)(Ti)| ≥ σ2(G) − 4. (33)

If |V(Γ1
0
(v1))| ≥ 8, then by Lemma 7.2(b), Γ1

0
(v1) has a trail T0

v1
with |EΓ∗(v1)(T

0
v1

)| ≥ 4σ2(G) − 14.

Hence, by (32), (33) and |EΓ∗(v1)(T
0
v1

)| ≥ 4σ2(G) − 14,

|E(Θ)| ≥ |E(P0)| + |EΓ∗(v1)(T
0
v1

)| +
∑

i=2

|EΓ∗(vi)(Ti)|

≥ 15 + (4σ2(G) − 14) + 8(σ2(G) − 4) = 12σ2(G) − 31.

Thus, Theorem 4.3 holds.

In the following, we assume that |V(Γ1
0
(vi))| ≤ 7 for all vi ∈ V(P0) and

α′(Γ∗(v1)) ≥ α′(Γ∗(v2)) · · · ≥ α′(Γ∗(v10)). (34)

Claim 2. For v ∈ V(Θ0), if Γ∗(v) , K1,r, then α′(Γ∗(v)) ≥ 2 and Θ contains a subgraph Ψ(v) of Γ∗(v)

such that EΓ∗(v)(Ψ(v)) ⊆ EΓ∗(v)(Tv) ⊆ E(Θ) where Tv is the trail as a part of Θ defined above and

|EΓ∗(v)(Ψ(v))| ≥































2σ2(G) − 6 if α′(Γ∗(v)) = 2;

3σ2(G) − 12 if α′(Γ∗(v)) = 3;

4σ2(G) − 17 if α′(Γ∗(v)) ≥ 4;

4σ2(G) − 14 if α′(Γ∗(v)) ≥ 5 and σ2(G) ≥ 12.

(35)

Case A. Γ1
0
(v) = K1. Then Γ∗(v) = Γ(v) and Γ2

1
(v) = Γ1(v).

Since Γ∗(v) < {K1,K1,r}, Γ
2
0
(v) = Γ0(v) is a nontrivial collapsible subgraph of G0. LetΨ(v) = Γ0(v).

By the definition of Θ, EΓ∗(v)(Ψ(v)) = E(Γ∗(v)) = EΓ∗(v)(Tv) ⊆ E(Θ). Since G is K3-free and simple,

Γ(v) and Γ1(v) are K3-free and simple. Hence, α′(Γ∗(v)) ≥ α′(Γ2
1
(v)) ≥ 2. By Proposition 3.3 when

α′(Γ∗(v)) = 2, by (6) of Lemma 5.2 when α′(Γ∗(v)) = 3 and by Lemma 5.2(b) when α′(Γ∗(v)) ≥ 4,

|EΓ∗(v)(Ψ(v))| = |E(Γ∗(v))| ≥



















2σ2(G) − 6 if α′(Γ∗(v)) = 2;

3σ2(G) − 12 if α′(Γ∗(v)) = 3;

tσ2(G) − t2 − 1 if t = α′(Γ∗(v)) ≥ 4.

(36)

Case B. Γ1
0
(v) , K1 and |V(Γ1

0
(v))| ≤ 7. Then Γ1

0
(v) is a nontrivial reduced subgraph.

Since |V(Γ1
0
(v))| ≤ 7, by Lemma 7.2, Γ∗(v) has a trail Tv as a part of Θ with

|EΓ∗(v)(Tv)| ≥



















2σ2(G) − 2 if α′(Γ∗(v)) = 2;

3σ2(G) − 6 if α′(Γ∗(v)) = 3;

4σ2(G) − 10 if α′(Γ∗(v)) ≥ 4.

(37)

Thus, for 2 ≤ α′(Γ∗(v)) ≤ 4, (37) implies (36). If α′(Γ∗(v)) ≥ 5 and σ2(G) ≥ 12, then by (36) with

t = 5, 5σ2(G) − 26 ≥ 4σ2(G) − 14. Then Tv is the subgraph Ψ(v). Claim 2 is proved.

