

9-2017

Circumferences of 3-connected claw-free graphs, II

Zhi-Hong Chen
Butler University, chen@butler.edu

Follow this and additional works at: https://digitalcommons.butler.edu/facsch_papers
Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation

Chen, Zhi-Hong, "Circumferences of 3-connected claw-free graphs, II" Discrete Mathematics / (2017): 2091-2107.
Available at https://digitalcommons.butler.edu/facsch_papers/1042

This Article is brought to you for free and open access by the College of Liberal Arts \& Sciences at Digital Commons @ Butler University. It has been accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler University. For more information, please contact digitalscholarship@butler.edu.

Circumferences of 3-connected claw-free graphs, II

Zhi-Hong Chen, Butler University, Indianapolis, IN 46208, U.S.A.

April 4, 2017

Abstract

For a graph H, the circumference of H, denoted by $c(H)$, is the length of a longest cycle in H. It is proved in [4] that if H is a 3 -connected claw-free garph of order n with $\delta \geq 8$, then $c(H) \geq \min \{9 \delta-3, n\}$. In [11], Li conjectured that every 3 -connected k-regular claw-free graph H of order n has $c(H) \geq \min \{10 k-4, n\}$. Later, Li posed an open problem in [12]: how long is the best possible circumference for a 3 -connected regular claw-free graph? In this paper, we study the circumference of 3-connected claw-free graphs without the restriction on regularity and provide a solution to the conjecture and the open problem above. We determine five families \mathcal{F}_{i} ($1 \leq i \leq 5$) of 3-connected claw-free graphs which are characterized by graphs contractible to the Petersen graph and show that if H is a 3 -connected claw-free graph of order n with $\delta \geq 16$, then one of the following holds: (a) either $c(H) \geq \min \{10 \delta-3, n\}$ or $H \in \mathcal{F}_{1}$. (b) either $c(H) \geq \min \{11 \delta-7, n\}$ or $H \in \mathcal{F}_{1} \cup \mathcal{F}_{2}$. (c) either $c(H) \geq \min \{11 \delta-3, n\}$ or $H \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$. (d) either $c(H) \geq \min \{12 \delta-10, n\}$ or $H \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4}$. (e) if $\delta \geq 23$ then either $c(H) \geq \min \{12 \delta-7, n\}$ or $H \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4} \cup \mathcal{F}_{5}$.

This is also an improvement of the prior results in [4, 10, 13, 14].
Keywords: Claw-free graph; Circumference; Minimum degree; Petersen graph

1 Introduction

Graphs considered in this paper are finite and loopless. A graph is called a multigraph if it contains multiple edges. A graph without multiple edges is called a simple graph or simply a graph. As in [1], $\kappa^{\prime}(G)$ and $d_{G}(v)$ denote the edge-connectivity of G and the degree of a vertex v in G, respectively. The minimum degree of a graph G is denoted by $\delta(G)$ or δ. For a vertex $v \in V(G)$, let $E_{G}(v)$ be the set of edges in G incident with v. Thus, when G is a simple graph, $\left|E_{G}(v)\right|=d_{G}(v)$. An edge cut X of a graph G is essential if each of the components of $G-X$ contains an edge. A graph G is essentially k-edge-connected if G is connected and does not have an essential edge cut of size less than k. A vertex set $U \subseteq V(G)$ is called a covering of G if every edge of G is incident with a vertex in U. The minimum number of vertices in a covering of G is called the covering number of G and denoted by $\beta(G)$. An edge $e=u v$ is called a pendant edge if $\min \left\{d_{G}(u), d_{G}(v)\right\}=1$.

A trail T is a finite sequence $T=u_{0} e_{1} u_{1} e_{2} u_{2} \cdots e_{r} u_{r}$, whose terms are alternately vertices and edges, with $e_{i}=u_{i-1} u_{i}(1 \leq i \leq r)$, where the edges are distinct. A trail T is a closed trail if $u_{0}=u_{r}$

[^0]and is called a (u, v)-trail if $u=u_{0}$ and $v=u_{r}$. A trail or closed trail T in a graph G is called a spanning trail (ST) or a spanning closed trail (SCT) of G if $V(G)=V(T)$ and is called a dominating trail (DT) or a dominating closed trail (DCT) if $E(G-V(T))=\emptyset$. The family of graphs with SCTs is denoted by $\mathcal{S L}$. A graph G is called a $D C T$ graph if G has a DCT.

The circumference of a graph H, denoted by $c(H)$, is the length of a longest cycle in H. A graph H is claw-free if H does not contain an induced subgraph isomorphic to $K_{1,3}$. In this paper, we will be concerned with the circumference of 3 -connected claw-free graphs.

In [14], Matthews and Sumner proved that every 2 -connected claw-free graph H of order n has $c(H) \geq \min \{n, 2 \delta+4\}$. Li, et al. [13] proved that every 3-connected claw-free graph H of order n has $c(H) \geq \min \{n, 6 \delta-15\}$. Solving a conjecture posed in [13], we proved the following.

Theorem 1.1 ([4]). If H is a 3-connected claw-free graph of order n and $\delta \geq 8, c(H) \geq \min \{n, 9 \delta-3\}$.
Theorem 1.1 is best possible in the sense that if $H_{r}=L\left(G_{r}\right)$ where G_{r} is obtained from the Petersen graph P by adding $r>0$ pendant edges at each vertex of P, then $c\left(H_{r}\right)=9 \delta\left(H_{r}\right)-3$.

For regular claw-free graphs, Li posed the following conjecture in [11].
Conjecture 1.2 (Li, Conjecture 6 [11]). Every 3-connected k-regular claw-free graph H on n vertices has $c(H) \geq \min \{10 k-4, n\}$.

In [12], Li restated the conjecture with a different lower bound on $c(H)$.
Conjecture 1.3 (Li, Conjecture 5.17 [12]). Every 3-connected k-regular claw-free graph H on n vertices has $c(H) \geq \min \{12 k-7, n\}$.

It was stated in [12] that Conjecture 1.3 was from [11]. However, Conjecture 1.2 is the only conjecture in [11]. We don't know why " $10 k-4$ " is changed to " $12 k-7$ " in Conjecture 1.3. Maybe it is more proper to treat them as open problems. In fact, Li posed an open problem in [12].

Problem 1.4 (Li, Problem 5.18 [12]). How long is the best possible circumference for a 3-connected regular claw-free graph?

Note that H_{r} mentioned above is a non-regular claw-free graph. These conjectures and the open problem suggest a more general problem: how long is the best possible circumference for a 3-connected claw-free graph H if $H \neq H_{r}$?

In this paper, using much improved techniques employed in [4], we provide solutions to these open problems and conjectures. Our results are given in next section.

2 Main results and Ryjáček's closure concept

For a graph G, the line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent. As we know that all line graphs are claw-free and a connected line graph $H \neq K_{3}$ has a unique graph G with $H=L(G)$. We call G the preimage graph of H. Ryjáček [16] defined the closure $c l(H)$ of a claw-free graph H to be one obtained by recursively adding edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of H as long as this is possible, and H is said to be closed if $H=c l(H)$.

Theorem 2.1. (Ryjáček [16]). Let H be a claw-free graph and cl(H) its closure. Then
(a) $\operatorname{cl}(H)$ is well defined, and $\kappa(c l(H)) \geq \kappa(H)$;
(b) there is a K_{3}-free simple graph G such that $\operatorname{cl}(H)=L(G)$;
(c) for every cycle C_{0} in $L(G)$, there exists a cycle C in H with $V\left(C_{0}\right) \subseteq V(C)$.

Let P be the Petersen graph. Let Φ_{a} and Φ_{b} be two connected K_{3}-free simple graphs. Let $P\left(\Phi_{a}, \Phi_{b}\right)$ be an essentially 3-edge-connected K_{3}-free simple graph obtained from P by replacing a vertex v_{a} in P by Φ_{a} and replacing a vertex v_{b} in P by Φ_{b}, and by adding at least $r>0$ pendant edges at each vertex of $V(P)-\left\{v_{a}, v_{b}\right\}$ and subdividing m edges of P for $m=0,1, \cdots, 15$.

Let Π_{a} and Π_{b} be two families of K_{3}-free graphs. Define $\mathcal{P}\left(\Pi_{a}, \Pi_{b}\right)$ be the family of graphs below: $\mathcal{P}\left(\Pi_{a}, \Pi_{b}\right)=\left\{G \mid G=P\left(\Phi_{a}, \Phi_{b}\right)\right.$ where $\Phi_{a} \in \Pi_{a}$ and $\left.\Phi_{b} \in \Pi_{b}\right\}$ (see Fig. 2.1. for examples).

Here is a list of families of K_{3}-free graphs that will be used for Π_{a} or Π_{b}.

- Let $\mathcal{K}_{1, r}$ be the family of stars $K_{1, r}$ with $r \geq 1$ edges.
- Let $\mathcal{K}_{2, r}$ be the family of spanning connected subgraphs of $K_{2, r}$ for some $r \geq 2$.
- Let Q_{t} be the family of K_{3}-free connected simple graphs G with $\alpha^{\prime}(G)=t$.

Note that $K_{t, s} \in Q_{t}$ for $t \leq s$ and $\mathcal{K}_{t, s}=Q_{t}$ for $t \in\{1,2\}$ and $s \geq t$ (see Proposition 3.3).
For essentially 3 -edge-connected K_{3}-free simple graphs, we define the following families:

- $\mathcal{P}_{1}=\mathcal{P}\left(\mathcal{K}_{1, r}, \mathcal{K}_{1, r}\right)$.
- $\mathcal{P}_{2}=\mathcal{P}\left(\mathcal{K}_{2, r}, \mathcal{K}_{1, r}\right)$.
- $\mathcal{P}_{3}=\mathcal{P}\left(\mathcal{Q}_{3}, \mathcal{K}_{1, r}\right)$.
- $\mathcal{P}_{4}=\mathcal{P}\left(\mathcal{K}_{2, r}, \mathcal{K}_{2, r}\right)$.
- $\mathcal{P}_{5}=\mathcal{P}\left(Q_{4}, \mathcal{K}_{1, r}\right)$.
- $\mathcal{P}_{6}=\mathcal{P}\left(Q_{3}, \mathcal{K}_{2, r}\right)$.

For each $i(1 \leq i \leq 6)$, we define a family \mathcal{F}_{i} of 3-connected claw-free graphs according to \mathcal{P}_{i} :
$\mathcal{F}_{i}=\left\{H: H\right.$ is a 3-connected claw-free graph with $\operatorname{cl}(H)=L(G)$ and $\left.G \in \mathcal{P}_{i}\right\}$.
Here is our main result.
Theorem 2.2. Let H be a 3-connected claw-free simple graph of order n with $\delta(H) \geq 16$.
(a) Either $c(H) \geq \min \{10 \delta(H)-3, n\}$ or $H \in \mathcal{F}_{1}$.
(b) Either $c(H) \geq \min \{11 \delta(H)-7, n\}$ or $H \in \mathcal{F}_{1} \cup \mathcal{F}_{2}$.
(c) Either $c(H) \geq \min \{11 \delta(H)-3, n\}$ or $H \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$.
(d) Either $c(H) \geq \min \{12 \delta(H)-10, n\}$ or $H \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4}$.
(e) If $\delta(H) \geq 23$, then either $c(H) \geq \min \{12 \delta(H)-7, n\}$ or $H \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4} \cup \mathcal{F}_{5}$.

The theorem below shows a relationship between DCTs and Hamiltonian cycles.
Theorem 2.3. (Harary and Nash-Williams [9]). The line graph $H=L(G)$ of a graph G with at least three edges is Hamiltonian if and only if G has a DCT.

For a graph G, define

$$
\begin{equation*}
\bar{\sigma}_{2}(G)=\min \left\{d_{G}(u)+d_{G}(v) \mid \text { for every edge } u v \in E(G)\right\} . \tag{1}
\end{equation*}
$$

If $c l(H)=L(G)$ is k-connected and $L(G)$ is not complete, then G is essentially k-edge-connected and $\delta(c l(H))=\min \left\{d_{G}(x)+d_{G}(y)-2 \mid x y \in E(G)\right\}$. Thus, $\bar{\sigma}_{2}(G)=\delta(c l(H))+2 \geq \delta(H)+2$.

By Theorems 2.1 and 2.3, to prove Theorem 2.2, it suffices to show the following.

Theorem 2.4. Let G be an essentially 3-edge-connected K_{3}-free simple graph with $|E(G)|=n$ and $\bar{\sigma}_{2}(G) \geq 18$.
(a) Either G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{10 \bar{\sigma}_{2}(G)-23, n\right\}$ or $G \in \mathcal{P}_{1}$.
(b) Either G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{11 \bar{\sigma}_{2}(G)-29, n\right\}$ or $G \in \mathcal{P}_{1} \cup \mathcal{P}_{2}$.
(c) Either G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{1 \bar{\sigma}_{2}(G)-25, n\right\}$ or $G \in \mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{P}_{3}$.
(d) Either G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{12 \bar{\sigma}_{2}(G)-34, n\right\}$ or $G \in \bigcup_{i=1}^{4} \mathcal{P}_{i}$.
(e) If $\bar{\sigma}_{2}(G) \geq 25$, then either G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{12 \bar{\sigma}_{2}(G)-31, n\right\}$ or $G \in \bigcup_{i=1}^{5} \mathcal{P}_{i}$.

With Theorem 2.4 we can prove Theorem 2.2.
Proof of Theorem 2.2. We prove the case (a) only. The other cases can be proved in the same way.
Let H be a 3-connected claw-free simple graph of order n with $\delta(H) \geq 16$ and $c l(H)$ its closure. By Theorem 2.1, $\operatorname{cl}(H)$ is 3 -connected and there is a K_{3}-free simple graph G such that $c l(H)=L(G)$. Then G is essentially 3-edge-connected and has size $|E(G)|=n$ and $\bar{\sigma}_{2}(G)=\delta(c l(H))+2 \geq \delta(H)+2 \geq 18$. By Theorem 2.4, one of the following holds.
Case 1. G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{10 \bar{\sigma}_{2}(G)-23, n\right\}$.
Let $H_{1}=L(\Theta)$, the line graph of Θ. Then H_{1} is a subgraph of $L(G)=c l(H)$ and $V\left(H_{1}\right) \subseteq$ $V(c l(H))=V(H)$ and $\left|V\left(H_{1}\right)\right|=|E(\Theta)|$. Since Θ has a DCT, by Theorem 2.3, H_{1} has a Hamiltonian cycle C_{0}, which is a cycle with length $|E(\Theta)|$ in $L(G)$. By Theorem 2.1, there is a cycle C in H such that $V\left(C_{0}\right) \subseteq V(C)$. Therefore, since $\bar{\sigma}_{2}(G) \geq \delta(H)+2, c(H) \geq|V(C)| \geq\left|V\left(C_{0}\right)\right|=|E(\Theta)| \geq$ $\min \left\{10 \bar{\sigma}_{2}(G)-23, n\right\} \geq \min \{10 \delta(H)-3, n\}$.

Case 2. $G \in \mathcal{P}_{1}$. Then $H \in \mathcal{F}_{1}$. This proves Theorem 2.2(a).

Remark 2.5. For a claw-free graph H, no matter whether H is regular or not, its closure cl(H) can be obtained in polynomial time [16] and the preimage graph G of a line graph $L(G)$ can be obtained in linear time [15]. Thus, we can compute G efficiently for $c l(H)=L(G)$. Theorems 2.2 and 2.4 show that the lower bound of $c(H)$ of a 3-connected claw-free graph H with $c l(H)=L(G)$ can be obtained by checking if the graph G is in \mathcal{P}_{i} for some i. Since the size of a maximum matching of a graph can be determined in polynomial time, one can find the expected lower bound of $c(H)$ by checking if the graph G is in \mathcal{P}_{i} in polynomial time.

Fig. 2.1: Graphs in $\mathcal{P}_{2}, \mathcal{P}_{3}, \mathcal{P}_{5}$ and $\mathcal{P}\left(\Pi_{a}, \Pi_{b}\right)$, respectively.
Remark 2.6. For the graphs in Fig. 2.1, each vertex marked by \odot is incident with $r>0$ pendant edges. Each of them has a DCT subgraph Θ that contains all the edges except r pendant edges incident with a \odot vertex. Thus, Theorem 2.2 and Theorem 2.4 are the best possible in some sense.
(a) Graph G_{a} is a graph of order $n=11 r+17$ in \mathcal{P}_{2} that has a DCT subgraph Θ_{a} with $\left|E\left(\Theta_{a}\right)\right|=$ $10 r+17=10 \bar{\sigma}_{2}\left(G_{a}\right)-23$ where $\bar{\sigma}_{2}\left(G_{a}\right)=r+4$. Then $H_{a}=L\left(G_{a}\right)$ has $c\left(H_{a}\right)=10 \delta\left(H_{a}\right)-3$.
(b) Graph G_{b} is a graph in \mathcal{P}_{3} with $\bar{\sigma}_{2}\left(G_{b}\right)=r+4$ and has a DCT subgraph Θ_{b} with $\left|E\left(\Theta_{b}\right)\right|=$ $11 r+15=11 \bar{\sigma}_{2}\left(G_{b}\right)-29$. Then $H_{b}=L\left(G_{b}\right)$ has $c\left(H_{b}\right)=11 \delta\left(H_{b}\right)-7$.
(c) For graph G_{c} in Fig. 2.1(c), edge $y z$ is deleted from $K_{4, r}(r \geq 4)$, and y and z are incident with two of the three edges connecting $K_{4, r}-y z$ and $G_{c}-V\left(K_{4, r}-y z\right)$. Then G_{c} is in \mathcal{P}_{5} with $\bar{\sigma}_{2}\left(G_{c}\right)=4+r$ and has a DCT subgraph Θ_{c} with $\left|E\left(\Theta_{c}\right)\right|=12 \bar{\sigma}_{2}\left(G_{c}\right)-34$. Then $H_{c}=L\left(G_{c}\right)$ has $c\left(H_{c}\right)=12 \delta\left(H_{c}\right)-10$.
(d) Let $G_{d}=P\left(K_{2, r+1} K_{2, r+1}\right)$ (Fig. $2.1(d)$ with $\left.\Phi_{a}=\Phi_{b}=K_{2, r+1}\right)$. Then $G_{d} \in \mathcal{P}_{4}$ with $\bar{\sigma}_{2}\left(G_{d}\right)=r+4$ and has a DCT subgraph Θ_{d} with $\left|E\left(\Theta_{d}\right)\right|=11 \bar{\sigma}_{2}\left(G_{d}\right)-25$. Then $H_{d}=L\left(G_{d}\right)$ has $c\left(H_{d}\right)=11 \delta\left(H_{d}\right)-3$. (e) Let $G_{e}=P\left(K_{3, r}, K_{2, r+1}\right)$ (Fig 2.1(d) with $\Phi_{a}=K_{3, r}$ and $\left.\Phi_{b}=K_{2, r+1}\right)$. Then $G_{e} \in \mathcal{P}_{6}$ and has a DCT subgraph Θ_{e} with $\left|E\left(\Theta_{e}\right)\right|=12 \bar{\sigma}_{2}\left(G_{e}\right)-31$. Then $H_{e}=L\left(G_{e}\right)$ has $c\left(H_{e}\right)=12 \delta\left(H_{e}\right)-7$.

