

Butler University Digital Commons @ Butler University

Scholarship and Professional Work - LAS

College of Liberal Arts & Sciences

9-2017

Circumferences of 3-connected claw-free graphs, II

Zhi-Hong Chen Butler University, chen@butler.edu

Follow this and additional works at: https://digitalcommons.butler.edu/facsch_papers

Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation

Chen, Zhi-Hong, "Circumferences of 3-connected claw-free graphs, II" *Discrete Mathematics /* (2017): 2091-2107. Available at https://digitalcommons.butler.edu/facsch_papers/1042

This Article is brought to you for free and open access by the College of Liberal Arts & Sciences at Digital Commons @ Butler University. It has been accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler University. For more information, please contact digitalscholarship@butler.edu.

Circumferences of 3-connected claw-free graphs, II

Zhi-Hong Chen[‡] Butler University, Indianapolis, IN 46208, U.S.A.

April 4, 2017

Abstract

For a graph *H*, the circumference of *H*, denoted by c(H), is the length of a longest cycle in *H*. It is proved in [4] that if *H* is a 3-connected claw-free garph of order *n* with $\delta \ge 8$, then $c(H) \ge \min\{9\delta - 3, n\}$. In [11], Li conjectured that every 3-connected *k*-regular claw-free graph *H* of order *n* has $c(H) \ge \min\{10k - 4, n\}$. Later, Li posed an open problem in [12]: how long is the best possible circumference for a 3-connected regular claw-free graph? In this paper, we study the circumference of 3-connected claw-free graphs without the restriction on regularity and provide a solution to the conjecture and the open problem above. We determine five families \mathcal{F}_i $(1 \le i \le 5)$ of 3-connected claw-free graphs which are characterized by graphs contractible to the Petersen graph and show that if *H* is a 3-connected claw-free graph of order *n* with $\delta \ge 16$, then one of the following holds:

(a) either $c(H) \ge \min\{10\delta - 3, n\}$ or $H \in \mathcal{F}_1$.

(b) either $c(H) \ge \min\{11\delta - 7, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2$.

(c) either $c(H) \ge \min\{11\delta - 3, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$.

(d) either $c(H) \ge \min\{12\delta - 10, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3 \cup \mathcal{F}_4$.

(e) if $\delta \ge 23$ then either $c(H) \ge \min\{12\delta - 7, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3 \cup \mathcal{F}_4 \cup \mathcal{F}_5$.

This is also an improvement of the prior results in [4, 10, 13, 14].

Keywords: Claw-free graph; Circumference; Minimum degree; Petersen graph

1 Introduction

Graphs considered in this paper are finite and loopless. A graph is called a *multigraph* if it contains multiple edges. A graph without multiple edges is called a *simple graph* or simply a graph. As in [1], $\kappa'(G)$ and $d_G(v)$ denote the edge-connectivity of G and the degree of a vertex v in G, respectively. The minimum degree of a graph G is denoted by $\delta(G)$ or δ . For a vertex $v \in V(G)$, let $E_G(v)$ be the set of edges in G incident with v. Thus, when G is a simple graph, $|E_G(v)| = d_G(v)$. An edge cut X of a graph G is *essential* if each of the components of G - X contains an edge. A graph G is *essentially* k-edge-connected if G is connected and does not have an essential edge cut of size less than k. A vertex set $U \subseteq V(G)$ is called a *covering* of G if every edge of G is incident with a vertex in U. The minimum number of vertices in a covering of G is called the *covering number* of G and denoted by $\beta(G)$. An edge e = uv is called a *pendant edge* if min{ $d_G(u), d_G(v)$ } = 1.

A *trail* T is a finite sequence $T = u_0 e_1 u_1 e_2 u_2 \cdots e_r u_r$, whose terms are alternately vertices and edges, with $e_i = u_{i-1}u_i$ $(1 \le i \le r)$, where the edges are distinct. A trail T is a *closed trail* if $u_0 = u_r$

^{*}E-mail address: chen@butler.edu

[†]Research is supported by Butler University Academic Grant (2016)

and is called a (u, v)-trail if $u = u_0$ and $v = u_r$. A trail or closed trail *T* in a graph *G* is called a *spanning trail* (ST) or a *spanning closed trail* (SCT) of *G* if V(G) = V(T) and is called a *dominating trail* (DT) or a *dominating closed trail* (DCT) if $E(G - V(T)) = \emptyset$. The family of graphs with SCTs is denoted by *SL*. A graph *G* is called a *DCT graph* if *G* has a DCT.