Let n0 be the number of Γ∗(vi) , K1,r. By Claim 2 and (34), for 1 ≤ i ≤ n0, Θ contains a subgraph

Ψ(vi) in Γ∗(vi) with |EΓ∗(vi)(Ti)| = |EΓ∗(vi)(Ψ(vi))| ≥ 2σ2(G) − 6. By (32) and by (33) (for i > n0),

|E(Θ)| ≥ |E(P0)| +

n0
∑

i=1

|EΓ∗(vi)(Ti)| +

9
∑

i=n0+1

|EΓ∗(vi)(Ti)| (38)

≥ 15 + n0(2σ2(G) − 6) + (9 − n0)(σ2(G) − 4) = (n0 + 9)σ2(G) − 21 − 2n0. (39)
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If n0 ≥ 3, then G <
⋃5

i=1 Pi. Let n0 = 3 + j and j ≥ 0. Then by (39) and σ2(G) ≥ 7,

|E(Θ)| ≥ (n0 + 9)σ2(G) − 21 − 2n0 = 12σ2(G) − 27 + j(σ2(G) − 2) > 12σ2(G) − 31.

Thus, Theorem 4.3(d) is proved for this case.

If n0 = 2 and max{α′(Γ∗(v1)), α′(Γ∗(v2))} ≥ 3, then G <
⋃5

i=1 Pi. By (38), (33) and Claim 2,

|E(Θ)| ≥ |E(P0)| + |EΓ∗(v1)(T1)| + |EΓ∗(v2)(T2)| +

9
∑

i=3

|EΓ∗(vi)(Ti)|

≥ 15 + (3σ2(G) − 12) + (2σ2(G) − 6) + 7(σ2(G) − 4) = 12σ2(G) − 31.

Again, Theorem 4.3(d) holds.

Thus, we only need to consider the cases n0 = 1 and n0 = 2 with α′(Γ∗(v1)) = α′(Γ∗(v2)) = 2.

Now, we can complete our proof by checking on each of the cases of Theorem 4.3.

(a) G < P1. By (39) with n0 ∈ {1, 2}, in the worst case, |E(Θ)| ≥ 10σ2(G) − 23. Theorem 4.3(a) holds.

(b) G < P1 ∪ P2. Then either n0 = 2 or n0 = 1 and α′(Γ∗(v1)) ≥ 3.

If n0 = 2, then by (39) with n0 = 2, |E(Θ)| ≥ 11σ2(G) − 25 > 11σ2(G) − 29. Case (b) is proved.

If n0 = 1 and α′(Γ∗(v1)) ≥ 3, then by Claim 2, |EΓ∗(v1)(T1)| ≥ 3σ2(G) − 12. By (38) and (33),

|E(Θ)| ≥ 15 + (3σ2(G) − 12) + 8(σ2(G) − 4) = 11σ2(G) − 29. Theorem 4.3(b) is proved.

(c) G <
⋃3

i=1 Pi and σ2(G) ≥ 9. Then either n0 = 2 or n0 = 1 and α′(Γ∗(v1)) ≥ 4.

If n0 = 2, then by (39) with n0 = 2, |E(Θ)| ≥ 11σ2(G) − 25. Case (c) is proved.

If n0 = 1 and α′(Γ∗(v1)) ≥ 4, then by Claim 2, |EΓ∗(v1)(T1)| ≥ 4σ2(G) − 17. By (38), (33) and

σ2(G) ≥ 9, |E(Θ)| ≥ 15+ (4σ2(G)−17)+8(σ2(G)−4) = 12σ2(G)−34 ≥ 11σ2(G)−25. (c) is proved.

(d) G <
⋃4

i=1Pi. If n0 = 2 with α′(Γ∗(vi)) = 2 (i = 1, 2), then G ∈ P4, a contradiction. Thus, n0 = 1.

Since G <
⋃4

i=1Pi, α
′(Γ∗(v1)) ≥ 4. By Claim 2, |EΓ∗(v1)(T1)| ≥ 4σ2(G) − 17. By (38) and (33),

|E(Θ)| ≥ 15 + (4σ2(G) − 17) + 8(σ2(G) − 4) = 12σ2(G) − 34. Theorem 4.3(d) is proved.

(e) G < P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 and σ2(G) ≥ 12.

Using the same argument for case (d) above, we have n0 = 1. Since G <
⋃5

i=1 Pi, α
′(Γ∗(v1)) ≥ 5.

By Claim 2 for α′(Γ∗(v1)) ≥ 5 and σ2(G) ≥ 12, |EΓ∗(v1)(T1)| ≥ 4σ2(G) − 12. By (38) and (33),

|E(Θ)| ≥ 15 + (4σ2(G) − 12) + 8(σ2(G) − 4) = 12σ2(G) − 31. Theorem 4.3(e) is proved. �
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