The following corollary of Theorem 2.2 is an improvement of a main result in [10].
Corollary 2.7. If H is a 3-connected claw-free simple graph of order $n \geq 148$ and if $\delta(H) \geq \frac{n+3}{10}$, then either H is Hamiltonian, or $H \in \mathcal{F}_{1}$.

Proof. Since $n \geq 148$ and $\delta(H) \geq \frac{n+3}{10}>15, \delta(H) \geq 16$ and $10 \delta(H)-3 \geq n$. By Theorem 2.2, either H has $c(H) \geq n$ and so H is Hamiltonian, or $H \in \mathcal{F}_{1}$.

Remark 2.8. Lai, et al., in [10] prove Corollary 2.7 for $n \geq 196$ and $\delta(H) \geq \frac{n+5}{10}$. More results on conditions involved δ for the Hamiltonicity of 3-connected claw-free graphs can be found in [8, 12].

3 Graph contraction and Catlin's reduction method

Let G be a connected multigraph. For $X \subseteq E(G)$, the contraction G / X is the multigraph obtained from G by identifying the two ends of each edge $e \in X$ and deleting the resulting loops. Note that multiple edges may arise by the identification even G is a simple graph. If Γ is a connected subgraph of G, we write G / Γ for $G / E(\Gamma)$ and say that G / Γ is obtained from G by contracting Γ.

Let G and G_{T} be two connected graphs. We say that G is contractible to G_{T} if G_{T} is a graph obtained from G by successively contracting a collection of pairwise vertex disjoint connected subgraphs, and call G_{T} the contraction graph of G. For a vertex $v \in V\left(G_{T}\right)$, there is a connected subgraph $G(v)$ in G such that v is obtained by contracting $G(v)$. We call $G(v)$ the preimage of v in G and call v the contraction image of $G(v)$ in G_{T}.

Let $O(G)$ be the set of vertices of odd degree in G. A graph G is collapsible if for every even subset $R \subseteq V(G)$, there is a spanning connected subgraph Γ_{R} of G with $O\left(\Gamma_{R}\right)=R$. Note that if $R=\{x, y\}$ then Γ_{R} is a spanning (x, y)-trail; and if $R=\emptyset$ then Γ_{R} is an SCT in G.

Catlin [2] showed that every multigraph G has a unique collection of pairwise disjoint maximal collapsible subgraphs $\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{c}$ such that $V(G)=\cup_{i=1}^{c} V\left(\Gamma_{i}\right)$. The reduction of G is a graph obtained from G by contracting each Γ_{i} into a vertex $v_{i}(1 \leq i \leq c)$ and is denoted by G^{\prime}. Thus, the reduction G^{\prime} of G is a special type of contraction graph of G. Although multiple edges may arise by contracting an edge, contracting a maximal collapsible graph will not generate multiple edges.

We regard the edges in $E\left(G^{\prime}\right)$ as the edges in $E(G)$. Thus, $E(G)=E\left(G^{\prime}\right) \cup_{i=1}^{c} E\left(\Gamma_{i}\right)$. For a vertex $v \in V\left(G^{\prime}\right)$, there is a unique maximal collapsible subgraph $\Gamma_{0}(v)$ in G such that v is the contraction image of $\Gamma_{0}(v)$ and $\Gamma_{0}(v)$ is the preimage of v. A vertex $v \in V\left(G^{\prime}\right)$ is a contracted vertex if $\Gamma_{0}(v) \neq K_{1}$. A graph is reduced if $G=G^{\prime}$. We regard K_{1} as a closed trail with $\kappa^{\prime}\left(K_{1}\right)=\infty$.

Let G be a connected simple graph. Define

$$
\begin{aligned}
D_{i}(G) & =\left\{v \in V(G) \mid d_{G}(v)=i\right\} ; \\
D_{i}^{*}(G) & =\left\{v \in V(G) \mid d_{G}(v) \geq i\right\} .
\end{aligned}
$$

Some results on Catlin's reduction method that will be needed are summarized below:
Theorem 3.1. Let G be a connected multigraph and let G^{\prime} be the reduction of G. Let Γ be a collapsible subgraph in G. Then each of the following holds:
(a) ([2]). $G \in \mathcal{S L}$ if and only if $G / \Gamma \in \mathcal{S L}$. In particular, $G \in \mathcal{S L}$ if and only if $G^{\prime} \in \mathcal{S L}$.
(b) ([2]). G has a DCT (or DT) if and only if G^{\prime} has a DCT (or a DT) containing all the contracted vertices of G^{\prime}.
(c) ([2,3]). G^{\prime} is simple and K_{3}-free with $\delta\left(G^{\prime}\right) \leq 3$, and any subgraph of G^{\prime} is reduced. Furthermore, if $G^{\prime} \notin\left\{K_{1}, K_{2}, K_{2, s}\right\}(s \geq 2)$, then $\left|E\left(G^{\prime}\right)\right| \leq 2\left|V\left(G^{\prime}\right)\right|-5$.
(d) ([6]). If $G \neq K_{1}$ is reduced with $|V(G)| \leq 7$ and $\kappa^{\prime}(G) \geq 2$, then $\left|D_{2}(G)\right| \geq 3$. Furthermore, if $\left|D_{2}(G)\right|=3$, then $G \in\left\{K_{2,3}, K_{1,3}(1,1,1), J^{\prime}(1,1)\right\}$ (see Fig 3.1).
(e) ([5]). Let G be a connected reduced graph of order n with $\delta(G) \geq 2$ and $G \neq K_{2, b}(b \geq 2)$. Let M be a maximum matching in G and $\left|D_{2}(G)\right|=l$. Then $|M| \geq \min \left\{\frac{n-1}{2}, \frac{n+5-l}{3}\right\}$.
(a) $K_{1,3}(1,1,1)$

(b) $J^{\prime}(1,1)$

Fig. 3.1: Two reduced graphs G of order 7 with $\left|D_{2}(G)\right|=3$.
Let G be an essentially 3-edge-connected simple graph. Then $D_{1}(G) \cup D_{2}(G)$ is an independent set. Let E_{1} be the set of pendant edges in G. For each $x \in D_{2}(G)$, there are two edges e_{x}^{1} and e_{x}^{2} incident with x. Let $X_{2}(G)=\left\{e_{x}^{1} \mid x \in D_{2}(G)\right\}$. Thus $\left|X_{2}(G)\right|=\left|D_{2}(G)\right|$. Define

$$
G_{1}=G / E_{1} \text { and } G_{0}=G_{1} / X_{2}(G) .
$$

Since G is essentially 3-edge-connected, G_{1} is essentially 3-edge-connected and 2-edge-connected, and G_{0} is 3 -edge-connected.

In [17], Shao defined G_{0} for essentially 3-edge-connected graphs G and called G_{0} the core of G. Although G is simple, G_{0} may not be simple. But by Theorem 3.1, G_{0}^{\prime} is simple and K_{3}-free.

For a vertex $v \in V\left(G_{0}^{\prime}\right)$, let $\Gamma_{0}(v)$ be the collapsible preimage of v in G_{0}, let $\Gamma_{1}(v)$ be the preimage of v in G_{1} and let $\Gamma(v)$ be the preimage of v in G. Then $\Gamma(v)$ is a subgraph induced by $E\left(\Gamma_{0}(v)\right)$ and some edges in $E_{1} \cup X_{2}(G)$. By the definitions, we have the following:
(a) $\Gamma_{1}(v)=\Gamma(v) /\left(E_{1} \cap E(\Gamma(v))\right)$ (it is still K_{3}-free);
(b) $\Gamma_{0}(v)=\Gamma_{1}(v) /\left(X_{2}(G) \cap E\left(\Gamma_{1}(v)\right)\right.$) (it may not be K_{3}-free).

A vertex $v \in V\left(G_{0}^{\prime}\right)\left(\right.$ or $\left.V\left(G_{0}\right)\right)$ is a contracted vertex if $|V(\Gamma(v))|>1$. A vertex $v \in V\left(G_{0}^{\prime}\right)$ (or $V\left(G_{0}\right)$) is nontrivial in $G_{0}^{\prime}\left(\right.$ or in $\left.G_{0}\right)$ if $|V(\Gamma(v))|>1$ or $|V(\Gamma(v))|=1$ and v is adjacent to a vertex in $D_{2}(G)$. A vertex v in G_{0}^{\prime} is trivial if $d_{G_{0}^{\prime}}(v)=d_{G}(v)$ and v is not adjacent to a vertex in $D_{2}(G)$. For instance, if $x \in D_{2}(G)$ with $N_{G}(x)=\{u, v\}$, and if u_{x} is a vertex in G_{0} obtained by contracting $u x$, then both u_{x} and v are nontrivial in G_{0} but u_{x} is a contracted vertex and v is not a contracted vertex in G_{0}.

Using Theorem 3.1(b), Shao [17] proved the following:

Theorem 3.2. ([17]). Let G be an essentially 3-edge-connected graph and $L(G)$ is not complete. Let G_{0} be the core of graph G, and let G_{0}^{\prime} be the reduction of G_{0}, then the following holds:
(a) G_{0} is well defined, nontrivial and $\delta\left(G_{0}\right)=\kappa^{\prime}\left(G_{0}\right) \geq 3$ and so $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq \kappa^{\prime}\left(G_{0}\right) \geq 3$;
(b) G has a DCT if and only if G_{0}^{\prime} has a DCT containing all the nontrivial vertices in G_{0}^{\prime}.

Let G_{T} be a contraction graph of G. Let v be a vertex in G_{T} and let $G(v)$ be the preimage of v in G. Let $\Theta(v)$ be a connected subgraph of $G(v)$. Define

$$
\begin{equation*}
\mathcal{E}_{G(v)}(\Theta(v))=\{e \in E(G(v)) \mid e \text { is incident with some vertices in } \Theta(v)\} \tag{2}
\end{equation*}
$$

For a vertex $x \in V(G(v))$, let $i(x)$ be the number of edges in $E\left(G_{T}\right)$ incident with x in G (see Fig. 3.2). For a vertex subset $S \subseteq V(G(v))$, let $i(S)=\sum_{x \in S} i(x)$, which is the number of edges in $E\left(G_{T}\right)$ that are incident with some vertices in S. When $\Theta(v)$ is a subgraph of $G(v)$, we use $i(\Theta(v))$ for $i(V(\Theta(v)))$. Then for any $x \in V(\Theta(v)) \subseteq V(G(v))$,

$$
\begin{equation*}
d_{G}(x)=i(x)+\left|N_{G(v)}(x)\right|=i(x)+d_{G(v)}(x) \quad \text { and } \quad i(x) \leq \sum_{w \in V(\Theta(v))} i(w)=i(\Theta(v)) \leq d_{G_{T}}(v) \tag{3}
\end{equation*}
$$

When $G_{T}=G_{0}^{\prime}$ and $G(v)=\Gamma(v)$ with a subgraph $\Theta(v), i(x) \leq i(\Theta(v)) \leq d_{G_{0}^{\prime}}(v)$ (See Fig. 3.2).

Fig. 3.2. Description of edges and vertices in G_{0}^{\prime} and G that are related to $i(x)$ and $i(\Theta(v))$

Proposition 3.3. Let G be an essentially 3-edge-connected K_{3}-free simple graph with $\bar{\sigma}_{2}(G) \geq 7$. Let G_{T} be the contraction graph of G. For a vertex $v \in V\left(G_{T}\right)$ with $d_{G_{T}}(v)=3$, let $E_{G_{T}}(v)$ be the set of the three edges incident with v in G_{T} and let $G(v)$ be the preimage of v in G. If $\alpha^{\prime}(G(v)) \in\{1,2\}$, then for any two edges in $E_{G_{T}}(v), G(v)$ has a dominating (x, y)-trail T_{v} where x, y are incident with the two edges and that each of the following holds:
(a) if $\alpha^{\prime}(G(v))=1$, then $G(v) \in \mathcal{K}_{1, r}$ and $|E(G(v))|=\left|\mathcal{E}_{G(v)}\left(T_{v}\right)\right| \geq \bar{\sigma}_{2}(G)-4$;
(b) if $\alpha^{\prime}(G(v))=2$, then $G(v) \in \mathcal{K}_{2, r}$ and $|E(G(v))|=\left|\mathcal{E}_{G(v)}\left(T_{v}\right)\right| \geq 2 \bar{\sigma}_{2}(G)-3-i\left(T_{v}\right)$.

Proof. If $\alpha^{\prime}(G(v))=1$, then since G is essentially 3-edge-connected, K_{3}-free and simple, $G(v)=K_{1, r}$. Then $T_{v}=K_{1}$. Let $V\left(T_{v}\right)=\{x\}$. Then $|E(G(v))|=\left|\mathcal{E}_{G(v)}\left(T_{v}\right)\right|=\left|N_{G(v)}(x)\right|=r$ and $i(x)=d_{G_{T}}(v)=3$. Let $x y$ be an edge in $E(G(v))$ with $d_{G(v)}(x)=r$ and $d_{G}(y)=1$. Since $d_{G}(x)=d_{G(v)}(x)+i(x)=r+3$ and $d_{G}(x)+d_{G}(y) \geq \bar{\sigma}_{2}(G), r \geq \bar{\sigma}_{2}(G)-4$ and (a) is proved.

Next, we assume that $\alpha^{\prime}(G(v))=2$. Then $G(v)$ has a cycle. Let $C_{s}=u_{1} u_{2} \cdots u_{s} u_{1}$ be a cycle in $G(v)$. Since $G(v)$ is simple and K_{3}-free and $\alpha^{\prime}(G(v))=2,4 \leq s \leq 5$.

Note that $E_{G_{T}}(v)$ is the set of edges outside of $G(v)$ incident with some vertices in $G(v)$. Since $\left|E_{G_{T}}(v)\right|=3$ and $\left|V\left(C_{s}\right)\right|=s \geq 4$, a vertex (say u_{1}) in $V\left(C_{s}\right)$ is not incident with any edge in $E_{G_{T}}(v)$. Then $d_{G}\left(u_{1}\right)=d_{G(v)}\left(u_{1}\right)$. Since G is an essentially 3-edge-connected K_{3}-free simple graph and $\alpha^{\prime}(G(v))=2, N_{G}\left(u_{1}\right)=N_{G(v)}\left(u_{1}\right)=\left\{u_{2}, u_{s}\right\}$ and $d_{G}\left(u_{1}\right)=2$.

Since $i\left(u_{2}\right)+i\left(u_{s}\right) \leq d_{G_{T}}(v)=3$, we may assume that $i\left(u_{2}\right) \leq 1$. Since $\bar{\sigma}_{2}(G) \geq 7, d_{G}\left(u_{2}\right) \geq \bar{\sigma}_{2}(G)-$ $d_{G}\left(u_{1}\right) \geq \bar{\sigma}_{2}(G)-2 \geq 5$. Then $\left|N_{G(v)}\left(u_{2}\right)\right|=d_{G(v)}\left(u_{2}\right)=d_{G}\left(u_{2}\right)-i\left(u_{2}\right) \geq 4$. Let $z \in N_{G(v)}\left(u_{2}\right)-V\left(C_{s}\right)$. If $s=5$, then $\left\{u_{1} u_{5}, u_{2} z, u_{3} u_{4}\right\}$ is a matching in $G(v)$, a contradiction. Thus $s=5$ is impossible.

Hence, $s=4$. If there is a vertex z_{1} in $N_{G(v)}\left(u_{3}\right)-\left\{u_{2}, u_{4}\right\}$, then $\left\{u_{1} u_{4}, z u_{2}, z_{1} u_{3}\right\}$ is a matching in $G(v)$, a contradiction. Thus, $N_{G(v)}\left(u_{3}\right)=\left\{u_{2}, u_{4}\right\}$.

Let $X=\left\{u_{2}, u_{4}\right\}$ and $Y=N_{G(v)}\left(u_{2}\right) \cup N_{G(v)}\left(u_{4}\right)$. Then since G is K_{3}-free, $G(v) \in \mathcal{K}_{2, r}$ with $V(G(v))=X \cup Y$. Since $d_{G}\left(u_{1}\right)=2$, only u_{2}, u_{3} and u_{4} are the possible nontrivial vertices in $G(v)$ and may be incident with the edges in $E_{G_{T}}(v)$. By inspection, for any given two edges in $E_{G_{T}}(v)$, $G(v)$ has a dominating (x, y)-trail T_{v} containing all the nontrivial vertices of $G(v)$ where x and y are incident with the two given edges. Thus, $i\left(T_{v}\right) \geq 2$ and $\left\{u_{2}, u_{4}\right\} \subseteq V\left(T_{v}\right)$. Next, we shall prove that $\left|\mathcal{E}_{G(v)}\left(T_{v}\right)\right| \geq 2 \bar{\sigma}_{2}(G)-3-i\left(T_{v}\right)$.