The circumference of a graph H, denoted by c(H), is the length of a longest cycle in H. A graph H is *claw-free* if H does not contain an induced subgraph isomorphic to $K_{1,3}$. In this paper, we will be concerned with the circumference of 3-connected claw-free graphs.

In [14], Matthews and Sumner proved that every 2-connected claw-free graph *H* of order *n* has $c(H) \ge \min\{n, 2\delta + 4\}$. Li, et al. [13] proved that every 3-connected claw-free graph *H* of order *n* has $c(H) \ge \min\{n, 6\delta - 15\}$. Solving a conjecture posed in [13], we proved the following.

Theorem 1.1 ([4]). If *H* is a 3-connected claw-free graph of order *n* and $\delta \ge 8$, $c(H) \ge \min\{n, 9\delta - 3\}$.

Theorem 1.1 is best possible in the sense that if $H_r = L(G_r)$ where G_r is obtained from the Petersen graph *P* by adding r > 0 pendant edges at each vertex of *P*, then $c(H_r) = 9\delta(H_r) - 3$.

For regular claw-free graphs, Li posed the following conjecture in [11].

Conjecture 1.2 (Li, Conjecture 6 [11]). *Every 3-connected k-regular claw-free graph H on n vertices* $has c(H) \ge min\{10k - 4, n\}$.

In [12], Li restated the conjecture with a different lower bound on c(H).

Conjecture 1.3 (Li, Conjecture 5.17 [12]). Every 3-connected k-regular claw-free graph H on n vertices has $c(H) \ge \min\{12k - 7, n\}$.

It was stated in [12] that Conjecture 1.3 was from [11]. However, Conjecture 1.2 is the only conjecture in [11]. We don't know why "10k - 4" is changed to "12k - 7" in Conjecture 1.3. Maybe it is more proper to treat them as open problems. In fact, Li posed an open problem in [12].

Problem 1.4 (Li, Problem 5.18 [12]). *How long is the best possible circumference for a 3-connected regular claw-free graph?*

Note that H_r mentioned above is a non-regular claw-free graph. These conjectures and the open problem suggest a more general problem: how long is the best possible circumference for a 3-connected claw-free graph H if $H \neq H_r$?

In this paper, using much improved techniques employed in [4], we provide solutions to these open problems and conjectures. Our results are given in next section.

2 Main results and Ryjáček's closure concept

For a graph *G*, the line graph of a graph *G*, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in *G* are adjacent. As we know that all line graphs are claw-free and a connected line graph $H \neq K_3$ has a unique graph *G* with H = L(G). We call *G* the preimage graph of *H*. Ryjáček [16] defined the closure cl(H) of a claw-free graph *H* to be one obtained by recursively adding edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of *H* as long as this is possible, and *H* is said to be *closed* if H = cl(H).

Theorem 2.1. (*Ryjáček* [16]). Let *H* be a claw-free graph and cl(*H*) its closure. Then (a) cl(*H*) is well defined, and $\kappa(cl(H)) \ge \kappa(H)$; (b) there is a K₃-free simple graph *G* such that cl(*H*) = L(*G*); (c) for every cycle C_0 in L(*G*), there exists a cycle *C* in *H* with $V(C_0) \subseteq V(C)$.

Let *P* be the Petersen graph. Let Φ_a and Φ_b be two connected K_3 -free simple graphs. Let $P(\Phi_a, \Phi_b)$ be an essentially 3-edge-connected K_3 -free simple graph obtained from *P* by replacing a vertex v_a in *P* by Φ_a and replacing a vertex v_b in *P* by Φ_b , and by adding at least r > 0 pendant edges at each vertex of $V(P) - \{v_a, v_b\}$ and subdividing *m* edges of *P* for $m = 0, 1, \dots, 15$.

Let Π_a and Π_b be two families of K_3 -free graphs. Define $\mathcal{P}(\Pi_a, \Pi_b)$ be the family of graphs below: $\mathcal{P}(\Pi_a, \Pi_b) = \{G \mid G = P(\Phi_a, \Phi_b) \text{ where } \Phi_a \in \Pi_a \text{ and } \Phi_b \in \Pi_b \}$ (see Fig. 2.1. for examples).

Here is a list of families of K_3 -free graphs that will be used for Π_a or Π_b .

- Let $\mathcal{K}_{1,r}$ be the family of stars $K_{1,r}$ with $r \ge 1$ edges.
- Let $\mathcal{K}_{2,r}$ be the family of spanning connected subgraphs of $K_{2,r}$ for some $r \ge 2$.
- Let Q_t be the family of K_3 -free connected simple graphs G with $\alpha'(G) = t$.

Note that $K_{t,s} \in Q_t$ for $t \le s$ and $\mathcal{K}_{t,s} = Q_t$ for $t \in \{1, 2\}$ and $s \ge t$ (see Proposition 3.3).

For essentially 3-edge-connected K_3 -free simple graphs, we define the following families:

- $\mathcal{P}_1 = \mathcal{P}(\mathcal{K}_{1,r}, \mathcal{K}_{1,r}).$
- $\mathcal{P}_2 = \mathcal{P}(\mathcal{K}_{2,r}, \mathcal{K}_{1,r}).$
- $\mathcal{P}_3 = \mathcal{P}(Q_3, \mathcal{K}_{1,r}).$
- $\mathcal{P}_4 = \mathcal{P}(\mathcal{K}_{2,r}, \mathcal{K}_{2,r}).$
- $\mathcal{P}_5 = \mathcal{P}(\mathcal{Q}_4, \mathcal{K}_{1,r}).$
- $\mathcal{P}_6 = \mathcal{P}(Q_3, \mathcal{K}_{2,r}).$

For each *i* $(1 \le i \le 6)$, we define a family \mathcal{F}_i of 3-connected claw-free graphs according to \mathcal{P}_i : $\mathcal{F}_i = \{H : H \text{ is a 3-connected claw-free graph with } cl(H) = L(G) \text{ and } G \in \mathcal{P}_i\}.$

Here is our main result.

Theorem 2.2. Let *H* be a 3-connected claw-free simple graph of order *n* with $\delta(H) \ge 16$.

- (a) Either $c(H) \ge \min\{10\delta(H) 3, n\}$ or $H \in \mathcal{F}_1$.
- (b) Either $c(H) \ge \min\{11\delta(H) 7, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2$.
- (c) Either $c(H) \ge \min\{11\delta(H) 3, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$.
- (d) Either $c(H) \ge \min\{12\delta(H) 10, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3 \cup \mathcal{F}_4$.
- (e) If $\delta(H) \ge 23$, then either $c(H) \ge \min\{12\delta(H) 7, n\}$ or $H \in \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3 \cup \mathcal{F}_4 \cup \mathcal{F}_5$.

The theorem below shows a relationship between DCTs and Hamiltonian cycles.

Theorem 2.3. (Harary and Nash-Williams [9]). The line graph H = L(G) of a graph G with at least three edges is Hamiltonian if and only if G has a DCT.

For a graph G, define

$$\overline{\sigma}_2(G) = \min\{d_G(u) + d_G(v) \mid \text{for every edge } uv \in E(G)\}.$$
(1)

If cl(H) = L(G) is k-connected and L(G) is not complete, then G is essentially k-edge-connected and $\delta(cl(H)) = \min\{d_G(x) + d_G(y) - 2 \mid xy \in E(G)\}$. Thus, $\overline{\sigma}_2(G) = \delta(cl(H)) + 2 \ge \delta(H) + 2$.

By Theorems 2.1 and 2.3, to prove Theorem 2.2, it suffices to show the following.

Theorem 2.4. Let G be an essentially 3-edge-connected K_3 -free simple graph with |E(G)| = n and $\overline{\sigma}_2(G) \ge 18$.