Since $\left\{u_{2}, u_{4}\right\} \subseteq V\left(T_{v}\right)$ and $E_{G(v)}\left(u_{2}\right) \cap E_{G(v)}\left(u_{4}\right)=\emptyset, E_{G(v)}\left(u_{2}\right) \cup E_{G(v)}\left(u_{4}\right) \subseteq \mathcal{E}_{G(v)}\left(T_{v}\right)$ and

$$
\begin{equation*}
\left|\mathcal{E}_{G(v)}\left(T_{v}\right)\right| \geq\left|E_{G(v)}\left(u_{2}\right)\right|+\left|E_{G(v)}\left(u_{4}\right)\right|=d_{G(v)}\left(u_{2}\right)+d_{G(v)}\left(u_{4}\right) . \tag{4}
\end{equation*}
$$

For $u \in\left\{u_{2}, u_{4}\right\}$ and a vertex $w \in N_{G(v)}(u)$, since $d_{G}(w)+d_{G}(u) \geq \bar{\sigma}_{2}(G)$, by (3),

$$
\begin{equation*}
d_{G(v)}(u)=d_{G}(u)-i(u) \geq \bar{\sigma}_{2}(G)-d_{G}(w)-i(u) . \tag{5}
\end{equation*}
$$

For each $z \in N_{G(v)}(u)$ where $u \in\left\{u_{2}, u_{4}\right\}$, since G is K_{3}-free and $\alpha^{\prime}(G(v))=2, N_{G(v)}(z) \subseteq\left\{u_{2}, u_{4}\right\}$, and either $d_{G(v)}(z)=1$ or $d_{G(v)}(z)=2$.
Case 1. There is a vertex z in $N_{G(v)}(u)$ where $u \in\left\{u_{2}, u_{4}\right\}$ (say $u=u_{2}$) such that $d_{G(v)}(z)=1$.
We have the following two sub cases:
Subcase 1.1. $d_{G}(z)=d_{G(v)}(z)=1$. Then $z u_{2}$ is a pendant edge. By (5) with $u=u_{2}$ and $w=z$, $d_{G(v)}\left(u_{2}\right) \geq \bar{\sigma}_{2}(G)-1-i\left(u_{2}\right)$. Since $u_{1} \in N_{G(v)}\left(u_{4}\right)$ and $d_{G}\left(u_{1}\right)=2$, by (5) with $u=u_{4}$ and $w=u_{1}$, $d_{G(v)}\left(u_{4}\right) \geq \bar{\sigma}_{2}(G)-2-i\left(u_{4}\right)$. By (4) and $i\left(u_{2}\right)+i\left(u_{4}\right) \leq i\left(T_{v}\right)$,
$\left|\mathcal{E}_{G(v)}\left(T_{v}\right)\right| \geq d_{G(v)}\left(u_{2}\right)+d_{G(v)}\left(u_{4}\right) \geq\left(\bar{\sigma}_{2}(G)-1-i\left(u_{2}\right)\right)+\left(\bar{\sigma}_{2}(G)-2-i\left(u_{4}\right)\right) \geq 2 \bar{\sigma}_{2}(G)-3-i\left(T_{v}\right)$.
In the following, we assume that no vertices in $V\left(C_{4}\right)$ are incident with a pendant edge in G.
Subcase 1.2. $d_{G(v)}(z)=1$ and $d_{G}(z) \neq 1$.
Since G is essentially 3-edge-connected and $\alpha^{\prime}(G(v))=2$, z must be incident with an edge in $E_{G_{T}}(v) \cap X_{2}(G)$ and $d_{G}(z)=2$ and $i(z)=1$.

Let Z_{i} be the set of vertices in $N_{G(v)}\left(u_{i}\right)$ that are incident with an edge in $E_{G_{T}}(v) \cap X_{2}(G)(i=2,4)$. Then $\left|Z_{2}\right|+\left|Z_{4}\right| \geq i(z)=1$ and $\left|Z_{2}\right|+i\left(u_{2}\right)+\left|Z_{4}\right|+i\left(u_{4}\right) \leq d_{G_{T}}(v)=3$. Without loss of generality, we assume that $\left|Z_{2}\right|+i\left(u_{2}\right) \leq 1$.

Let $W=N_{G(v)}\left(u_{2}\right) \cap N_{G(v)}\left(u_{4}\right)$. Then $\left|N_{G(v)}\left(u_{i}\right)\right|=|W|+\left|Z_{i}\right|$ and $\left|N_{G}\left(u_{i}\right)\right|=\left|N_{G(v)}\left(u_{i}\right)\right|+i\left(u_{i}\right)$ for $i \in$ $\{2,4\}$. By (5) with $u=u_{2}$ and $w=u_{1}, d_{G(v)}\left(u_{2}\right) \geq \bar{\sigma}_{2}(G)-2-i\left(u_{2}\right)$. Hence, $|W| \geq \bar{\sigma}_{2}(G)-2-\left|Z_{2}\right|-i\left(u_{2}\right)$. Then by (4) and $2\left(\left|Z_{2}\right|+i\left(u_{2}\right)\right) \leq 2 \leq i\left(T_{v}\right)$,

$$
\begin{aligned}
\left|\mathcal{E}_{G(v)}\left(T_{v}\right)\right| & \geq\left|N_{G(v)}\left(u_{2}\right)\right|+\left|N_{G(v)}\left(u_{4}\right)\right|=2|W|+\left|Z_{2}\right|+\left|Z_{4}\right| \geq 2|W|+1 \\
& \geq 2\left(\bar{\sigma}_{2}(G)-2-\left|Z_{2}\right|-i\left(u_{2}\right)\right)+1=2 \bar{\sigma}_{2}(G)-3-2\left(\left|Z_{2}\right|+i\left(u_{2}\right)\right) \geq 2 \bar{\sigma}_{2}(G)-3-i\left(T_{v}\right) .
\end{aligned}
$$

We are done for this case.
Case 2. For any z in $N_{G(v)}\left(u_{2}\right) \cup N_{G(v)}\left(u_{4}\right), d_{G(v)}(z)=2$.
Then $N_{G(v)}(z)=\left\{u_{2}, u_{4}\right\}$ and $N_{G(v)}\left(u_{2}\right)=N_{G(v)}\left(u_{4}\right)$. We have a T_{v} trail containing the vertices that are incident with the three edges in $E_{G_{T}}(v)$. Thus, $i\left(u_{2}\right)+i\left(u_{4}\right) \leq i\left(T_{v}\right)=3$. We assume $i\left(u_{2}\right) \leq 1$.

By (5) with $u \in\left\{u_{2}, u_{4}\right\}$ and $w=u_{1}$, and by $i\left(u_{2}\right) \leq 1$ and $d_{G}\left(u_{1}\right)=2, d_{G(v)}\left(u_{2}\right)=d_{G}\left(u_{2}\right)-i\left(u_{2}\right) \geq$ $\bar{\sigma}_{2}(G)-d_{G}\left(u_{1}\right)-1=\bar{\sigma}_{2}(G)-2-i\left(u_{2}\right)$. Therefore, by (4) and $2 i\left(u_{2}\right)+1 \leq 3=i\left(T_{v}\right)$,

$$
\begin{aligned}
\left|\mathcal{E}_{G(v)}\left(T_{v}\right)\right| & \geq\left|E_{G(v)}\left(u_{2}\right)\right|+\left|E_{G(v)}\left(u_{4}\right)\right|=\left|N_{G(v)}\left(u_{2}\right)\right|+\left|N_{G(v)}\left(u_{4}\right)\right|=2\left|N_{G(v)}\left(u_{2}\right)\right| \\
& \geq 2\left(\bar{\sigma}_{2}(G)-2-i\left(u_{2}\right)\right)=2 \bar{\sigma}_{2}(G)-3-\left(1+2 i\left(u_{2}\right)\right) \geq 2 \bar{\sigma}_{2}(G)-3-i\left(T_{v}\right) .
\end{aligned}
$$

The proof is complete.

4 Associated Theorems and the proof of Theorem 2.4

The following theorem plays an important role in our approach to prove Theorem 2.4.
Theorem 4.1. ([7]). Let G be a 3-edge-connected simple graph. Let $S \subseteq V(G)$ be a vertex subset with $|S| \leq 12$. Then either G has a closed trail C such that $S \subseteq V(C)$, or G can be contracted to P in such a way that the preimage of each vertex of P contains at least one vertex in S.

We shall choose a subset S of $V\left(G_{0}^{\prime}\right)$ that allow us to find a DCT subgraph in G with large size according to whether G_{0}^{\prime} is contractible to the Petersen graph or G_{0}^{\prime} has a closed trail containing S.

Let G be an essentially 3 -edge-connected K_{3}-free graph. We will use the following notation:

- $S_{0}=\left\{v \in V\left(G_{0}^{\prime}\right) \mid v\right.$ is a contracted vertex in G_{0}^{\prime}, i.e., $\left.\Gamma(v) \neq K_{1}\right\}$;
- $S_{1}=V\left(G_{0}^{\prime}\right)-S_{0}$, (then $d_{G}(v)=d_{G_{0}}(v)=d_{G_{0}^{\prime}}(v)$ if $\left.v \in S_{1}\right)$;
- $S_{1}^{*}=\left\{v \in S_{1}-D_{3}\left(G_{0}^{\prime}\right) \mid d_{G_{0}^{\prime}}(v) \geq \bar{\sigma}_{2}(G)-3\right\} ;$
- $S_{2}=V\left(G_{0}^{\prime}\right)-\left(S_{0} \cup S_{1}^{*}\right)$;
- $\Phi=G_{0}^{\prime}\left[S_{2}\right]$, the subgraph induced by S_{2} in G_{0}^{\prime};
- let M_{Φ} be a maximum matching in Φ and let S_{M} be the set of end vertices of the edges in M_{Φ};
- let $S_{3}=V\left(G_{0}^{\prime}\right)-\left(S_{0} \cup S_{1}^{*} \cup S_{M}\right)$, and so $S_{3}=V(\Phi)-S_{M}=S_{2}-S_{M}$;
- let $V_{a}=S_{0} \cup S_{1}^{*} \cup S_{M}$.

Theorem 2.4 can be proved by establishing the following two associated theorems.
Theorem 4.2. Let G be an essentially 3-edge-connected K_{3}-free simple graph with $|E(G)|=n$. Let G_{0}^{\prime} be the reduction of G_{0}. Suppose that $G_{0}^{\prime} \notin \mathcal{S} \cup\{P\}$ and G_{0}^{\prime} can not be contracted to P in such a way that the preimage of each vertex in P contains at least one vertex in V_{a}. Then each of the following holds:
(a) if $\bar{\sigma}_{2}(G) \geq 18$, then G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{12 \bar{\sigma}_{2}(G)-34, n\right\}$;
(b) if $\bar{\sigma}_{2}(G) \geq 25$, then G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{12 \bar{\sigma}_{2}(G)-31, n\right\}$.

Theorem 4.3. Let G be an essentially 3-edge-connected K_{3}-free simple graph with $|E(G)|=n$ and $\bar{\sigma}_{2}(G) \geq 8$. Let G_{0}^{\prime} be the reduction of G_{0}. Let V_{a} be the set defined above. If $G_{0}^{\prime}=P$ or G_{0}^{\prime} can be contracted to P in such a way that the preimage of each vertex in P contains at least one vertex in V_{a}, then each of the following holds:
(a) either G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{10 \bar{\sigma}_{2}(G)-23, n\right\}$ or $G \in \mathcal{P}_{1}$;
(b) either G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{11 \bar{\sigma}_{2}(G)-29, n\right\}$ or $G \in \mathcal{P}_{1} \cup \mathcal{P}_{2}$;
(c) if $\bar{\sigma}_{2}(G) \geq 9$, then either G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{11 \bar{\sigma}_{2}(G)-25, n\right\}$ or $G \in \bigcup_{i=1}^{3} \mathcal{P}_{i}$;
(d) either G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{12 \bar{\sigma}_{2}(G)-34, n\right\}$ or $G \in \bigcup_{i=1}^{4} \mathcal{P}_{i}$;
(e) if $\bar{\sigma}_{2}(G) \geq 12$, then either G has a DCT subgraph Θ with $|E(\Theta)| \geq \min \left\{12 \bar{\sigma}_{2}(G)-31, n\right\}$ or $G \in \bigcup_{i=1}^{5} \mathcal{P}_{i}$.
With Theorems 4.3 and 4.2 we can prove Theorem 2.4.
Proof of Theorem 2.4. By Theorem 3.2, G_{0} and G_{0}^{\prime} are 3 -edge-connected. If $G_{0}^{\prime} \in \mathcal{S} \mathcal{L}$, then by Theorem 3.1, $G_{0} \in \mathcal{S L}$. By Theorem 3.2, G has a DCT. Theorem 2.4 is proved for this case.

Next, we assume that $G_{0}^{\prime} \notin \mathcal{S} \mathcal{L}$. Let $V_{a}=S_{0} \cup S_{1}^{*} \cup S_{M}$ be the subset of $V\left(G_{0}^{\prime}\right)$ defined above.
If $G_{0}^{\prime}=P$ or G_{0}^{\prime} can be contracted to P in the way stated in Theorem 4.3, then Theorem 2.4 follows from Theorem 4.3. Otherwise, Theorem 2.4 follows from Theorem 4.2.

5 Technical lemmas

The following lemma will be needed which can be proved easily and a proof can be found in [4].
Lemma 5.1 ([4]). Let G be a 2-edge-connected graph. Let $\{x, y, z\}$ be a set of vertices in G (possibly $x=y$ or $x=z$). Then for any two vertices (say x and y) in $\{x, y, z\}, G$ has $a(x, y)$-trail containing z.

Lemma 5.2. Let G be a connected K_{3}-free simple graph. Let G_{T} be a contraction graph of G. For a vertex $v \in V\left(G_{T}\right)$, let $G(v)$ be the preimage of v in G and let M be a matching of size t in $G(v)$. Let $\Theta(v)$ be a connected subgraph of $G(v)$ and $\mathcal{E}_{G(v)}(\Theta(v))$ contains all the edges of M. Then

$$
\begin{equation*}
\left|\mathcal{E}_{G(v)}(\Theta(v))\right| \geq t \bar{\sigma}_{2}(G)-t^{2}-i(\Theta(v)) \geq t \bar{\sigma}_{2}(G)-t^{2}-d_{G_{T}}(v) \tag{6}
\end{equation*}
$$

Furthermore, each of the following holds:
(a) if $G_{T}=G_{0}^{\prime}$ and M is a matching of size $t \geq 3$ in $G(v)$ and all the edges in M are in G_{0}^{\prime}, then $\left|\mathcal{E}_{G(v)}(\Theta(v))\right| \geq t \bar{\sigma}_{2}(G)-4 t+5-i(\Theta(v)) ;$
(b) if $\Theta(v)$ is a connected dominating subgraph of $G(v)$ with $i(\Theta(v)) \geq 2, d_{G_{T}}(v) \geq 3$ and $t=$ $\alpha^{\prime}(G(v)) \geq 4$, then $\left|\mathcal{E}_{G(v)}(\Theta(v))\right| \geq t \bar{\sigma}_{2}(G)-t^{2}-i(\Theta(v))+2$.

Proof. Let $M=\left\{y_{1} z_{1}, y_{2} z_{2}, \cdots, y_{t} z_{t}\right\}$ be a matching in $G(v)$ such that $\mathcal{E}_{G(v)}(\Theta(v))$ contains all the edges in M. Let $Y=\left\{y_{1}, \cdots, y_{t}\right\}$ and $Z=\left\{z_{1}, \cdots, z_{t}\right\}$ and let $G_{M}=G[Y \cup Z]$. Note that each edge in G_{M} occurs in exactly two of the edge sets of $\left\{E_{G}\left(y_{i}\right), E_{G}\left(z_{i}\right) \mid 1 \leq i \leq t\right\}$. Thus,

$$
\begin{equation*}
\left.\sum_{i=1}^{t}\left(\left|E_{G}\left(y_{i}\right)\right|+\left|E_{G}\left(z_{i}\right)\right|\right)-\left|E\left(G_{M}\right)\right| \leq\left|\bigcup_{i=1}^{t}\right| E_{G}\left(y_{i}\right) \cup E_{G}\left(z_{i}\right)\right) \mid \tag{7}
\end{equation*}
$$

Let $E_{G_{T}}(v)$ be the set of edges in $E(G)-E(G(v))$ incident with some vertices in $\Theta(v)$. Let $A(v)=$ $E_{G_{T}}(v) \cap\left(\bigcup_{i=1}^{t}\left(E_{G}\left(y_{i}\right) \cup E_{G}\left(z_{i}\right)\right)\right)$. Then $\bigcup_{i=1}^{t}\left(E_{G}\left(y_{i}\right) \cup E_{G}\left(z_{i}\right)\right) \subseteq A(v) \cup \mathcal{E}_{G(v)}(\Theta(v))$ and $|A(v)|=i(\Theta(v))$. Since $d_{G}\left(y_{i}\right)+d_{G}\left(z_{i}\right) \geq \bar{\sigma}_{2}(G)$, by (7),

$$
\begin{equation*}
t \bar{\sigma}_{2}(G)-\left|E\left(G_{M}\right)\right| \leq \sum_{i=1}^{t}\left(\left|E_{G}\left(y_{i}\right)\right|+\left|E_{G}\left(z_{i}\right)\right|\right)-\left|E\left(G_{M}\right)\right| \leq i(\Theta(v))+\left|\mathcal{E}_{G(v)}(\Theta(v))\right| \tag{8}
\end{equation*}
$$

Now, we need to find $\left|E\left(G_{M}\right)\right|$ in terms of t, which is depended on how the edges in M are selected.
Since G is K_{3}-free simple graph, G_{M} is K_{3}-free and simple. By Turán's Theorem, G_{M} has at most t^{2} edges. Since $|A(v)|=i(\Theta(v)) \leq d_{G_{T}}(v)$ and $\left|E\left(G_{M}\right)\right| \leq t^{2}$, (6) follows from (8).

If all the edges in M are the edges in G_{0}^{\prime}, we have a better estimate on $\left|E\left(G_{M}\right)\right|$ for $t \geq 3$.
Note that we regard $E\left(G_{0}^{\prime}\right) \subseteq E(G)$. Let $M^{\prime}=\left\{y_{1}^{\prime} z_{1}^{\prime}, y_{2}^{\prime} z_{2}^{\prime}, \cdots, y_{t}^{\prime} z_{t}^{\prime}\right\}$ be a matching in G_{0}^{\prime}, which are the edges in $G(v)$. Let $\Gamma\left(y_{i}^{\prime}\right)$ and $\Gamma\left(z_{i}^{\prime}\right)$ be the preimages of y_{i}^{\prime} and $z_{i}^{\prime}(1 \leq i \leq t)$ in G, respectively. Then for each $y_{i}^{\prime} z_{i}^{\prime}$ in M^{\prime}, there are y_{i} in $\Gamma\left(y_{i}^{\prime}\right)$ and z_{i} in $\Gamma\left(z_{i}^{\prime}\right)$ such that $y_{i} z_{i}$ is the edge in G corresponding to $y_{i}^{\prime} z_{i}^{\prime}$ in G_{0}^{\prime}. Thus, $M=\left\{y_{1} z_{1}, y_{2} z_{2}, \cdots, y_{t} z_{t}\right\}$ is a matching in $G(v)$. Let $Y^{\prime}=\left\{y_{1}^{\prime}, \cdots, y_{t}^{\prime}\right\}$ and $Z^{\prime}=\left\{z_{1}^{\prime}, \cdots, z_{t}^{\prime}\right\}$. Let $G_{M^{\prime}}^{\prime}=G_{0}^{\prime}\left[Y^{\prime} \cup Z^{\prime}\right]$. Since $y_{i} \in V\left(\Gamma\left(y_{i}^{\prime}\right)\right)$, the number of edges in $E_{G}\left(y_{i}\right)$ (or $\left.E_{G}\left(z_{i}\right)\right)$ incident with vertices in $Y \cup Z$ is no more than the number of edges in $E_{G_{0}^{\prime}}\left(y_{i}^{\prime}\right)$ incident with vertices in $Y^{\prime} \cup Z^{\prime}$. Thus, $\left|E\left(G_{M}\right)\right| \leq\left|E\left(G_{M^{\prime}}^{\prime}\right)\right|$. Since $G_{M^{\prime}}^{\prime}$ is a subgraph of $G_{0}^{\prime}, G_{M^{\prime}}^{\prime}$ is reduced. Since $t \geq 3, G_{M^{\prime}}^{\prime} \notin\left\{K_{1}, K_{2}, K_{2, s}\right\}$. By Theorem 3.1, $\left|E\left(G_{M^{\prime}}^{\prime}\right)\right| \leq 2\left|V\left(G_{M^{\prime}}^{\prime}\right)\right|-5=4 t-5$. By (8) and $|A(v)|=i(\Theta(v)),\left|\mathcal{E}_{G(v)}(\Theta(v))\right| \geq t \bar{\sigma}_{2}(G)-4 t+5-i(\Theta(v))$. Case (a) is proved.