- (a) Either G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{10\overline{\sigma}_2(G) 23, n\}$ or $G \in \mathcal{P}_1$.
- (b) Either G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{11\overline{\sigma}_2(G) 29, n\}$ or $G \in \mathcal{P}_1 \cup \mathcal{P}_2$.
- (c) Either G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{11\overline{\sigma}_2(G) 25, n\}$ or $G \in \mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3$.
- (d) Either G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{12\overline{\sigma}_2(G) 34, n\}$ or $G \in \bigcup_{i=1}^4 \mathcal{P}_i$.
- (e) If $\overline{\sigma}_2(G) \ge 25$, then either G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{12\overline{\sigma}_2(G) 31, n\}$ or $G \in \bigcup_{i=1}^5 \mathcal{P}_i$.

With Theorem 2.4 we can prove Theorem 2.2.

Proof of Theorem 2.2. We prove the case (a) only. The other cases can be proved in the same way.

Let *H* be a 3-connected claw-free simple graph of order *n* with $\delta(H) \ge 16$ and cl(H) its closure. By Theorem 2.1, cl(H) is 3-connected and there is a K_3 -free simple graph *G* such that cl(H) = L(G). Then *G* is essentially 3-edge-connected and has size |E(G)| = n and $\overline{\sigma}_2(G) = \delta(cl(H)) + 2 \ge \delta(H) + 2 \ge 18$. By Theorem 2.4, one of the following holds.

Case 1. *G* has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{10\overline{\sigma}_2(G) - 23, n\}$.

Let $H_1 = L(\Theta)$, the line graph of Θ . Then H_1 is a subgraph of L(G) = cl(H) and $V(H_1) \subseteq V(cl(H)) = V(H)$ and $|V(H_1)| = |E(\Theta)|$. Since Θ has a DCT, by Theorem 2.3, H_1 has a Hamiltonian cycle C_0 , which is a cycle with length $|E(\Theta)|$ in L(G). By Theorem 2.1, there is a cycle C in H such that $V(C_0) \subseteq V(C)$. Therefore, since $\overline{\sigma}_2(G) \ge \delta(H) + 2$, $c(H) \ge |V(C)| \ge |V(C_0)| = |E(\Theta)| \ge \min\{10\overline{\sigma}_2(G) - 23, n\} \ge \min\{10\delta(H) - 3, n\}$.

Case 2. $G \in \mathcal{P}_1$. Then $H \in \mathcal{F}_1$. This proves Theorem 2.2(a).

Remark 2.5. For a claw-free graph H, no matter whether H is regular or not, its closure cl(H) can be obtained in polynomial time [16] and the preimage graph G of a line graph L(G) can be obtained in linear time [15]. Thus, we can compute G efficiently for cl(H) = L(G). Theorems 2.2 and 2.4 show that the lower bound of c(H) of a 3-connected claw-free graph H with cl(H) = L(G) can be obtained by checking if the graph G is in \mathcal{P}_i for some i. Since the size of a maximum matching of a graph can be determined in polynomial time, one can find the expected lower bound of c(H) by checking if the graph G is in \mathcal{P}_i in polynomial time.

Fig. 2.1: Graphs in $\mathcal{P}_2, \mathcal{P}_3, \mathcal{P}_5$ and $\mathcal{P}(\Pi_a, \Pi_b)$, respectively.

Remark 2.6. For the graphs in Fig. 2.1, each vertex marked by \bigcirc is incident with r > 0 pendant edges. Each of them has a DCT subgraph Θ that contains all the edges except r pendant edges incident with a \bigcirc vertex. Thus, Theorem 2.2 and Theorem 2.4 are the best possible in some sense.

(a) Graph G_a is a graph of order n = 11r + 17 in \mathcal{P}_2 that has a DCT subgraph Θ_a with $|E(\Theta_a)| = 10r + 17 = 10\overline{\sigma}_2(G_a) - 23$ where $\overline{\sigma}_2(G_a) = r + 4$. Then $H_a = L(G_a)$ has $c(H_a) = 10\delta(H_a) - 3$.