For $(\mathrm{b}), \Theta(v)$ is a dominating subgraph of $G(v)$ with $i(\theta(v)) \geq 2, d_{G_{T}}(v) \geq 3$ and $t=\alpha^{\prime}(G(v)) \geq 4$.

To the contrary, suppose that (b) is false, i.e.,

$$
\begin{equation*}
\left|\mathcal{E}_{G(v)}(\Theta(v))\right| \leq t \bar{\sigma}_{2}(G)-t^{2}-i(\Theta(v))+1 . \tag{9}
\end{equation*}
$$

By (8) and (9), $\left|E\left(G_{M}\right)\right| \geq t^{2}-1$. We further assume that M is a maximum matching in $G(v)$ with $\left|E\left(G_{M}\right)\right|$ as small as possible.

Since $\left|E\left(G_{M}\right)\right| \geq t^{2}-1$ and $t \geq 4$, the total number of edge incidents in G_{M} is $\sum_{i=1}^{t}\left(d_{G_{M}}\left(y_{i}\right)+\right.$ $\left.d_{G_{M}}\left(z_{i}\right)\right)=2\left|E\left(G_{M}\right)\right| \geq 2 t^{2}-2$. At least one vertex in Y is adjacent to all the vertices in Z (otherwise, we relabel them). Since G is K_{3}-free, Z is an independent set in G. Similarly, at least one vertex in Z is adjacent to all the vertices in Y and so Y is an independent set in G.

Let $U=V(\Theta(v))-(Y \cup Z)$. Then we have the following facts:
Claim 1. (a) U is an independent set and so $E_{G(v)}\left(u_{1}\right) \cap E_{G(v)}\left(u_{2}\right)=\emptyset$ for any $u_{1} \neq u_{2}$ in U;
(b) each vertex v in $Y \cup Z$ is adjacent to at most one end of each edge in M and so $d_{G_{M}}(v) \leq t$.
(c) each $u \in U$ is adjacent to one end of each edge in M and so $d_{G}(u)=t$.

Proof of Claim 1. Since $\Theta(v)$ is a dominating subgraph of $G(v), G$ is K_{3}-free and M is a maximum matching in $\Theta(v)$, (a) and (b) are trivially true. Thus, we only need to prove case (c).

To the contrary, suppose that u is not adjacent to either ends of an edge e, say $e=y_{1} z_{1}$.
Since U is independent, each $u \in U$ is only adjacent to vertices in $Y \cup Z$. Furthermore, $u \in U$ is adjacent to at least $t-1$ vertices in $Y \cup Z$. Otherwise, if u is only adjacent to at most $t-2$ vertices in $Y \cup Z$ (say u is adjacent to y_{3}), then $M_{1}=\left(M-\left\{y_{3} z_{3}\right\}\right) \cup\left\{u y_{3}\right\}$ is a maximum matching. Since at least two edge-incidents at u are missing, $\left|E\left(G_{M_{1}}\right)\right| \leq t^{2}-2<\left|E\left(G_{M}\right)\right|$, a contradiction.

Thus, u is adjacent to one end of each of the edges in $\left\{y_{2} z_{2}, \cdots, y_{t} z_{t}\right\}$. We may assume that $u y_{2} \in E(G)$ and y_{2} is adjacent to all the vertices in Z. Since G is K_{3}-free, u cannot adjacent to any vertex in Z. Thus, u is adjacent to all the vertices in $Y-\left\{y_{1}\right\}$.

If $\left|E\left(G_{M}\right)\right|=t^{2}$, then $M_{1}=\left(M-\left\{y_{2} z_{2}\right\}\right) \cup\left\{u y_{2}\right\}$ is a maximum matching. Since u is not adjacent to y_{1} and $z_{1},\left|E\left(G_{M_{1}}\right)\right|<\left|E\left(G_{M}\right)\right|$, a contradiction.

If $\left|E\left(G_{M}\right)\right|=t^{2}-1$, then a vertex $y \in Y$ is not adjacent to a vertex $z \in Z$. If $y \neq y_{1}$ (say $y=y_{3}$), then $M_{b}=\left(M-\left\{y_{3} z_{3}\right\}\right) \cup\left\{u y_{3}\right\}$ is a maximum matching. Since one edge-incident is missing at u and one edge-incident is missing at y_{3} and $u y_{3} \in M_{b},\left|E\left(G_{M_{b}}\right)\right|<\left|E\left(G_{M}\right)\right|$, a contradiction.

If $y=y_{1}$, the $M_{b}=\left(M-\left\{y_{4} z_{4}\right\}\right) \cup\left\{u y_{4}\right\}$ is a maximum matching. Again, since one edge-incident is missing at u and one edge-incident is missing at y_{4} and $u y_{4} \in M_{b},\left|E\left(G_{M_{b}}\right)\right|<\left|E\left(G_{M}\right)\right|$, a contradiction.

We reach contradiction for all the possible cases. Claim 1 is proved.
Let $W=V(G(v))-V(\Theta(v))$. Since $\Theta(v)$ is a dominating subgraph of $G(v)$, an edge in $G(v)$ incident with a vertex in W must be incident with a vertex in $\Theta(v)$ and W is an independent set. Thus, $E_{G(v)}\left(w_{1}\right) \cap E_{G(v)}\left(w_{2}\right)=\emptyset$ for any $w_{1} \neq w_{2}$ in W and $\cup_{w \in W} E_{G(v)}(w) \subseteq \mathcal{E}_{G(v)}(\Theta(v))$. If $i(\Theta(v))<d_{G_{T}}(v)$, then $W \neq \emptyset$. Since $d_{G_{T}}(v) \geq 3$ and $i(\Theta(v)) \geq 2$,

$$
\begin{equation*}
i(\Theta(v))+|W| \geq 3 . \tag{10}
\end{equation*}
$$

By Claim 1 and W is an independent set with $\cup_{w \in W} E_{G(v)}(w) \subseteq \mathcal{E}_{G(v)}(\Theta(v))$, we have

$$
\begin{equation*}
\left|\mathcal{E}_{G(v)}(\Theta(v))\right|=\left|E\left(G_{M}\right)\right|+\sum_{u \in U} d_{G(v)}(u)+\sum_{w \in W} d_{G(v)}(w) \geq\left|E\left(G_{M}\right)\right|+t|U|+|W| . \tag{11}
\end{equation*}
$$

For each $y_{i} z_{i}$ in M, by Claim 1(c),

$$
\begin{equation*}
d_{G}\left(y_{j}\right)+d_{G}\left(z_{j}\right)=d_{G_{M}}\left(y_{j}\right)+d_{G_{M}}\left(z_{j}\right)+i\left(y_{j}\right)+i\left(z_{j}\right)+|U| . \tag{12}
\end{equation*}
$$

Since $t \geq 4$, at least one edge (say $y_{4} z_{4}$) in M is not adjacent to any edges in $A(v)$. Thus $i\left(y_{4}\right)=$ $i\left(z_{4}\right)=0$. Since $\max \left\{d_{G_{M}}\left(y_{4}\right), d_{G_{M}}\left(z_{4}\right)\right\} \leq t$, by (12)

$$
\begin{equation*}
\bar{\sigma}_{2}(G) \leq d_{G}\left(y_{4}\right)+d_{G}\left(z_{4}\right)=d_{G_{M}}\left(y_{4}\right)+d_{G_{M}}\left(z_{4}\right)+i\left(y_{4}\right)+i\left(z_{4}\right)+|U| \leq 2 t+|U| . \tag{13}
\end{equation*}
$$

Since $\left|E\left(G_{M}\right)\right| \geq t^{2}-1$, by (9), (11) and (13),

$$
\begin{aligned}
t^{2}-1+t|U|+|W| & \leq\left|\mathcal{E}_{G(v)}(\Theta(v))\right| \leq t \bar{\sigma}_{2}(G)-t^{2}-i(\Theta(v))+1 \\
& \leq t(2 t+|U|)-t^{2}-i(\Theta(v))+1=t^{2}+t|U|-i(\Theta(v))+1,
\end{aligned}
$$

which yields $|W|+i(\Theta(v)) \leq 2$, contrary to (10). The proof is completed.
Lemma 5.3. Let G be an essentially 3-edge-connected K_{3}-free graph with $\bar{\sigma}_{2}(G) \geq 7$. Let G_{0}^{\prime} be the reduction of G_{0}. For each $v \in V\left(G_{0}^{\prime}\right)$, let $\Gamma(v)$ be the preimage of v in G. Let $S_{0}, S_{1}, S_{1}^{*}, S_{2}$ and S_{3} be the sets defined in Section 4. Then each of the following holds:
(a) For each $v \in S_{0}$ and $1 \leq t \leq \alpha^{\prime}(\Gamma(v)),|E(\Gamma(v))| \geq t \bar{\sigma}_{2}(G)-t^{2}-d_{G_{0}^{\prime}}(v)$.
(b) For each $v \in D_{3}\left(G_{0}^{\prime}\right) \cap S_{1}, N_{G_{0}^{\prime}}(v) \subseteq S_{0} \cup S_{1}^{*}$.
(c) S_{3} is an independent set.
(d) All the vertices in S_{2} are trivial vertices in G_{0}^{\prime} and so all the nontrivial vertices are in $S_{0} \cup S_{1}^{*}$.

Proof. (a) For each $v \in S_{0}$, since v is a contracted vertex in $G_{0}^{\prime}, \alpha^{\prime}(\Gamma(v)) \geq 1$. This is the special case of Lemma 5.2 with $G_{T}=G_{0}^{\prime}$ and $\Theta(v)=G(v)=\Gamma(v)$.
(b) If $v \in D_{3}\left(G_{0}^{\prime}\right) \cap S_{1}$, then $d_{G_{0}^{\prime}}(v)=d_{G}(v)=3$. If $u \in N_{G_{0}^{\prime}}(v)$ and $u \notin S_{0}$, then $d_{G_{0}^{\prime}}(u)=d_{G}(u)$ and $d_{G_{0}^{\prime}}(v)+d_{G_{0}^{\prime}}(u)=d_{G}(v)+d_{G}(u) \geq \bar{\sigma}_{2}(G)$. Thus, $d_{G_{0}^{\prime}}(u) \geq \bar{\sigma}_{2}(G)-3 \geq 4$ and so $u \in S_{1}^{*}$. (b) is proved.
(c) Since $S_{3}=S_{2}-S_{M}$ and M_{Φ} is a maximum matching in $G_{0}^{\prime}\left[S_{2}\right]$, no edge has two ends in S_{3}.
(d) If $v \in S_{2}=V\left(G_{0}^{\prime}\right)-\left(S_{0} \cup S_{1}^{*}\right)$, then v is not a contracted vertex and so $d_{G}(v)=d_{G_{0}^{\prime}}(v)$. To the contrary, suppose that v is nontrivial. Then v is adjacent to a vertex u in $D_{2}(G)$. Then $d_{G_{0}^{\prime}}(v)+2=$ $d_{G}(v)+d_{G}(u) \geq \bar{\sigma}_{2}(G) \geq 7$ and $d_{G_{0}^{\prime}}(v) \geq \bar{\sigma}_{2}(G)-2>\bar{\sigma}_{2}(G)-3$. Hence, $v \in S_{1}^{*}$, a contradiction.

6 Proof of Theorem 4.2

We prove the following lemma first.
Lemma 6.1. Let G_{0}^{\prime} be the reduction of the core G_{0} of an essentially 3-edge-connected graph G. Let Φ be the subgraph of G_{0}^{\prime} defined in section 4, and let M_{Φ} be a maximum matching in Φ. Then

$$
\begin{equation*}
\left|D_{3}\left(G_{0}^{\prime}\right)\right| \geq 10+\left|M_{\Phi}\right|\left(\bar{\sigma}_{2}(G)-8\right) . \tag{14}
\end{equation*}
$$

Proof. Since $\delta\left(G_{0}^{\prime}\right) \geq 3, G_{0}^{\prime} \notin\left\{K_{1}, K_{2}, K_{2, s}(s \geq 2)\right\}$. By Theorem 3.1, $\left|E\left(G_{0}^{\prime}\right)\right| \leq 2\left|V\left(G_{0}^{\prime}\right)\right|-5$. Since $2\left|E\left(G_{0}^{\prime}\right)\right|=\sum_{v \in V\left(G_{0}^{\prime}\right)} d_{G_{0}^{\prime}}(v)=\sum_{i=3} i\left|D_{i}\left(G_{0}^{\prime}\right)\right|$ and $\left|V\left(G_{0}^{\prime}\right)\right|=\sum_{i=3}\left|D_{i}\left(G_{0}^{\prime}\right)\right|$, we have

$$
\begin{align*}
2\left|E\left(G_{0}^{\prime}\right)\right| & \leq 4\left|V\left(G_{0}^{\prime}\right)\right|-10 \\
3\left|D_{3}\left(G_{0}^{\prime}\right)\right|+4\left|D_{4}\left(G_{0}^{\prime}\right)\right| \cdots+i\left|D_{i}\left(G_{0}^{\prime}\right)\right|+\cdots & \leq 4\left(\left|D_{3}\left(G_{0}^{\prime}\right)\right|+\left|D_{4}\left(G_{0}^{\prime}\right)\right| \cdots+\left|D_{i}\left(G_{0}\right)\right| \cdots\right)-10 ; \\
\left|D_{5}\left(G_{0}^{\prime}\right)\right|+2\left|D_{6}\left(G_{0}^{\prime}\right)\right| \cdots+(i-4)\left|D_{i}\left(G_{0}^{\prime}\right)\right| \cdots & \leq\left|D_{3}\left(G_{0}^{\prime}\right)\right|-10 . \tag{15}
\end{align*}
$$

Recall that S_{M} is the set of the vertices in M_{Φ}. Let $D_{i}^{M}=D_{i}\left(G_{0}^{\prime}\right) \cap S_{M}$. By the definition of M_{Φ}, for each $u v \in M_{\Phi}, d_{G}(u)=d_{G_{0}^{\prime}}(u) \geq 4, d_{G}(v)=d_{G_{0}^{\prime}}(v) \geq 4$, and so $d_{G}(u)+d_{G}(v) \geq \bar{\sigma}_{2}(G)$. By (15),

$$
\begin{aligned}
\left|M_{\Phi}\right|\left(\bar{\sigma}_{2}(G)-8\right) & \leq \sum_{u v \in M_{\Phi}}\left(d_{G}(u)-4+d_{G}(v)-4\right) \\
& =\sum_{x \in S_{M}}\left(d_{G}(x)-4\right)=\left|D_{5}^{M}\right|+2\left|D_{6}^{M}\right|+\cdots+(i-4)\left|D_{i}^{M}\right|+\cdots \\
& \leq\left|D_{5}\left(G_{0}^{\prime}\right)\right|+2\left|D_{6}\left(G_{0}^{\prime}\right)\right| \cdots+(i-4)\left|D_{i}\left(G_{0}^{\prime}\right)\right| \cdots \leq\left|D_{3}\left(G_{0}^{\prime}\right)\right|-10 .
\end{aligned}
$$

This proves Lemma 6.1.

Proof of Theorem 4.2. Let $V_{a}=S_{0} \cup S_{1}^{*} \cup S_{M}$ which are defined in Section 4. By Lemma 5.3, $S_{3}=V\left(G_{0}^{\prime}\right)-V_{a}$ is an independent set and all the nontrivial vertices are in $S_{0} \cup S_{1}^{*}$. Then V_{a} is a vertex covering of G_{0}^{\prime} containing all the nontrivial vertices of G_{0}^{\prime}.
Claim 1. If G_{0}^{\prime} has a vertex covering V_{c} with $\left|V_{c}\right| \leq 12$ and V_{c} contains all the nontrivial vertices of G_{0}^{\prime}, then G has a DCT.

By Theorem 3.2, $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$. Since G_{0}^{\prime} can not be contracted to the Petersen graph in the way stated in Theorem 4.1 with $S=V_{c}, G_{0}^{\prime}$ has a closed trail Θ_{c} such that $V_{c} \subseteq V\left(\Theta_{c}\right)$. Since V_{c} is a vertex covering of $G_{0}^{\prime}, \Theta_{c}$ is a DCT of G_{0}^{\prime}. Since V_{c} contains all the nontrivial vertices of $G_{0}^{\prime}, \Theta_{c}$ contains all the nontrivial vertices of G_{0}^{\prime}. By Theorem 3.2, G has a DCT. Claim 1 is proved.

If $\left|V_{a}\right| \leq 12$, then by Claim 1, G has a DCT. We are done for this case.
In the following, we assume that $\left|S_{0}\right|+\left|S_{1}^{*}\right|+\left|S_{M}\right|=\left|V_{a}\right| \geq 13$.
Case 1. $\left|S_{0}\right|+\left|S_{1}^{*}\right| \leq 11$.
Since $\left|S_{0}\right|+\left|S_{1}^{*}\right|+\left|S_{M}\right|=\left|V_{a}\right| \geq 13,\left|S_{M}\right| \geq 2$. Thus, $\left|M_{\Phi}\right| \geq 1$. By Lemma 6.1 and $\bar{\sigma}_{2}(G) \geq 18$, $\left|D_{3}\left(G_{0}^{\prime}\right)\right| \geq 10+\left|M_{\Phi}\right|\left(\bar{\sigma}_{2}(G)-8\right) \geq 20$.