(b) Graph G_b is a graph in \mathcal{P}_3 with $\overline{\sigma}_2(G_b) = r + 4$ and has a DCT subgraph Θ_b with $|E(\Theta_b)| = 11r + 15 = 11\overline{\sigma}_2(G_b) - 29$. Then $H_b = L(G_b)$ has $c(H_b) = 11\delta(H_b) - 7$.

(c) For graph G_c in Fig. 2.1(c), edge yz is deleted from $K_{4,r}$ ($r \ge 4$), and y and z are incident with two of the three edges connecting $K_{4,r} - yz$ and $G_c - V(K_{4,r} - yz)$. Then G_c is in \mathcal{P}_5 with $\overline{\sigma}_2(G_c) = 4 + r$ and has a DCT subgraph Θ_c with $|E(\Theta_c)| = 12\overline{\sigma}_2(G_c) - 34$. Then $H_c = L(G_c)$ has $c(H_c) = 12\delta(H_c) - 10$. (d) Let $G_d = P(K_{2,r+1}K_{2,r+1})$ (Fig. 2.1(d) with $\Phi_a = \Phi_b = K_{2,r+1}$). Then $G_d \in \mathcal{P}_4$ with $\overline{\sigma}_2(G_d) = r + 4$ and has a DCT subgraph Θ_d with $|E(\Theta_d)| = 11\overline{\sigma}_2(G_d) - 25$. Then $H_d = L(G_d)$ has $c(H_d) = 11\delta(H_d) - 3$. (e) Let $G_e = P(K_{3,r}, K_{2,r+1})$ (Fig 2.1(d) with $\Phi_a = K_{3,r}$ and $\Phi_b = K_{2,r+1}$). Then $G_e \in \mathcal{P}_6$ and has a DCT subgraph Θ_e with $|E(\Theta_e)| = 12\overline{\sigma}_2(G_e) - 31$. Then $H_e = L(G_e)$ has $c(H_e) = 12\delta(H_e) - 7$.

The following corollary of Theorem 2.2 is an improvement of a main result in [10].

Corollary 2.7. If *H* is a 3-connected claw-free simple graph of order $n \ge 148$ and if $\delta(H) \ge \frac{n+3}{10}$, then either *H* is Hamiltonian, or $H \in \mathcal{F}_1$.

Proof. Since $n \ge 148$ and $\delta(H) \ge \frac{n+3}{10} > 15$, $\delta(H) \ge 16$ and $10\delta(H) - 3 \ge n$. By Theorem 2.2, either *H* has $c(H) \ge n$ and so *H* is Hamiltonian, or $H \in \mathcal{F}_1$.

Remark 2.8. Lai, et al., in [10] prove Corollary 2.7 for $n \ge 196$ and $\delta(H) \ge \frac{n+5}{10}$. More results on conditions involved δ for the Hamiltonicity of 3-connected claw-free graphs can be found in [8, 12].

3 Graph contraction and Catlin's reduction method

Let *G* be a connected multigraph. For $X \subseteq E(G)$, the *contraction* G/X is the multigraph obtained from *G* by identifying the two ends of each edge $e \in X$ and deleting the resulting loops. Note that multiple edges may arise by the identification even *G* is a simple graph. If Γ is a connected subgraph of *G*, we write G/Γ for $G/E(\Gamma)$ and say that G/Γ is obtained from *G* by contracting Γ .

Let *G* and *G*_T be two connected graphs. We say that *G* is *contractible* to *G*_T if *G*_T is a graph obtained from *G* by successively contracting a collection of pairwise vertex disjoint connected subgraphs, and call *G*_T the *contraction graph* of *G*. For a vertex $v \in V(G_T)$, there is a connected subgraph *G*(*v*) in *G* such that *v* is obtained by contracting *G*(*v*). We call *G*(*v*) the preimage of *v* in *G* and call *v* the contraction image of *G*(*v*) in *G*_T.

Let O(G) be the set of vertices of odd degree in *G*. A graph *G* is *collapsible* if for every even subset $R \subseteq V(G)$, there is a spanning connected subgraph Γ_R of *G* with $O(\Gamma_R) = R$. Note that if $R = \{x, y\}$ then Γ_R is a spanning (x, y)-trail; and if $R = \emptyset$ then Γ_R is an SCT in *G*.

Catlin [2] showed that every multigraph *G* has a unique collection of pairwise disjoint maximal collapsible subgraphs $\Gamma_1, \Gamma_2, \dots, \Gamma_c$ such that $V(G) = \bigcup_{i=1}^c V(\Gamma_i)$. The *reduction* of *G* is a graph obtained from *G* by contracting each Γ_i into a vertex v_i ($1 \le i \le c$) and is denoted by *G'*. Thus, the reduction *G'* of *G* is a special type of contraction graph of *G*. Although multiple edges may arise by contracting an edge, contracting a maximal collapsible graph will not generate multiple edges.

We regard the edges in E(G') as the edges in E(G). Thus, $E(G) = E(G') \cup_{i=1}^{c} E(\Gamma_i)$. For a vertex $v \in V(G')$, there is a unique maximal collapsible subgraph $\Gamma_0(v)$ in G such that v is the contraction image of $\Gamma_0(v)$ and $\Gamma_0(v)$ is the *preimage* of v. A vertex $v \in V(G')$ is a *contracted vertex* if $\Gamma_0(v) \neq K_1$. A graph is *reduced* if G = G'. We regard K_1 as a closed trail with $\kappa'(K_1) = \infty$.

Let G be a connected simple graph. Define

$$D_i(G) = \{ v \in V(G) \mid d_G(v) = i \}; D_i^*(G) = \{ v \in V(G) \mid d_G(v) \ge i \}.$$

Some results on Catlin's reduction method that will be needed are summarized below:

Theorem 3.1. Let G be a connected multigraph and let G' be the reduction of G. Let Γ be a collapsible subgraph in G. Then each of the following holds:

- (a) ([2]). $G \in SL$ if and only if $G/\Gamma \in SL$. In particular, $G \in SL$ if and only if $G' \in SL$.
- (b) ([2]). G has a DCT (or DT) if and only if G' has a DCT (or a DT) containing all the contracted vertices of G'.
- (c) ([2, 3]). G' is simple and K_3 -free with $\delta(G') \leq 3$, and any subgraph of G' is reduced. Furthermore, if $G' \notin \{K_1, K_2, K_{2,s}\}$ ($s \geq 2$), then $|E(G')| \leq 2|V(G')| 5$.
- (d) ([6]). If $G \neq K_1$ is reduced with $|V(G)| \le 7$ and $\kappa'(G) \ge 2$, then $|D_2(G)| \ge 3$. Furthermore, if $|D_2(G)| = 3$, then $G \in \{K_{2,3}, K_{1,3}(1, 1, 1), J'(1, 1)\}$ (see Fig 3.1).
- (e) ([5]). Let G be a connected reduced graph of order n with $\delta(G) \ge 2$ and $G \ne K_{2,b}$ ($b \ge 2$). Let M be a maximum matching in G and $|D_2(G)| = l$. Then $|M| \ge \min\{\frac{n-1}{2}, \frac{n+5-l}{3}\}$.

Fig. 3.1: Two reduced graphs G of order 7 with $|D_2(G)| = 3$.

Let *G* be an essentially 3-edge-connected simple graph. Then $D_1(G) \cup D_2(G)$ is an independent set. Let E_1 be the set of pendant edges in *G*. For each $x \in D_2(G)$, there are two edges e_x^1 and e_x^2 incident with *x*. Let $X_2(G) = \{e_x^1 | x \in D_2(G)\}$. Thus $|X_2(G)| = |D_2(G)|$. Define

$$G_1 = G/E_1$$
 and $G_0 = G_1/X_2(G)$.

Since G is essentially 3-edge-connected, G_1 is essentially 3-edge-connected and 2-edge-connected, and G_0 is 3-edge-connected.

In [17], Shao defined G_0 for essentially 3-edge-connected graphs G and called G_0 the **core** of G. Although G is simple, G_0 may not be simple. But by Theorem 3.1, G'_0 is simple and K_3 -free.