Let $S_{0}^{3}=D_{3}\left(G_{0}^{\prime}\right) \cap S_{0}$, let $S_{0}^{*}=S_{0}-S_{0}^{3}$ and let $S_{1}^{3}=D_{3}\left(G_{0}^{\prime}\right)-S_{0}^{3}$. Then $\left|S_{0}\right|=\left|S_{0}^{3}\right|+\left|S_{0}^{*}\right|$ and

$$
\begin{equation*}
\left|S_{1}^{3}\right|=\left|D_{3}\left(G_{0}^{\prime}\right)\right|-\left|S_{0}^{3}\right| . \tag{16}
\end{equation*}
$$

Note that $S_{1}^{3}=D_{3}\left(G_{0}^{\prime}\right) \cap S_{1}$. Since $\bar{\sigma}_{2}(G) \geq 18$, by Lemma 5.3(b), for each $v \in S_{1}^{3}, N_{G_{0}^{\prime}}(v) \subseteq$ $S_{0} \cup S_{1}^{*}$. Thus S_{1}^{3} is an independent set in G_{0}^{\prime}. Let $Y=\cup_{v \in S_{1}^{3}} N_{G_{0}^{\prime}}(v)$. Then $Y \subseteq S_{0} \cup S_{1}^{*}$ and so

$$
\begin{equation*}
|Y| \leq\left|S_{0}\right|+\left|S_{1}^{*}\right| . \tag{17}
\end{equation*}
$$

Let Θ_{b} be the subgraph in G_{0}^{\prime} induced by the edges between S_{1}^{3} and Y. Then $\left|V\left(\Theta_{b}\right)\right|=\left|S_{1}^{3}\right|+|Y|$. Since $d_{G_{0}^{\prime}}(v)=3$ for each $v \in S_{1}^{3}$ and S_{1}^{3} is an independent set, $\left|E\left(\Theta_{b}\right)\right|=3\left|S_{1}^{3}\right|$. Since $\left|S_{0}^{3}\right| \leq\left|S_{0}\right| \leq 11$ and $\left|D_{3}\left(G_{0}^{\prime}\right)\right| \geq 20,\left|S_{1}^{3}\right|=\left|D_{3}\left(G_{0}^{\prime}\right)\right|-\left|S_{0}^{3}\right| \geq 9$ and so $\Theta_{b} \notin\left\{K_{1}, K_{2}, K_{2, s}\right\}$. By Theorem 3.1, $\left|E\left(\Theta_{b}\right)\right| \leq$ $2\left|V\left(\Theta_{b}\right)\right|-5 . \operatorname{By}(16),(17)$ and $\left|S_{0}\right|=\left|S_{0}^{3}\right|+\left|S_{0}^{*}\right|$,

$$
\begin{align*}
3\left|S_{1}^{3}\right| & =\left|E\left(\Theta_{b}\right)\right| \leq 2\left|V\left(\Theta_{b}\right)\right|-5=2\left|S_{1}^{3}\right|+2|Y|-5 ; \\
5+\left|S_{1}^{3}\right| & \leq 2|Y| \leq 2\left|S_{0}\right|+2\left|S_{1}^{*}\right| ; \\
5+\left|D_{3}\left(G_{0}^{\prime}\right)\right|-\left|S_{0}^{3}\right| & \leq 2\left|S_{0}^{3}\right|+2\left|S_{0}^{*}\right|+2\left|S_{1}^{*}\right| ; \\
5+\left|D_{3}\left(G_{0}^{\prime}\right)\right| & \leq 3\left|S_{0}^{3}\right|+2\left|S_{0}^{*}\right|+2\left|S_{1}^{*}\right| \leq 3\left|S_{0}\right|+2\left|S_{1}^{*}\right| . \tag{18}
\end{align*}
$$

By Lemma 6.1, $\left|D_{3}\left(G_{0}^{\prime}\right)\right| \geq 10+\left|M_{\Phi}\right|\left(\bar{\sigma}_{2}(G)-8\right)$. By (18), $\bar{\sigma}_{2}(G) \geq 18$ and $\left|S_{0}\right|+\left|S_{1}^{*}\right| \leq 11$,

$$
\begin{aligned}
5+\left(10+\left|M_{\Phi}\right|\left(\bar{\sigma}_{2}(G)-8\right)\right) & \leq 5+\left|D_{3}\left(G_{0}^{\prime}\right)\right| \leq 3\left|S_{0}\right|+2\left|S_{1}^{*}\right| \leq 3\left(\left|S_{0}\right|+\left|S_{1}^{*}\right|\right) ; \\
15+10\left|M_{\Phi}\right| & \leq 33 .
\end{aligned}
$$

Since $\left|M_{\Phi}\right|>0$ is an integer, $\left|M_{\Phi}\right|=1$.
Let $e=a b$ be the edge in M_{Φ}. Since M_{Φ} is a maximum matching in $\Phi=G_{0}^{\prime}\left[S_{2}\right]$, at most one (say b) of the vertices of $\{a, b\}$ may be adjacent to some vertices in $S_{2}-\{a, b\}$ and the other one (say a) is not adjacent to vertices in $S_{2}-\{a, b\}$. Thus, $S_{2}-\{b\}$ is an independent set.

Let $V_{b}=S_{0} \cup S_{1}^{*} \cup\{b\}$. Then V_{b} is a vertex covering of G_{0}^{\prime} and contains all the nontrivial vertices in G_{0}^{\prime}. Since $\left|S_{0}\right|+\left|S_{1}^{*}\right| \leq 11,\left|V_{b}\right| \leq 12$. By Claim $1, G$ has a DCT. We are done for this case.

Case 2. $\left|S_{0}\right|+\left|S_{1}^{*}\right| \geq 12$.
We prove the following claim first.
Claim 2. $\left|S_{0}\right| \geq 11$. Furthermore if $\bar{\sigma}_{2}(G) \geq 25,\left|S_{0}\right| \geq 12$.
If $\left|S_{1}^{*}\right|=0$, then $\left|S_{0}\right| \geq 12$. Claim 2 is true trivially. In the following, we assume that $S_{1}^{*} \neq \emptyset$.
Combining (15) and (18), and by the definitions of $D_{i}\left(G_{0}^{\prime}\right)$ and $D_{i}^{*}\left(G_{0}^{\prime}\right)$, for $i \geq 5$, we have

$$
\begin{equation*}
15+(i-4)\left|D_{i}^{*}\left(G_{0}^{\prime}\right)\right| \leq 3\left|S_{0}\right|+2\left|S_{1}^{*}\right| . \tag{19}
\end{equation*}
$$

Since $\bar{\sigma}_{2}(G) \geq 18$, for each $v \in S_{1}^{*}, d_{G_{0}^{\prime}}(v)=d_{G}(v) \geq \bar{\sigma}_{2}(G)-3 \geq 15$ and so $v \in D_{15}^{*}\left(G_{0}^{\prime}\right)$. Thus, $\left|S_{1}^{*}\right| \leq\left|D_{15}^{*}\left(G_{0}^{\prime}\right)\right|$. By (19) with $i=15$ and $\left|S_{1}^{*}\right| \geq 12-\left|S_{0}\right|$,

$$
\begin{aligned}
15+9\left|S_{1}^{*}\right| \leq 15+11\left|D_{15}^{*}\left(G_{0}^{\prime}\right)\right|-2\left|S_{1}^{*}\right| & \leq 3\left|S_{0}\right| \\
15+9\left(12-\left|S_{0}\right|\right) & \leq 3\left|S_{0}\right|
\end{aligned}
$$

Thus, $123 \leq 12\left|S_{0}\right|$ and so $\left|S_{0}\right| \geq 11$.
Similarly, if $\bar{\sigma}_{2}(G) \geq 25$, then $i=25$ and so $243 \leq 22\left|S_{0}\right|$. Thus, $\left|S_{0}\right| \geq 12$. The claim is proved.
Let V_{12} be a subset of V_{a} with $\left|V_{12}\right|=12$ in which the vertices are chosen in the following way:
first pick vertices from S_{0}, then if $\left|S_{0}\right|=11$ pick a vertex from S_{1}^{*}.
By Claim 2, V_{12} contains at most one vertex in S_{1}^{*}.
By Theorem 4.1, G_{0}^{\prime} has a closed trail T_{b} such that $V_{12} \subseteq V\left(T_{b}\right)$. We assume that
T_{b} is a closed trail with $V_{12} \subseteq V\left(T_{b}\right)$ and with as many vertices of $V\left(G_{0}^{\prime}\right)$ as possible.
Let $Z_{0}=V_{12} \cap S_{0}$, and let $Z_{1}=V_{12} \cap S_{1}^{*}$. Then $V_{12}=Z_{0} \cup Z_{1}$ and $\left|Z_{1}\right| \leq 1$. Let $V_{T}=V\left(T_{b}\right)-V_{12}$. Then $V\left(T_{b}\right)=V_{12} \cup V_{T}, V_{T} \subseteq S_{1}$ and

$$
\begin{equation*}
\left|V\left(T_{b}\right)\right|=\left|V_{12}\right|+\left|V_{T}\right|=12+\left|V_{T}\right|, \quad\left|Z_{0}\right|+\left|Z_{1}\right|=\left|V_{12}\right|=12 \text { and }\left|Z_{0}\right| \geq 11 \tag{21}
\end{equation*}
$$

Let $\Phi_{0}=G_{0}^{\prime}\left[V\left(T_{b}\right)\right]$, the graph induced by the vertex set $V\left(T_{b}\right)$. Then $V\left(\Phi_{0}\right)=V\left(T_{b}\right), E\left(T_{b}\right) \subseteq$ $E\left(\Phi_{0}\right)$, and T_{b} is a spanning closed trail of Φ_{0}. Thus, $\Phi_{0} \in \mathcal{S} \mathcal{L}$.

For $v \in Z_{0}$, let $\Gamma_{0}(v)$ be the collapsible preimage of v in G_{0}. Let $\Phi_{1}=G\left[E\left(\Phi_{0}\right) \cup_{v \in Z_{0}} E\left(\Gamma_{0}(v)\right)\right]$. Then the reduction of $\Phi_{1}=\Phi_{1} /\left(\cup_{v \in Z_{0}} E\left(\Gamma_{0}(v)\right)\right)=\Phi_{0} \in \mathcal{S L}$. By Theorem 3.1, $\Phi_{1} \in \mathcal{S} \mathcal{L}$ with $\left(\cup_{v \in Z_{0}} V\left(\Gamma_{0}(v)\right)\right) \cup Z_{1} \cup V_{T} \subseteq V\left(\Phi_{1}\right)$.

For $v \in V\left(T_{b}\right) \subseteq V\left(G_{0}^{\prime}\right)$, let $E_{0}(v)$ be the set of edges incident with v in Φ_{0}. Then $\left|E_{0}(v)\right|=d_{\Phi_{0}}(v)$. Let $\Gamma_{+}(v)$ be the subgraph induced by the edges of $E(\Gamma(v))$ and all the edges incident with v in G_{0}^{\prime}. Then $\left|E\left(\Gamma_{+}(v)\right)\right|=|E(\Gamma(v))|+d_{G_{0}^{\prime}}(v)$. For any $u, v \in Z_{0}$ and $u \neq v$,

$$
\begin{equation*}
\left(E\left(\Gamma_{+}(u)\right)-E_{0}(u)\right) \cap\left(E\left(\Gamma_{+}(v)\right)-E_{0}(v)\right)=\emptyset . \tag{22}
\end{equation*}
$$

For $v \in Z_{0}$, by Lemma 5.3(a), $|E(\Gamma(v))| \geq \bar{\sigma}_{2}(G)-d_{G_{0}^{\prime}}(v)-1$. Then

$$
\left|E\left(\Gamma_{+}(v)\right)-E_{0}(v)\right| \geq\left(|E(\Gamma(v))|+d_{G_{0}^{\prime}}(v)\right)-d_{\Phi_{0}}(v) \geq \bar{\sigma}_{2}(G)-1-d_{\Phi_{0}}(v)
$$

Hence,

$$
\begin{equation*}
\sum_{v \in Z_{0}}\left|E\left(\Gamma_{+}(v)\right)-E_{0}(v)\right| \geq\left|Z_{0}\right|\left(\bar{\sigma}_{2}(G)-1\right)-\sum_{v \in Z_{0}} d_{\Phi_{0}}(v) . \tag{23}
\end{equation*}
$$

For $v \in Z_{1} \cup V_{T}, d_{G_{0}^{\prime}}(v)=d_{G}(v)$. For any $u, v \in Z_{1} \cup V_{T}$ and $u \neq v$,

$$
\begin{equation*}
\left(E_{G}(u)-E_{0}(u)\right) \cap\left(E_{G}(v)-E_{0}(v)\right)=\emptyset . \tag{24}
\end{equation*}
$$

For $v \in Z_{1}, d_{G}(v) \geq \bar{\sigma}_{2}(G)-3$ and $\left|E_{G}(v)-E_{0}(v)\right|=d_{G}(v)-d_{\Phi_{0}}(v) \geq\left(\bar{\sigma}_{2}(G)-3\right)-d_{\Phi_{0}}(v)$. Then

$$
\begin{equation*}
\sum_{v \in Z_{1}}\left|E_{G}(v)-E_{0}(v)\right|=\sum_{v \in Z_{1}}\left(d_{G}(v)-d_{\Phi_{0}}(v)\right) \geq\left|Z_{1}\right|\left(\bar{\sigma}_{2}(G)-3\right)-\sum_{v \in Z_{1}} d_{\Phi_{0}}(v) . \tag{25}
\end{equation*}
$$

For $v \in V_{T} \subseteq S_{1}$, since $d_{G}(v)=d_{G_{0}}(v) \geq 3$,

$$
\begin{equation*}
\sum_{v \in V_{T}} d_{G}(v) \geq 3\left|V_{T}\right| \tag{26}
\end{equation*}
$$

Let $\Phi_{2}=G\left[E\left(\Phi_{0}\right) \cup_{v \in \mathcal{Z}_{0}} E\left(\Gamma_{+}(v)\right) \cup_{v \in Z_{1} \cup V_{T}} E_{G}(v)\right]$. Then Φ_{1} is a dominating subgraph in Φ_{2}. Since Φ_{1} has a SCT, Φ_{2} has a DCT and

$$
\begin{equation*}
E\left(\Phi_{2}\right) \supseteq E\left(\Phi_{0}\right) \cup_{v \in Z_{0}}\left(E\left(\Gamma_{+}(v)\right)-E_{0}(v)\right) \cup_{v \in Z_{1} \cup V_{T}}\left(E_{G}(v)-E_{0}(v)\right) . \tag{27}
\end{equation*}
$$

By (27), (22) and (24), and by (23) and (25),

$$
\begin{align*}
&\left|E\left(\Phi_{2}\right)\right| \geq\left|E\left(\Phi_{0}\right)\right|+\sum_{v \in Z_{0}}\left|E\left(\Gamma_{+}(v)\right)-E_{0}(v)\right|+\sum_{v \in Z_{1} \cup V_{T}}\left|E_{G}(v)-E_{0}(v)\right| \\
& \geq\left|E\left(\Phi_{0}\right)\right|+\left|Z_{0}\right|\left(\bar{\sigma}_{2}(G)-1\right)-\sum_{v \in Z_{0}} d_{\Phi_{0}}(v) \\
&+\left|Z_{1}\right|\left(\bar{\sigma}_{2}(G)-3\right)-\sum_{v \in Z_{1}} d_{\Phi_{0}}(v)+\sum_{v \in V_{T}}\left(d_{G}(v)-d_{\Phi_{0}}(v)\right) . \tag{28}
\end{align*}
$$

Therefore, by (28), $\sum_{v \in V\left(\Phi_{0}\right)} d_{\Phi_{0}}(v)=2\left|E\left(\Phi_{0}\right)\right|$ and $V\left(\Phi_{0}\right)=Z_{0} \cup Z_{1} \cup V_{T}$,

$$
\begin{align*}
& \left|E\left(\Phi_{2}\right)\right| \geq\left(\left|Z_{0}\right|+\left|Z_{1}\right|\right) \bar{\sigma}_{2}(G)-\left|Z_{0}\right|-3\left|Z_{1}\right|+\left|E\left(\Phi_{0}\right)\right|-\sum_{v \in V\left(\Phi_{0}\right)} d_{\Phi_{0}}(v)+\sum_{v \in V_{T}} d_{G}(v) \\
& \left|E\left(\Phi_{2}\right)\right| \geq\left(\left|Z_{0}\right|+\left|Z_{1}\right|\right) \bar{\sigma}_{2}(G)-\left|Z_{0}\right|-3\left|Z_{1}\right|-\left|E\left(\Phi_{0}\right)\right|+\sum_{v \in V_{T}} d_{G}(v) . \tag{29}
\end{align*}
$$

Since $\left|V\left(\Phi_{0}\right)\right| \geq\left|V_{12}\right|=12, \Phi_{0} \notin\left\{K_{1}, K_{2}\right\}$. As a subgraph of G_{0}^{\prime}, Φ_{0} is a reduced graph. By Theorem 3.1(c), $\left|E\left(\Phi_{0}\right)\right| \leq 2\left|V\left(\Phi_{0}\right)\right|-4$. Since $\left|V\left(\Phi_{0}\right)\right|=\left|V\left(T_{b}\right)\right|=\left|V_{12}\right|+\left|V_{T}\right|$,

$$
\begin{equation*}
\left|E\left(\Phi_{0}\right)\right| \leq 2\left|V\left(\Phi_{0}\right)\right|-4=2\left|V\left(T_{b}\right)\right|-4=2\left|V_{12}\right|+2\left|V_{T}\right|-4=20+2\left|V_{T}\right| . \tag{30}
\end{equation*}
$$

By (29), (30), (26), (21) $\left|Z_{0}\right|+\left|Z_{1}\right|=12$ and $\left|Z_{1}\right| \leq 1$,

$$
\begin{aligned}
\left|E\left(\Phi_{2}\right)\right| & \geq\left(\left|Z_{0}\right|+\left|Z_{1}\right|\right) \bar{\sigma}_{2}(G)-\left|Z_{0}\right|-3\left|Z_{1}\right|-\left|E\left(\Phi_{0}\right)\right|+\sum_{v \in V_{T}} d_{G}(v) \\
& \geq 12 \bar{\sigma}_{2}(G)-12-2\left|Z_{1}\right|-\left(20+2\left|V_{T}\right|\right)+3\left|V_{T}\right| \\
& \geq 12 \bar{\sigma}_{2}(G)-32-2\left|Z_{1}\right|+\left|V_{T}\right| \geq 12 \bar{\sigma}_{2}(G)-34 .
\end{aligned}
$$

Thus, Φ_{2} is a DCT subgraph Θ of G with $|E(\Theta)| \geq 12 \bar{\sigma}_{2}(G)-34$. Theorem 4.2(a) is proved.
For Theorem 4.2(b), we have $\bar{\sigma}_{2}(G) \geq 25$. By Claim 2 above, $\left|Z_{0}\right|=\left|V_{12}\right|=12$ and $\left|Z_{1}\right|=0$. Note that by Theorem 3.1(c) either $\Phi_{0}=K_{2, r}$ or $\left|E\left(\Phi_{0}\right)\right| \leq 2\left|V\left(\Phi_{0}\right)\right|-5$.