For a vertex $v \in V(G'_0)$, let $\Gamma_0(v)$ be the collapsible preimage of v in G_0 , let $\Gamma_1(v)$ be the preimage of v in G_1 and let $\Gamma(v)$ be the preimage of v in G. Then $\Gamma(v)$ is a subgraph induced by $E(\Gamma_0(v))$ and some edges in $E_1 \cup X_2(G)$. By the definitions, we have the following:

- (a) $\Gamma_1(v) = \Gamma(v)/(E_1 \cap E(\Gamma(v)))$ (it is still K_3 -free);
- (b) $\Gamma_0(v) = \Gamma_1(v)/(X_2(G) \cap E(\Gamma_1(v)))$ (it may not be K_3 -free).

A vertex $v \in V(G'_0)$ (or $V(G_0)$) is a *contracted* vertex if $|V(\Gamma(v))| > 1$. A vertex $v \in V(G'_0)$ (or $V(G_0)$) is *nontrivial* in G'_0 (or in G_0) if $|V(\Gamma(v))| > 1$ or $|V(\Gamma(v))| = 1$ and v is adjacent to a vertex in $D_2(G)$. A vertex v in G'_0 is *trivial* if $d_{G'_0}(v) = d_G(v)$ and v is not adjacent to a vertex in $D_2(G)$. For instance, if $x \in D_2(G)$ with $N_G(x) = \{u, v\}$, and if u_x is a vertex in G_0 obtained by contracting ux, then both u_x and v are nontrivial in G_0 but u_x is a contracted vertex and v is not a contracted vertex in G_0 .

Using Theorem 3.1(b), Shao [17] proved the following:

Theorem 3.2. ([17]). Let G be an essentially 3-edge-connected graph and L(G) is not complete. Let G_0 be the core of graph G, and let G'_0 be the reduction of G_0 , then the following holds: (a) G_0 is well defined, nontrivial and $\delta(G_0) = \kappa'(G_0) \ge 3$ and so $\kappa'(G'_0) \ge \kappa'(G_0) \ge 3$;

(b) G has a DCT if and only if G'_0 has a DCT containing all the nontrivial vertices in G'_0 .

Let G_T be a contraction graph of G. Let v be a vertex in G_T and let G(v) be the preimage of v in G. Let $\Theta(v)$ be a connected subgraph of G(v). Define

$$\mathcal{E}_{G(v)}(\Theta(v)) = \{ e \in E(G(v)) \mid e \text{ is incident with some vertices in } \Theta(v) \}.$$
(2)

For a vertex $x \in V(G(v))$, let i(x) be the number of edges in $E(G_T)$ incident with x in G (see Fig. 3.2). For a vertex subset $S \subseteq V(G(v))$, let $i(S) = \sum_{x \in S} i(x)$, which is the number of edges in $E(G_T)$ that are incident with some vertices in S. When $\Theta(v)$ is a subgraph of G(v), we use $i(\Theta(v))$ for $i(V(\Theta(v)))$. Then for any $x \in V(\Theta(v)) \subseteq V(G(v))$,

$$d_G(x) = i(x) + |N_{G(v)}(x)| = i(x) + d_{G(v)}(x) \quad \text{and} \quad i(x) \le \sum_{w \in V(\Theta(v))} i(w) = i(\Theta(v)) \le d_{G_T}(v).$$
(3)

When $G_T = G'_0$ and $G(v) = \Gamma(v)$ with a subgraph $\Theta(v)$, $i(x) \le i(\Theta(v)) \le d_{G'_0}(v)$ (See Fig. 3.2).