If $\left|E\left(\Phi_{0}\right)\right| \leq 2\left|V\left(\Phi_{0}\right)\right|-5$, then by (29) with $\left|Z_{1}\right|=0,\left|Z_{0}\right|=12$ and $\left|V\left(\Phi_{0}\right)\right|=\left|V\left(T_{b}\right)\right|=12+\left|V_{T}\right|$,

$$
\begin{aligned}
\left|E\left(\Phi_{2}\right)\right| & \geq\left|Z_{0}\right| \bar{\sigma}_{2}(G)-\left|Z_{0}\right|-\left|E\left(\Phi_{0}\right)\right|+\sum_{v \in V_{T}} d_{G}(v) \\
& \geq 12 \bar{\sigma}_{2}(G)-12-\left(24+2\left|V_{T}\right|-5\right)+3\left|V_{T}\right|=12 \bar{\sigma}_{2}(G)-31+\left|V_{T}\right| \geq 12 \bar{\sigma}_{2}(G)-31
\end{aligned}
$$

Theorem 4.2(b) is proved for this case.
Next, we assume that $\Phi_{0}=K_{2, r}$ where $r=\left|V\left(\Phi_{0}\right)\right|-2$.
Claim 3. $\left|V_{T}\right|>0$.
To the contrary, suppose that $\left|V_{T}\right|=0$. Then $\left|V\left(\Phi_{0}\right)\right|=\left|V\left(T_{b}\right)\right|=\left|V_{12}\right|=12$ and so $\Phi_{0}=K_{2,10}$.
Let $V\left(\Phi_{0}\right)=\left\{x_{1}, x_{2}, \cdots, x_{10}, y_{1}, y_{2}\right\}$ where $d_{\Phi_{0}}\left(x_{i}\right)=2(1 \leq i \leq 10)$ and $d_{\Phi_{0}}\left(y_{j}\right)=10(j=1,2)$. Since G_{0}^{\prime} is simple and K_{3}-free with $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3, x_{1}$ is adjacent to a vertex $z \notin\left\{x_{1}, \cdots, x_{10}, y_{1}, y_{2}\right\}$. Furthermore, $G_{0}^{\prime}-z x_{1}$ is 2-edge-connected. Therefore, there is a path P_{z} in $G_{0}^{\prime}-z x_{1}$ joining z to a vertex in $V\left(\Phi_{0}\right)$. We assume that P_{z} is a shortest path joining z to a vertex in $V\left(\Phi_{0}\right)$.

If P_{z} is a path from z to x_{1} in $G_{0}^{\prime}-z x_{1}$, then $T_{z}=G_{0}^{\prime}\left[E\left(T_{b}\right) \cup E\left(P_{z}\right) \cup\left\{z x_{1}\right\}\right]$ is a closed trail with $V\left(T_{z}\right) \supseteq V\left(T_{b}\right) \cup\{z\} \supset V_{12}$, contrary to (20).

If P_{z} is a path from z to $y_{i}(i=1,2)$ (say $\left.y_{1}\right)$ in $G_{0}^{\prime}-z x_{1}$, then $T_{z}=G_{0}^{\prime}\left[\left(E\left(T_{b}\right)-\left\{x_{1} y_{1}\right\}\right) \cup E\left(P_{z}\right) \cup\right.$ $\left.\left\{z x_{1}\right\}\right]$ is a closed trail with $V\left(T_{z}\right) \supseteq V\left(T_{b}\right) \cup\{z\} \supset V_{12}$. contrary to (20).

If P_{z} is a path from z to $x_{j}(2 \leq i \leq 10)$ (say $\left.x_{2}\right)$ in $G_{0}^{\prime}-z x_{1}$, then $T_{z}=G_{0}^{\prime}\left[\left(E\left(T_{b}\right)-\left\{x_{1} y_{1}, x_{2} y_{1}\right\}\right) \cup\right.$ $\left.E\left(P_{z}\right) \cup\left\{z x_{1}\right\}\right]$ is a closed trail with $V\left(T_{z}\right) \supseteq V\left(T_{b}\right) \cup\{z\} \supset V_{12}$, contrary to (20).

We reach contradictions for all the cases. Claim 3 is proved.
Since $\Phi_{0}=K_{2, r}$ and $\left|V\left(\Phi_{0}\right)\right|=12+\left|V_{T}\right|,\left|E\left(\Phi_{0}\right)\right|=2\left|V\left(\Phi_{0}\right)\right|-4=20+2\left|V_{T}\right|$. By (29), $\left|Z_{0}\right|=12$, $\left|Z_{1}\right|=0$ and by Claim $3\left|V_{T}\right| \geq 1$,

$$
\begin{aligned}
\left|E\left(\Phi_{2}\right)\right| & \geq\left(\left|Z_{0}\right|+\left|Z_{1}\right|\right) \bar{\sigma}_{2}(G)-\left|Z_{0}\right|-3\left|Z_{1}\right|-\left|E\left(\Phi_{0}\right)\right|+\sum_{v \in V_{T}} d_{G}(v) \\
& \geq 12 \bar{\sigma}_{2}(G)-12-\left(20+2\left|V_{T}\right|\right)+3\left|V_{T}\right| \geq 12 \bar{\sigma}_{2}(G)-12-20+\left|V_{T}\right| \geq 12 \bar{\sigma}_{2}(G)-31
\end{aligned}
$$

Thus, Φ_{2} is a DCT subgraph of G for Theorem 4.2(b). The proof is complete.

7 Graphs that are contractible to the Petersen graph

In the following, we assume that G is an essentially 3-edge-connected K_{3}-free simple graph with $\bar{\sigma}_{2}(G) \geq 7$. Let P_{0} be the Petersen graph with $V\left(P_{0}\right)=\left\{v_{1}, \cdots, v_{10}\right\}$. When we say P_{0} is a contraction graph of a graph G, it means that P_{0} is obtained from G by the following sequence of contractions:

1) $G_{1}=G / E_{1}$;
2) $G_{0}=G_{1} / X_{2}(G)$;
3) $G_{0}^{\prime}=G_{0} /\left(E\left(\Gamma_{1}^{0}\right) \cup \cdots \cup E\left(\Gamma_{c}^{0}\right)\right)$ where $\Gamma_{i}^{0}(1 \leq i \leq c)$ is a maximum collapsible subgraph of G_{0};
4) $P_{0}=G_{0}^{\prime} /\left(E\left(\Gamma_{0}^{1}\left(v_{1}\right)\right) \cup \cdots \cup E\left(\Gamma_{0}^{1}\left(v_{10}\right)\right)\right)$ where $\Gamma_{0}^{1}\left(v_{i}\right)$ is connected reduced subgraph of G_{0}^{\prime}.

For each $v \in V\left(P_{0}\right)$, we define the following:

- $\Gamma_{0}^{1}(v)$ is the preimage of v in G_{0}^{\prime} (a reduced subgraph of G_{0}^{\prime}).
- For each $u \in V\left(\Gamma_{0}^{1}(v)\right)$, let $\Gamma_{0}(u)$ be the collapsible preimage of u in G_{0}.
- $\Gamma_{0}^{2}(v)=G_{0}\left[\cup_{u \in V\left(\Gamma_{0}^{1}(v)\right)} V\left(\Gamma_{0}(u)\right)\right]$ and so $\Gamma_{0}^{1}(v)$ is the reduction of $\Gamma_{0}^{2}(v)$.
- $\Gamma_{1}^{2}(v)$ is the preimage of v in G_{1}. Thus, $\Gamma_{0}^{2}(v)=\Gamma_{1}^{2}(v) /\left(X_{2}(G) \cap E\left(\Gamma_{1}^{2}(v)\right)\right.$.
- $\Gamma^{*}(v)$ is the preimage of v in G, which is the subgraph in G induced by the edges in $E\left(\Gamma_{1}^{2}(v)\right)$ and the edges in E_{1} that are incident with some vertices in $\Gamma_{1}^{2}(v)$.
- $\partial\left(\Gamma^{*}(v)\right)=\left\{u \in V\left(\Gamma^{*}(v)\right) \mid u\right.$ is incident with an edge of $\left.P_{0}\right\}$, the set of vertices in $V\left(\Gamma^{*}(v)\right)$ that are incident with some edges in $E_{P}(v)$. Then $\left|\partial\left(\Gamma^{*}(v)\right)\right| \leq 3$.

If $\Gamma_{0}^{1}(v)=K_{1}$, then $\Gamma_{0}^{2}(v)=\Gamma_{0}(v), \Gamma_{1}^{2}(v)=\Gamma_{1}(v)$ and $\Gamma^{*}(v)=\Gamma(v)$. Fig. 7.1 shows the contraction process from G to P_{0}.

Fig. 7.1: A contraction process from G to a vertex v in P_{0}.
Fact 7.1. For a vertex $v \in V\left(P_{0}\right)$, if $\Gamma_{0}^{j}(v) \neq K_{1}(j=1,2)$, each of the following holds:
(i) $\Gamma_{0}^{j}(v)$ is 2-edge-connected and so $d_{\Gamma_{0}^{j}(v)}(x) \geq 2$ for any $x \in V\left(\Gamma_{0}^{j}(v)\right)$.
(ii) $D_{2}\left(\Gamma_{0}^{j}(v)\right) \subseteq \partial\left(\Gamma^{*}(v)\right)$ and so $\left|D_{2}\left(\Gamma_{0}^{j}(v)\right)\right| \leq 3$.

Proof. Since G is essentially 3-edge-connected, by Theorem $3.2 \kappa^{\prime}\left(G_{0}^{\prime}\right) \geq \kappa^{\prime}\left(G_{0}\right) \geq 3$. Since $\Gamma_{0}^{1}(v)$ is the reduction of $\Gamma_{0}^{2}(v), \kappa^{\prime}\left(\Gamma_{0}^{1}(v)\right) \geq \kappa^{\prime}\left(\Gamma_{0}^{2}(v)\right)$. We only need to prove (i) for the case $\Gamma_{0}^{2}(v)$.

To the contrary, suppose that $\kappa^{\prime}\left(\Gamma_{0}^{2}(v)\right)=1$. Let Φ_{1} and Φ_{2} be the two components of $\Gamma_{0}^{2}(v)-e$ where e is an edge-cut. Since $d_{P_{0}}(v)=3$, only three edges of G_{0} outside of $\Gamma_{0}^{2}(v)$ incident with some vertices in $\Gamma_{0}^{2}(v)$. Of these three edges, at most one of them is incident with one of $\Phi_{i}(i=1,2)$. Thus, G_{0} is at most 2-edge-connected, contrary to that $\kappa^{\prime}\left(G_{0}\right) \geq 3$. Case (i) is proved.

Case (ii) follows from the definition and the fact that $\kappa^{\prime}\left(G_{0}\right) \geq 3$ and $\left|\partial\left(\Gamma^{*}(v)\right)\right| \leq d_{P_{0}}(v)=3$.
With P_{0} as a contraction graph of G, to find a DCT subgraph of G with large size, it is a reverse process of the contraction sequence above. The following lemma will be needed when $\Gamma_{0}^{1}(v) \neq K_{1}$.

Lemma 7.2. For a vertex $v \in V\left(P_{0}\right)$, let $\Gamma_{0}^{1}(v)$ be the preimage of v in G_{0}^{\prime} and $\Gamma_{0}^{1}(v) \neq K_{1}$. Then $D_{2}\left(\Gamma_{0}^{1}(v)\right) \subseteq \partial\left(\Gamma^{*}(v)\right)$ and $\left|\partial\left(\Gamma^{*}(v)\right)\right| \leq 3$. Furthermore, for any $x, y, z \in \partial\left(\Gamma^{*}(v)\right)(x, y$ and z may not be distinct) there is $a(x, y)$-trail T_{v} containing z such that $\alpha^{\prime}\left(T_{v}\right) \geq 2$ and one of the following holds:
(a) $\Gamma_{0}^{1}(v) \in\left\{K_{2,3}, K_{1,3}(1,1,1), J^{\prime}(1,1)\right\}$ and

$$
\left|\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)\right| \geq\left\{\begin{array}{cl}
2 \bar{\sigma}_{2}(G)-2 & \text { if } \Gamma_{0}^{1}(v)=K_{2,3} \text { and } \alpha\left(\Gamma^{*}(v)\right)=2 \\
3 \bar{\sigma}_{2}(G)-6 & \text { if } \Gamma_{0}^{1}(v) \in\left\{K_{2,3}, K_{1,3}(1,1,1)\right\} \text { and } \alpha\left(\Gamma^{*}(v)\right)=3 \\
4 \bar{\sigma}_{2}(G)-10 & \text { if } \Gamma_{0}^{1}(v) \in\left\{K_{2,3}, K_{1,3}(1,1,1), J^{\prime}(1,1)\right\} \text { and } \alpha\left(\Gamma^{*}(v)\right) \geq 4
\end{array}\right.
$$

(b) $\left|V\left(\Gamma_{0}^{1}(v)\right)\right| \geq 8$. Then $\alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq \alpha^{\prime}\left(\Gamma_{0}^{1}(v)\right) \geq 4$ and $\Gamma_{0}^{1}(v)$ has an (x, y)-trail T_{v}^{0} where $x, y \in$ $V\left(\Gamma_{0}^{1}(v)\right)$ that are incident with two of the edges in $\left\{e_{v}^{1}, e_{v}^{2}, e_{v}^{3}\right\}$ and $\left|\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}^{0}\right)\right| \geq 4 \bar{\sigma}_{2}(G)-14$.

Proof. Since G_{0}^{\prime} is 3-edge-connected and K_{3}-free and $\Gamma_{0}^{1}(v)$ is a subgraph of $G_{0}^{\prime}, \Gamma_{0}^{1}(v)$ is reduced and K_{3}-free. By Fact 7.1, $\Gamma_{0}^{1}(v)$ is 2-edge-connected, $D_{2}\left(\Gamma_{0}^{1}(v)\right) \subseteq \partial\left(\Gamma^{*}(v)\right)$ and $\left|\partial\left(\Gamma^{*}(v)\right)\right| \leq 3$. Let $\partial\left(\Gamma^{*}(v)\right)=\{x, y, z\}\left(x, y\right.$ and z may not be distinct). By Lemma 5.1, $\Gamma_{0}^{1}(v)$ has a (x, y)-trail T_{v} containing z. We assume that T_{v} is a longest one.

We prove $\alpha^{\prime}\left(T_{v}\right) \geq 2$ first.

To the contrary, suppose that $\alpha^{\prime}\left(T_{v}\right)=1$. Then one of the following holds.
(1) $T_{v}=x y$ (and so $z \in\{x, y\}$, say $z=y$);
(2) $T_{v}=x z y$.
(1) $T_{v}=x y$ with $z=y$. Since $\Gamma_{0}^{1}(v)$ is 2-edge-connected and K_{3}-free, there is a longer path in $\Gamma_{0}^{1}(v)$ joining x and y in $\Gamma_{0}^{1}(v)-\{x y\}$, contrary to that T_{v} is a longest one.
(2) $T_{v}=x z y$.

Since $\Gamma_{0}^{1}(v)$ is 2-edge-connected, x is adjacent to a vertex (say w) in $N_{\Gamma_{0}^{1}(v)}(x)-\{z\}$. Since G_{0}^{\prime} is 3-edge-connected, by Menger's Theorem, there are at least three edge-disjoint paths joining w and a vertex (say u) in $G_{0}^{\prime}-V\left(\Gamma_{0}^{1}(v)\right)$. Since $\{x, y, z\}$ is a vertex cut of G_{0}^{\prime} that separates w and u, there are at least two edge-disjoint paths (say P_{w}^{1} and P_{w}^{2}) joining w to vertices in $\{x, y, z\}$ in $\Gamma_{0}^{1}(v)-\{x w\}$. We assume that $P_{w}^{i}(i=1,2)$ is a shortest path joining w to a vertex in $\{x, y, z\}$.

If $P_{w}^{1}\left(\right.$ or $\left.P_{w}^{2}\right)$ is a (w, x)-path in $\Gamma_{0}^{1}(v)-\{x w\}$, then $x w P_{w}^{1}$ is a cycle and so $T_{x}=G_{0}^{\prime}\left[\{x w\} \cup E\left(P_{w}^{1}\right) \cup\right.$ $\{z y\}]$ is a (x, y)-trail containing z in $\Gamma_{0}^{1}(v)$, contrary to that T_{v} is a longest one.

If $P_{w}^{1}\left(\right.$ or $\left.P_{w}^{2}\right)$ is a (w, z)-path in $\Gamma_{0}^{1}(v)-\{x w\}$, then $T_{x}=G_{0}^{\prime}\left[\{x w\} \cup E\left(P_{w}^{1}\right) \cup\{z y\}\right]$ is a (x, y)-trail containing z in $\Gamma_{0}^{1}(v)$, contrary to that T_{v} is a longest one.

If none of the P_{w}^{1} and P_{w}^{2} is a (w, x) - or (w, z)-path, then P_{w}^{1} and P_{w}^{2} are edge-disjoint (w, y)-paths and so $G_{0}^{\prime}\left[E_{G_{0}^{\prime}}\left(P_{w}^{1}\right) \cup E_{G_{0}^{\prime}}\left(P_{w}^{2}\right)\right]$ is a closed trail containing y. Then $T_{y}=G_{0}^{\prime}\left[\{x z, z y\} \cup E\left(P_{w}^{1}\right) \cup E\left(P_{w}^{2}\right)\right]$ is a (x, y)-trail containing z in $\Gamma_{0}^{1}(v)$ which has more vertices than T_{v} has, a contradiction.

Thus, $\alpha^{\prime}\left(T_{v}\right) \geq 2$.
Next, we find the size of $\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)$ which is defined by (2) with $\Gamma^{*}(v)=G_{T}(v)$ and $T_{v}=\Theta(v)$.
Case (a) $\left|V\left(\Gamma_{0}^{1}(v)\right)\right| \leq 7$.
By Theorem 3.1(d), $\Gamma_{0}^{1}(v) \in\left\{K_{2,3}, K_{1,3}(1,1,1), J^{\prime}(1,1)\right\}$. For each edge $z w \in E\left(\Gamma_{0}^{1}(v)\right)$, since $d_{G_{0}^{\prime}}(z)+d_{G_{0}^{\prime}}(w) \leq 6$ and $\bar{\sigma}_{2}(G) \geq 7$, either z or w is a contracted vertex of G_{0}^{\prime}. Let W be the set of the contracted vertices in $\Gamma_{0}^{1}(v)$. Let $\beta=\beta\left(\Gamma_{0}^{1}(v)\right)$ be the covering number of $\Gamma_{0}^{1}(v)$. Then $|W| \geq \beta$.

For a vertex $w \in W$, either $\Gamma_{0}(w)$ is a nontrivial collapsible preimage of w in G_{0} or $\Gamma(w)=K_{1, s}$. Then $E(\Gamma(w)) \subseteq \mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)$. Since $W \subseteq S_{0}$, by Lemma 5.3(a) with $t=1,|E(\Gamma(w))| \geq \bar{\sigma}_{2}(G)-4$.

For $\Gamma_{0}^{1}(v) \in\left\{K_{2,3}, K_{1,3}(1,1,1), J^{\prime}(1,1)\right\}$, since $E\left(T_{v}^{0}\right) \bigcup_{w \in W} E(\Gamma(w)) \subseteq \mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)$

$$
\begin{equation*}
\left|\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)\right| \geq\left|E\left(\Gamma_{0}^{1}(v)\right)\right|+\sum_{w \in W}|E(\Gamma(w))| \geq\left|E\left(\Gamma_{0}^{1}(v)\right)\right|+|W| \bar{\sigma}_{2}(G)-4|W| \tag{31}
\end{equation*}
$$

Picking an edge from $\Gamma(w)$ for each $w \in W$, we have a matching of $\Gamma^{*}(v)$. Thus, $\alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq|W|$. Since $\beta\left(K_{2,3}\right)=2, \beta\left(K_{1,3}(1,1,1)\right)=3$ and $\beta\left(J^{\prime}(1,1)\right)=4$, by $(31), \alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq|W| \geq \beta$ and $6=$ $\left|E\left(K_{2,3}\right)\right|<9=\left|E\left(K_{1,3}(1,1,1)\right)\right|=\left|E\left(J^{\prime}(1,1)\right)\right|$,

$$
\begin{aligned}
\left|\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)\right| & \geq|W| \bar{\sigma}_{2}(G)+\left|E\left(\Gamma_{0}^{1}(v)\right)\right|-4|W| \geq|W| \bar{\sigma}_{2}(G)+6-4|W| \\
& \geq\left\{\begin{array}{cl}
2 \bar{\sigma}_{2}(G)-2 & \text { if } \Gamma_{0}^{1}(v)=K_{2,3} \text { and } \alpha^{\prime}\left(\Gamma^{*}(v)\right)=|W|=2 \\
3 \bar{\sigma}_{2}(G)-6 & \text { if } \Gamma_{0}^{1}(v) \in\left\{K_{2,3}, K_{1,3}(1,1,1)\right\} \text { and } \alpha^{\prime}\left(\Gamma^{*}(v)\right)=|W|=3 \\
4 \bar{\sigma}_{2}(G)-10 & \text { if } \Gamma_{0}^{1}(v) \in\left\{K_{2,3}, K_{1,3}(1,1,1), J^{\prime}(1,1)\right\} \text { and } \alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq 4
\end{array}\right.
\end{aligned}
$$

For $|W|=4+j(j \geq 0),|W| \bar{\sigma}_{2}(G)+6-4|W|=4 \bar{\sigma}_{2}(G)-10+j\left(\bar{\sigma}_{2}(G)-4\right) \geq 4 \bar{\sigma}_{2}(G)-10$. Thus, $\left|\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)\right| \geq 4 \bar{\sigma}_{2}(G)-10$ if $\alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq|W| \geq 4$. Lemma 7.2(a) is proved.

Case (b) $n_{1}=\left|V\left(\Gamma_{0}^{1}(v)\right)\right| \geq 8$.
Since $l=\left|D_{2}\left(\Gamma_{0}^{1}(v)\right)\right| \leq 3, \Gamma_{0}^{1}(v) \neq K_{2, s}$. By Theorem 3.1(e),

$$
\alpha^{\prime}\left(\Gamma_{0}^{1}(v)\right) \geq \min \left\{\frac{n_{1}-1}{2}, \frac{n_{1}+5-l}{3}\right\} \geq \min \left\{\frac{8-1}{2}, \frac{8+5-3}{3}\right\}>3
$$

Thus, $\alpha^{\prime}\left(\Gamma_{0}^{1}(v)\right) \geq 4$.
Let M be a matching of size 4 in $\Gamma_{0}^{1}(v)$ and let V_{8} be the set of the 8 vertices in M. Let v_{p} be a vertex in $V\left(P_{0}\right)-V\left(\Gamma_{0}^{1}(v)\right)$ and let $S=V_{8} \cup\left\{v_{p}\right\}$. Then $|S| \leq 9$. By Theorem 4.1, G_{0} has a closed trail T_{1} containing all the vertices in S. Then T_{1} contain exactly two of the edges in $\left\{e_{v}^{1}, e_{v}^{2}, e_{v}^{3}\right\}$. We may assume $e_{i}^{1}=v_{2} x_{i}, e_{i}^{2}=v_{3} y_{i} \in E\left(T_{1}\right)$ where x_{i} and y_{i} are in $\Gamma_{0}^{1}(v)$. Thus, edges in $E\left(T_{1}\right) \cap E\left(\Gamma_{0}^{1}(v)\right)$ induced a $\left(x_{i}, y_{i}\right)$-trail T_{v}^{0} containing all the vertices in V_{8}. Since T_{v}^{0} contains the vertices of a matching of size 4 , by Lemma 5.2(a) with $t=4$ and $i\left(T_{v}^{0}\right) \leq d_{G_{T}}(v)=d_{G_{0}^{\prime}}(v)=3,\left|\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}^{0}\right)\right| \geq 4 \bar{\sigma}_{2}(G)-14$.

Remark 7.3. When we say we have a T_{v} trail with the estimated size $\left|\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)\right|$ in Lemma 5.2 or Lemma 7.2, it means that such trail T_{v} exists for any preselected two edges in $E_{P}(v)$. For the T_{v}^{0} trail in case (b) above, we only know that T_{v}^{0} is incident with two edges in $E_{P}(v)$, not for any preselected two edges. When $\left|V\left(\Gamma_{0}^{1}(v)\right)\right| \geq 8$, for any two preselected edges in $E_{P}(v)$, we can have a trail T_{v} for the two selected edges but we only know that $\alpha^{\prime}\left(T_{v}\right) \geq 2$ and by Lemma $5.2\left|\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)\right| \geq 2 \bar{\sigma}_{2}(G)-7$, that is smaller than $\left|\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}^{0}\right)\right| \geq 4 \bar{\sigma}_{2}(G)-14$. In the proof of Theorem 4.3, if a vertex $v \in V\left(P_{0}\right)$ has its preimage $\Gamma_{0}^{1}(v)$ with $\left|V\left(\Gamma_{0}^{1}(v)\right)\right| \geq 8$, we use a (x, y)-trail T_{v}^{0} with $\left|\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}^{0}\right)\right| \geq 4 \bar{\sigma}_{2}(G)-14$ given in Lemma $7.2(b)$ and so we know the two edges in $E_{P}(v)$ incident with x and y in T_{v}^{0}, respectively. Thus, to select a dominating cycle Θ_{0} in P_{0}, we pick the vertex v and the two edges first, and then pick the rest of the vertices and edges to form the dominating cycle Θ_{0} in P_{0}.

For each $v \in V\left(P_{0}\right)$, let $E_{P}(v)=\left\{e_{v}^{1}, e_{v}^{2}, e_{v}^{3}\right\}$ be the set of three edges in P_{0} incident with v, which is considered as a subset of $E(G)$. We assume that e_{v}^{i} is incident with x_{v}^{i} in $\Gamma_{1}^{2}(v)(i=1,2,3)$ (note that x_{v}^{1}, x_{v}^{2} and x_{v}^{3} may not be distinct). If $x_{v}^{i} \in D_{2}(G) \cap V\left(\Gamma_{1}^{2}(v)\right)$, then let $y_{v}^{i} x_{v}^{i}$ be an edge in $X_{2}(G)$ with $y_{v}^{i} \in V\left(\Gamma_{1}^{2}(v)\right)$. Then y_{v}^{i} is a nontrivial vertex and $d_{\Gamma_{1}^{2}(v)}\left(x_{v}^{i}\right)=1$. Since G is essentially 3-edgeconnected, $d_{\Gamma_{1}^{2}(v)}\left(y_{v}^{i}\right) \geq 3$. If $x_{v}^{i} \notin D_{2}(G)$, we use $y_{v}^{i}=x_{v}^{i}$ in $V\left(\Gamma_{1}^{2}(v)\right)$ (see Fig. 7.1 (a) and (d)).

The following is the procedures to construct a DCT in G from P_{0} :
(a) Pick a 9 vertex cycle Θ_{0}.

We assume that $V\left(\Theta_{0}\right)=\left\{v_{1}, v_{2}, \cdots, v_{9}\right\}$ and $E\left(\Theta_{0}\right)=\left\{e_{v_{j}}^{1}, e_{v_{j}}^{2} \mid j=1, \cdots 9\right\}$. By Lemma 7.2 and Remark 7.3, we assume that v_{1} is the vertex with largest $\alpha^{\prime}\left(\Gamma_{0}^{1}(v)\right)$.
(b) For each $v \in V\left(\Theta_{0}\right)$ with $\Gamma_{0}^{2}(v) \neq K_{1}$ and with y_{v}^{1} and y_{v}^{2} in $\Gamma_{0}^{2}(v)$ that are incident with the two edges e_{v}^{1} and e_{v}^{2} in Θ_{0}, we construct a $\left(y_{v}^{1}, y_{v}^{2}\right)$-trail T_{v} according to $\Gamma_{0}^{1}(v)=K_{1}$ or not:
(b1) If $\Gamma_{0}^{1}(v)=K_{1}$ then $\Gamma_{0}^{2}(v)=\Gamma_{0}(v)$, a collapsible graph. Let $R=\left\{y_{v}^{1}, y_{v}^{2}\right\}$ if $y_{v}^{1} \neq y_{v}^{2}$; and let $R=\emptyset$ if $y_{v}^{1}=y_{v}^{2}$. Since $\Gamma_{0}^{2}(v)$ is collapsible, $\Gamma_{0}^{2}(v)$ has a spanning connected subgraph Ψ_{v} such that $O\left(\Psi_{v}\right)=R$. Then $T_{v}=\Psi_{v}$ is a spanning $\left(y_{v}^{1}, y_{v}^{2}\right)$-trail in $\Gamma_{0}^{2}(v)$. Thus, T_{v} is a dominating $\left(y_{v}^{1}, y_{v}^{2}\right)$-trail in $\Gamma^{*}(v)$ and $E\left(\Gamma^{*}(v)\right)=\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)$.
(b2) If $\Gamma_{0}^{1}(v) \neq K_{1}$, then we construct a $\left(y_{v}^{1}, y_{v}^{2}\right)$-trail T_{v} as discussed in Lemma 7.2.
Since $\Gamma_{0}^{2}(v)=\Gamma_{1}^{2}(v) /\left(X_{2}(G) \cap E\left(\Gamma_{1}^{2}(v)\right), T_{v}\right.$ can be extended as $\left(x_{v}^{1}, x_{v}^{2}\right)$-trail containing y_{v}^{3} in $\Gamma_{1}^{2}(v)$ (and in $\Gamma^{*}(v)$). If $y_{v}^{3} \neq x_{v}^{3}$, then y_{v}^{3} is a nontrivial vertex and $i\left(T_{v}\right)=2$ since the edge incident with x_{v}^{3} in $E_{P}(v)$ is not incident with a vertex in T_{v}, but $y_{v}^{3} x_{v}^{3} \in \mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)$. In the following, for each $v_{j}=v \in V\left(P_{0}\right)$, we use T_{j} for T_{v} as the $\left(x_{j}^{1}, x_{j}^{2}\right)$-trail containing y_{j}^{3} in $\Gamma^{*}\left(v_{j}\right)$ with $\left|\mathcal{E}_{\Gamma^{*}\left(v_{j}\right)}\left(T_{j}\right)\right|$ as large as possible. (See Fig. 7.2 for an example).
(c) Let $\Theta_{1}=G\left[E\left(\Theta_{0}\right) \cup_{j=1}^{9} E\left(T_{j}\right)\right]$ where $T_{j}=T_{v_{j}}$ found in step (b). Then Θ_{1} is a closed trail.
(d) Let Θ be the graph induced by all the edges in $E\left(\Theta_{1}\right)$ and all the edges incident with vertices in $V\left(\Theta_{1}\right)$. Then Θ is a DCT subgraph of G since Θ_{1} is a DCT in Θ.

In Lemmas 5.2, $i\left(T_{j}\right)$, the number of the edges outside of $\Gamma^{*}\left(v_{j}\right)$ incident with some vertices in $V\left(T_{j}\right)$, is not counted for $\left|\mathcal{E}_{\Gamma^{*}\left(v_{j}\right)}\left(T_{j}\right)\right|$. If $i\left(T_{j}\right)=3$, then $E_{P}\left(v_{j}\right) \subseteq E(\Theta)$. If $i\left(T_{j}\right)=2$, then maybe
only two of the edges in $E_{P}\left(v_{j}\right)$ are in $E(\Theta)$ but by Lemmas 5.2 the lower bound on $\left|\mathcal{E}_{\Gamma\left(v_{j}\right)}\left(T_{j}\right)\right|$ is one more than the case of $i\left(T_{j}\right)=3$. Thus, for counting the number of edges in $E(\Theta)$, we can assume that $i\left(T_{j}\right)=3$ and so we assume $E\left(P_{0}\right) \subseteq E(\Theta)$. Therefore,

$$
\begin{equation*}
E(\Theta) \supseteq E\left(P_{0}\right) \cup_{j=1}^{9} \mathcal{E}_{\Gamma^{*}\left(v_{j}\right)}\left(T_{j}\right) . \tag{32}
\end{equation*}
$$

Fig. 7.2: A process to obtain a DCT (marked by thick-lines) from P_{0} to G.

8 Proof of Theorem 4.3

Proof of Theorem 4.3. Without loss of generality, we assume that G does not have a DCT.
Let P_{0} be the Petersen graph with $V\left(P_{0}\right)=\left\{v_{1}, \cdots, v_{10}\right\}$ as the contraction graph of G_{0}^{\prime} as stated. Without loss of generality, we assume that $\left|V\left(\Gamma^{*}\left(v_{10}\right)\right)\right|=\min \left\{\left|V\left(\Gamma^{*}\left(v_{i}\right)\right)\right| v_{i} \in V\left(P_{0}\right)\right\}$.

Claim 1. $\left|V\left(\Gamma^{*}\left(v_{10}\right)\right)\right|>1$.
To the contrary, suppose that $\left|V\left(\Gamma^{*}\left(v_{10}\right)\right)\right|=1$. Then $d_{G_{0}^{\prime}}\left(v_{10}\right)=d_{G}\left(v_{10}\right)=d_{P_{0}}\left(v_{10}\right)=3$.
Case 1. $G_{0}^{\prime}=P_{0}$, i.e., $\left|V\left(\Gamma_{0}^{1}\left(v_{i}\right)\right)\right|=1$ for all $v_{i} \in V\left(P_{0}\right)(1 \leq i \leq 10)$.
Since $\left|V\left(\Gamma^{*}\left(v_{10}\right)\right)\right|=1, d_{G}\left(v_{10}\right)=d_{G_{0}^{\prime}}\left(v_{10}\right)=3$. Since $\bar{\sigma}_{2}(G) \geq 7, v_{10}$ is not adjacent to any vertex in $D_{2}(G)$ and so v_{10} is a trivial vertex in G_{0}^{\prime}. By inspection, G_{0}^{\prime} has a cycle Θ_{0} containing $v_{i}(1 \leq i \leq 9)$. Then Θ_{0} contains all the nontrivial vertices of G_{0}^{\prime}. By Theorem 3.2(b), G has a DCT, a contradiction.

Case 2. G_{0}^{\prime} is contracted to P_{0} such that $V\left(\Gamma_{0}^{1}\left(v_{i}\right)\right) \cap V_{a} \neq \emptyset$ for all $v_{i} \in V\left(P_{0}\right)(1 \leq i \leq 10)$.
Since $\left|V\left(\Gamma^{*}\left(v_{10}\right)\right)\right|=1, V\left(\Gamma_{0}^{1}\left(v_{10}\right)\right)=\left\{v_{10}\right\}$. Thus, $\left\{v_{10}\right\}=V\left(\Gamma_{0}^{1}\left(v_{10}\right)\right) \cap V_{a} \subseteq V_{a}=S_{0} \cup S_{1}^{*} \cup S_{M}$. If $v_{10} \in S_{0}$, then v_{10} is a contracted vertex and so $\left|V\left(\Gamma^{*}\left(v_{10}\right)\right)\right|>1$, a contradiction.

If $v_{10} \in S_{1}^{*}$, then since $\bar{\sigma}_{2}(G) \geq 7, d_{G_{0}^{\prime}}\left(v_{10}\right) \geq \bar{\sigma}_{2}(G)-3 \geq 4$, contrary to that $d_{G_{0}^{\prime}}\left(v_{10}\right)=3$.
If $v_{10} \in S_{M}$, then there is a non-contracted vertex z in S_{M} such that $z v_{10} \in E\left(G_{0}^{\prime}\right) \subseteq E(G)$ with $d_{G}\left(v_{10}\right)=d_{G_{0}^{\prime}}\left(v_{10}\right)$ and $d_{G}(z)=d_{G_{0}^{\prime}}(z)$. Therefore, $d_{G_{0}^{\prime}}\left(v_{10}\right)+d_{G_{0}^{\prime}}(z)=d_{G}\left(v_{10}\right)+d_{G}(z) \geq \bar{\sigma}_{2}(G)$. Since $d_{G}\left(v_{10}\right)=3, d_{G}(z) \geq \bar{\sigma}_{2}(G)-3$. Thus, $z \in S_{1}^{*}$, contrary to that $z \in S_{M} \subseteq V\left(G_{0}^{\prime}\right)-\left(S_{0} \cup S_{1}^{*}\right)$.

We reach a contradiction for each of the cases above. Claim 1 is proved.
If $\Gamma^{*}\left(v_{i}\right)=K_{1, r}$ for all $v_{i} \in V\left(P_{0}\right)$, then $G \in \mathcal{P}_{1}$. Theorem 4.3(a) is proved.
In the following we assume that $\Gamma^{*}\left(v_{1}\right) \neq K_{1, r}$. Then $\Gamma^{*}\left(v_{1}\right)$ is not a tree and $\Gamma_{1}^{2}\left(v_{1}\right)$ is a nontrivial connected subgraph in G_{1} and so $\alpha^{\prime}\left(T_{1}\right) \geq 1$. But $\Gamma_{0}^{1}\left(v_{1}\right)$ may be either trivial or nontrivial.

Let Θ_{0}, Θ_{1} and Θ be the subgraphs defined in Section 7. If there is a vertex $v \in V\left(P_{0}\right)$ with $\left|V\left(\Gamma_{0}^{1}(v)\right)\right| \geq 8, \Theta_{0}$ is the one defined in Remark 7.3 after Lemma 7.2.

For each $v_{i} \in V\left(P_{0}\right)$, if $\Gamma^{*}\left(v_{i}\right)=K_{1, r}$. then $T_{i}=K_{1}$. By Proposition 3.3, $\left|\mathcal{E}_{\Gamma^{*}\left(v_{i}\right)}\left(T_{i}\right)\right| \geq \bar{\sigma}_{2}(G)-4$. If $\Gamma^{*}\left(v_{i}\right) \neq K_{1, r}$, then by Lemmas 5.2 and $7.2, \Gamma^{*}(v)$ has a trail T_{i} as a part of the subgraph Θ_{1} with
$\left|\mathcal{E}_{\Gamma^{*}\left(v_{i}\right)}\left(T_{i}\right)\right| \geq 2 \bar{\sigma}_{2}(G)-7 \geq \bar{\sigma}_{2}(G)$. Thus, for each $v_{i} \in V\left(P_{0}\right)$, in the worst case,

$$
\begin{equation*}
\left|\mathcal{E}_{\Gamma^{*}\left(v_{i}\right)}\left(T_{i}\right)\right| \geq \bar{\sigma}_{2}(G)-4 \tag{33}
\end{equation*}
$$

If $\left|V\left(\Gamma_{0}^{1}\left(v_{1}\right)\right)\right| \geq 8$, then by Lemma 7.2(b), $\Gamma_{0}^{1}\left(v_{1}\right)$ has a trail $T_{v_{1}}^{0}$ with $\left|\mathcal{E}_{\Gamma^{*}\left(v_{1}\right)}\left(T_{v_{1}}^{0}\right)\right| \geq 4 \bar{\sigma}_{2}(G)-14$. Hence, by (32), (33) and $\left|\mathcal{E}_{\Gamma^{*}\left(v_{1}\right)}\left(T_{v_{1}}^{0}\right)\right| \geq 4 \bar{\sigma}_{2}(G)-14$,

$$
\begin{aligned}
|E(\Theta)| & \left.\geq\left|E\left(P_{0}\right)\right|+\mid \mathcal{E}_{\Gamma^{*}\left(v_{1}\right)}\right)\left(T_{v_{1}}^{0}\right)\left|+\sum_{i=2}\right| \mathcal{E}_{\Gamma^{*}\left(v_{i}\right)}\left(T_{i}\right) \mid \\
& \geq 15+\left(4 \bar{\sigma}_{2}(G)-14\right)+8\left(\bar{\sigma}_{2}(G)-4\right)=12 \bar{\sigma}_{2}(G)-31 .
\end{aligned}
$$

Thus, Theorem 4.3 holds.
In the following, we assume that $\left|V\left(\Gamma_{0}^{1}\left(v_{i}\right)\right)\right| \leq 7$ for all $v_{i} \in V\left(P_{0}\right)$ and

$$
\begin{equation*}
\alpha^{\prime}\left(\Gamma^{*}\left(v_{1}\right)\right) \geq \alpha^{\prime}\left(\Gamma^{*}\left(v_{2}\right)\right) \cdots \geq \alpha^{\prime}\left(\Gamma^{*}\left(v_{10}\right)\right) . \tag{34}
\end{equation*}
$$

Claim 2. For $v \in V\left(\Theta_{0}\right)$, if $\Gamma^{*}(v) \neq K_{1, r}$, then $\alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq 2$ and Θ contains a subgraph $\Psi(v)$ of $\Gamma^{*}(v)$ such that $\mathcal{E}_{\Gamma^{*}(v)}(\Psi(v)) \subseteq \mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right) \subseteq E(\Theta)$ where T_{ν} is the trail as a part of Θ defined above and

$$
\left|\mathcal{E}_{\Gamma^{*}(v)}(\Psi(v))\right| \geq\left\{\begin{array}{cl}
2 \bar{\sigma}_{2}(G)-6 & \text { if } \alpha^{\prime}\left(\Gamma^{*}(v)\right)=2 ; \tag{35}\\
3 \bar{\sigma}_{2}(G)-12 & \text { if } \alpha^{\prime}\left(\Gamma^{*}(v)\right)=3 ; \\
4 \bar{\sigma}_{2}(G)-17 & \text { if } \alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq 4 ; \\
4 \bar{\sigma}_{2}(G)-14 & \text { if } \alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq 5 \text { and } \bar{\sigma}_{2}(G) \geq 12 .
\end{array}\right.
$$

Case A. $\Gamma_{0}^{1}(v)=K_{1}$. Then $\Gamma^{*}(v)=\Gamma(v)$ and $\Gamma_{1}^{2}(v)=\Gamma_{1}(v)$.
Since $\Gamma^{*}(v) \notin\left\{K_{1}, K_{1, r}\right\}, \Gamma_{0}^{2}(v)=\Gamma_{0}(v)$ is a nontrivial collapsible subgraph of G_{0}. Let $\Psi(v)=\Gamma_{0}(v)$. By the definition of $\Theta, \mathcal{E}_{\Gamma^{*}(v)}(\Psi(v))=E\left(\Gamma^{*}(v)\right)=\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right) \subseteq E(\Theta)$. Since G is K_{3}-free and simple, $\Gamma(v)$ and $\Gamma_{1}(v)$ are K_{3}-free and simple. Hence, $\alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq \alpha^{\prime}\left(\Gamma_{1}^{2}(v)\right) \geq 2$. By Proposition 3.3 when $\alpha^{\prime}\left(\Gamma^{*}(v)\right)=2$, by (6) of Lemma 5.2 when $\alpha^{\prime}\left(\Gamma^{*}(v)\right)=3$ and by Lemma 5.2(b) when $\alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq 4$,

$$
\left|\mathcal{E}_{\Gamma^{*}(v)}(\Psi(v))\right|=\left|E\left(\Gamma^{*}(v)\right)\right| \geq\left\{\begin{array}{cl}
2 \bar{\sigma}_{2}(G)-6 & \text { if } \alpha^{\prime}\left(\Gamma^{*}(v)\right)=2 \tag{36}\\
3 \bar{\sigma}_{2}(G)-12 & \text { if } \alpha^{\prime}\left(\Gamma^{*}(v)\right)=3 \\
t \bar{\sigma}_{2}(G)-t^{2}-1 & \text { if } t=\alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq 4 .
\end{array}\right.
$$

Case B. $\Gamma_{0}^{1}(v) \neq K_{1}$ and $\left|V\left(\Gamma_{0}^{1}(v)\right)\right| \leq 7$. Then $\Gamma_{0}^{1}(v)$ is a nontrivial reduced subgraph.
Since $\left|V\left(\Gamma_{0}^{1}(v)\right)\right| \leq 7$, by Lemma 7.2, $\Gamma^{*}(v)$ has a trail T_{v} as a part of Θ with

$$
\left|\mathcal{E}_{\Gamma^{*}(v)}\left(T_{v}\right)\right| \geq\left\{\begin{array}{cc}
2 \bar{\sigma}_{2}(G)-2 & \text { if } \alpha^{\prime}\left(\Gamma^{*}(v)\right)=2 \tag{37}\\
3 \bar{\sigma}_{2}(G)-6 & \text { if } \alpha^{\prime}\left(\Gamma^{*}(v)\right)=3 ; \\
4 \bar{\sigma}_{2}(G)-10 & \text { if } \alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq 4
\end{array}\right.
$$

Thus, for $2 \leq \alpha^{\prime}\left(\Gamma^{*}(v)\right) \leq 4$, (37) implies (36). If $\alpha^{\prime}\left(\Gamma^{*}(v)\right) \geq 5$ and $\bar{\sigma}_{2}(G) \geq 12$, then by (36) with $t=5,5 \bar{\sigma}_{2}(G)-26 \geq 4 \bar{\sigma}_{2}(G)-14$. Then T_{v} is the subgraph $\Psi(v)$. Claim 2 is proved.

Let n_{0} be the number of $\Gamma^{*}\left(v_{i}\right) \neq K_{1, r}$. By Claim 2 and (34), for $1 \leq i \leq n_{0}, \Theta$ contains a subgraph $\Psi\left(v_{i}\right)$ in $\Gamma^{*}\left(v_{i}\right)$ with $\left|\mathcal{E}_{\Gamma^{*}\left(v_{i}\right)}\left(T_{i}\right)\right|=\left|\mathcal{E}_{\Gamma^{*}\left(v_{i}\right)}\left(\Psi\left(v_{i}\right)\right)\right| \geq 2 \bar{\sigma}_{2}(G)-6$. By (32) and by (33) (for $\left.i>n_{0}\right)$,

$$
\begin{align*}
|E(\Theta)| & \geq\left|E\left(P_{0}\right)\right|+\sum_{i=1}^{n_{0}}\left|\mathcal{E}_{\Gamma^{*}\left(v_{i}\right)}\left(T_{i}\right)\right|+\sum_{i=n_{0}+1}^{9}\left|\mathcal{E}_{\Gamma^{*}\left(v_{i}\right)}\left(T_{i}\right)\right| \tag{38}\\
& \geq 15+n_{0}\left(2 \bar{\sigma}_{2}(G)-6\right)+\left(9-n_{0}\right)\left(\bar{\sigma}_{2}(G)-4\right)=\left(n_{0}+9\right) \bar{\sigma}_{2}(G)-21-2 n_{0} . \tag{39}
\end{align*}
$$

If $n_{0} \geq 3$, then $G \notin \bigcup_{i=1}^{5} \mathcal{P}_{i}$. Let $n_{0}=3+j$ and $j \geq 0$. Then by (39) and $\bar{\sigma}_{2}(G) \geq 7$,

$$
|E(\Theta)| \geq\left(n_{0}+9\right) \bar{\sigma}_{2}(G)-21-2 n_{0}=12 \bar{\sigma}_{2}(G)-27+j\left(\bar{\sigma}_{2}(G)-2\right)>12 \bar{\sigma}_{2}(G)-31 .
$$

Thus, Theorem 4.3(d) is proved for this case.
If $n_{0}=2$ and $\max \left\{\alpha^{\prime}\left(\Gamma^{*}\left(v_{1}\right)\right), \alpha^{\prime}\left(\Gamma^{*}\left(v_{2}\right)\right)\right\} \geq 3$, then $G \notin \bigcup_{i=1}^{5} \mathcal{P}_{i}$. By (38), (33) and Claim 2,

$$
\begin{aligned}
|E(\Theta)| & \geq\left|E\left(P_{0}\right)\right|+\left|\mathcal{E}_{\Gamma^{*}\left(v_{1}\right)}\left(T_{1}\right)\right|+\left|\mathcal{E}_{\Gamma^{*}\left(v_{2}\right)}\left(T_{2}\right)\right|+\sum_{i=3}^{9}\left|\mathcal{E}_{\Gamma^{*}\left(v_{i}\right)}\left(T_{i}\right)\right| \\
& \geq 15+\left(3 \bar{\sigma}_{2}(G)-12\right)+\left(2 \bar{\sigma}_{2}(G)-6\right)+7\left(\bar{\sigma}_{2}(G)-4\right)=12 \bar{\sigma}_{2}(G)-31 .
\end{aligned}
$$

Again, Theorem 4.3(d) holds.
Thus, we only need to consider the cases $n_{0}=1$ and $n_{0}=2$ with $\alpha^{\prime}\left(\Gamma^{*}\left(v_{1}\right)\right)=\alpha^{\prime}\left(\Gamma^{*}\left(v_{2}\right)\right)=2$.
Now, we can complete our proof by checking on each of the cases of Theorem 4.3.
(a) $G \notin \mathcal{P}_{1}$. By (39) with $n_{0} \in\{1,2\}$, in the worst case, $|E(\Theta)| \geq 10 \bar{\sigma}_{2}(G)-23$. Theorem 4.3(a) holds.
(b) $G \notin \mathcal{P}_{1} \cup \mathcal{P}_{2}$. Then either $n_{0}=2$ or $n_{0}=1$ and $\alpha^{\prime}\left(\Gamma^{*}\left(v_{1}\right)\right) \geq 3$.

If $n_{0}=2$, then by (39) with $n_{0}=2,|E(\Theta)| \geq 11 \bar{\sigma}_{2}(G)-25>11 \bar{\sigma}_{2}(G)-29$. Case (b) is proved.
If $n_{0}=1$ and $\alpha^{\prime}\left(\Gamma^{*}\left(v_{1}\right)\right) \geq 3$, then by Claim 2, $\left|\mathcal{E}_{\Gamma^{*}\left(v_{1}\right)}\left(T_{1}\right)\right| \geq 3 \bar{\sigma}_{2}(G)-12$. By (38) and (33), $|E(\Theta)| \geq 15+\left(3 \bar{\sigma}_{2}(G)-12\right)+8\left(\bar{\sigma}_{2}(G)-4\right)=11 \bar{\sigma}_{2}(G)-29$. Theorem 4.3(b) is proved.
(c) $G \notin \bigcup_{i=1}^{3} \mathcal{P}_{i}$ and $\bar{\sigma}_{2}(G) \geq 9$. Then either $n_{0}=2$ or $n_{0}=1$ and $\alpha^{\prime}\left(\Gamma^{*}\left(v_{1}\right)\right) \geq 4$.

If $n_{0}=2$, then by (39) with $n_{0}=2,|E(\Theta)| \geq 11 \bar{\sigma}_{2}(G)-25$. Case (c) is proved.
If $n_{0}=1$ and $\alpha^{\prime}\left(\Gamma^{*}\left(v_{1}\right)\right) \geq 4$, then by Claim 2, $\left|\mathcal{E}_{\Gamma^{*}\left(v_{1}\right)}\left(T_{1}\right)\right| \geq 4 \bar{\sigma}_{2}(G)-17$. By (38), (33) and $\bar{\sigma}_{2}(G) \geq 9,|E(\Theta)| \geq 15+\left(4 \bar{\sigma}_{2}(G)-17\right)+8\left(\bar{\sigma}_{2}(G)-4\right)=12 \bar{\sigma}_{2}(G)-34 \geq 11 \bar{\sigma}_{2}(G)-25$. (c) is proved.
(d) $G \notin \bigcup_{i=1}^{4} \mathcal{P}_{i}$. If $n_{0}=2$ with $\alpha^{\prime}\left(\Gamma^{*}\left(v_{i}\right)\right)=2(i=1,2)$, then $G \in \mathcal{P}_{4}$, a contradiction. Thus, $n_{0}=1$.

Since $G \notin \bigcup_{i=1}^{4} \mathcal{P}_{i}, \alpha^{\prime}\left(\Gamma^{*}\left(v_{1}\right)\right) \geq 4$. By Claim 2, $\left|\mathcal{E}_{\Gamma^{*}\left(v_{1}\right)}\left(T_{1}\right)\right| \geq 4 \bar{\sigma}_{2}(G)-17$. By (38) and (33), $|E(\Theta)| \geq 15+\left(4 \bar{\sigma}_{2}(G)-17\right)+8\left(\bar{\sigma}_{2}(G)-4\right)=12 \bar{\sigma}_{2}(G)-34$. Theorem 4.3(d) is proved.
(e) $G \notin \mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{P}_{3} \cup \mathcal{P}_{4} \cup \mathcal{P}_{5}$ and $\bar{\sigma}_{2}(G) \geq 12$.

Using the same argument for case (d) above, we have $n_{0}=1$. Since $G \notin \bigcup_{i=1}^{5} \mathcal{P}_{i}, \alpha^{\prime}\left(\Gamma^{*}\left(v_{1}\right)\right) \geq 5$. By Claim 2 for $\alpha^{\prime}\left(\Gamma^{*}\left(v_{1}\right)\right) \geq 5$ and $\bar{\sigma}_{2}(G) \geq 12,\left|\mathcal{E}_{\Gamma^{*}\left(v_{1}\right)}\left(T_{1}\right)\right| \geq 4 \bar{\sigma}_{2}(G)-12$. By (38) and (33), $|E(\Theta)| \geq 15+\left(4 \bar{\sigma}_{2}(G)-12\right)+8\left(\bar{\sigma}_{2}(G)-4\right)=12 \bar{\sigma}_{2}(G)-31$. Theorem 4.3(e) is proved.

References

[1] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications", American Elsevier, New York (1976).
[2] P. A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988), 29-45.
[3] P. A. Catlin, Z. Han, and H.-J. Lai, Graphs without spanning Eulerian trails, Discrete Math. 160 (1996) 81-91.
[4] Z.-H. Chen, Circumferences of 3-connected claw-free graphs, Discrete Math. 339 (2016) 16401650.
[5] Z.-H. Chen, Chvátal-Erdös type conditions for hamiltonicity of claw-free graphs, Graphs and Combinatorics, (2016) 32: 2253-2266.
[6] W.-G. Chen and Z.-H. Chen, Spanning Eulerian subgraphs and Catlin's reduced graphs, J. Combinatorial Mathematics and Combinatorial Computing, 96 (2016), pp. 41-63.
[7] Z.-H. Chen, H.-J. Lai, X.W. Li, D.Y. Li, J. Z. Mao, Eulerian subgraphs in 3-edge-connected graphs and Hamiltonian line graphs, J. Graph Theory 42 (2003) 308-319.
[8] Z.-H. Chen, H.-J. Lai, L. M. Xiong, Minimum degree conditions for the Hamiltonicity of 3connected claw-free graphs, J. Combin. Theory Ser. B 122 (2017) 167-186.
[9] F. Harary and C. St. J. A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-710.
[10] H.-J. Lai, Y. Shao, M. Zhan, Hamiltonicity in 3-connected claw-free graphs, J. Combin. Theory Ser. B 96 (2006) 493-504.
[11] M. Li, Circumferences of regular claw-free graphs, Discrete Math. 306 (2006) 2682-2694.
[12] M. Li, Hamiltonian theory in claw-free graphs, in Discrete Mathematics Research Progress, editor: Kenneth B. Moore, pp. 139-211. © 2008 Nova Science Publishers, Inc.
[13] M. Li, Y. Cui, L.M. Xiong, Y. Tian, H. Jiang, X. Yuan, Circumferences and minimum degrees in 3-connected claw-free graphs, Discrete Math. 309 (2009) 3580-3587.
[14] M. M. Mathews, D. P. Sumner, Longest paths and cycles in $K_{1,3}$-free graphs, J. Graph Theory 9(1985) 269-277.
[15] N. D. Roussopoulos, A $\max \{m, n\}$ algorithm for determining the graph H from its line graph G, Information Processing Letters 2 (1973) 108-112.
[16] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70(1997) 217224.
[17] Y. Shao, Claw-free graphs and line graphs, Ph.D dissertation, West Virginia University, 2005.

[^0]: *E-mail address: chen@butler.edu
 ${ }^{\dagger}$ Research is supported by Butler University Academic Grant (2016)