Fig. 3.2. Description of edges and vertices in G'_0 and G that are related to i(x) and $i(\Theta(v))$

Proposition 3.3. Let G be an essentially 3-edge-connected K_3 -free simple graph with $\overline{\sigma}_2(G) \ge 7$. Let G_T be the contraction graph of G. For a vertex $v \in V(G_T)$ with $d_{G_T}(v) = 3$, let $E_{G_T}(v)$ be the set of the three edges incident with v in G_T and let G(v) be the preimage of v in G. If $\alpha'(G(v)) \in \{1, 2\}$, then for any two edges in $E_{G_T}(v)$, G(v) has a dominating (x, y)-trail T_v where x, y are incident with the two edges and that each of the following holds:

(a) if $\alpha'(G(v)) = 1$, then $G(v) \in \mathcal{K}_{1,r}$ and $|E(G(v))| = |\mathcal{E}_{G(v)}(T_v)| \ge \overline{\sigma}_2(G) - 4$;

(b) if $\alpha'(G(v)) = 2$, then $G(v) \in \mathcal{K}_{2,r}$ and $|E(G(v))| = |\mathcal{E}_{G(v)}(T_v)| \ge 2\overline{\sigma}_2(G) - 3 - i(T_v)$.

Proof. If $\alpha'(G(v)) = 1$, then since *G* is essentially 3-edge-connected, K_3 -free and simple, $G(v) = K_{1,r}$. Then $T_v = K_1$. Let $V(T_v) = \{x\}$. Then $|E(G(v))| = |\mathcal{E}_{G(v)}(T_v)| = |N_{G(v)}(x)| = r$ and $i(x) = d_{G_T}(v) = 3$. Let *xy* be an edge in E(G(v)) with $d_{G(v)}(x) = r$ and $d_G(y) = 1$. Since $d_G(x) = d_{G(v)}(x) + i(x) = r + 3$ and $d_G(x) + d_G(y) \ge \overline{\sigma}_2(G)$, $r \ge \overline{\sigma}_2(G) - 4$ and (a) is proved.

Next, we assume that $\alpha'(G(v)) = 2$. Then G(v) has a cycle. Let $C_s = u_1 u_2 \cdots u_s u_1$ be a cycle in G(v). Since G(v) is simple and K_3 -free and $\alpha'(G(v)) = 2, 4 \le s \le 5$.

Note that $E_{G_T}(v)$ is the set of edges outside of G(v) incident with some vertices in G(v). Since $|E_{G_T}(v)| = 3$ and $|V(C_s)| = s \ge 4$, a vertex (say u_1) in $V(C_s)$ is not incident with any edge in $E_{G_T}(v)$. Then $d_G(u_1) = d_{G(v)}(u_1)$. Since G is an essentially 3-edge-connected K_3 -free simple graph and $\alpha'(G(v)) = 2$, $N_G(u_1) = N_{G(v)}(u_1) = \{u_2, u_s\}$ and $d_G(u_1) = 2$.

Since $i(u_2)+i(u_s) \le d_{G_T}(v) = 3$, we may assume that $i(u_2) \le 1$. Since $\overline{\sigma}_2(G) \ge 7$, $d_G(u_2) \ge \overline{\sigma}_2(G) - d_G(u_1) \ge \overline{\sigma}_2(G) - 2 \ge 5$. Then $|N_{G(v)}(u_2)| = d_{G(v)}(u_2) = d_G(u_2) - i(u_2) \ge 4$. Let $z \in N_{G(v)}(u_2) - V(C_s)$. If s = 5, then $\{u_1u_5, u_2z, u_3u_4\}$ is a matching in G(v), a contradiction. Thus s = 5 is impossible.

Hence, s = 4. If there is a vertex z_1 in $N_{G(v)}(u_3) - \{u_2, u_4\}$, then $\{u_1u_4, zu_2, z_1u_3\}$ is a matching in G(v), a contradiction. Thus, $N_{G(v)}(u_3) = \{u_2, u_4\}$.

Let $X = \{u_2, u_4\}$ and $Y = N_{G(v)}(u_2) \cup N_{G(v)}(u_4)$. Then since G is K_3 -free, $G(v) \in \mathcal{K}_{2,r}$ with $V(G(v)) = X \cup Y$. Since $d_G(u_1) = 2$, only u_2, u_3 and u_4 are the possible nontrivial vertices in G(v) and may be incident with the edges in $E_{G_T}(v)$. By inspection, for any given two edges in $E_{G_T}(v)$, G(v) has a dominating (x, y)-trail T_v containing all the nontrivial vertices of G(v) where x and y are incident with the two given edges. Thus, $i(T_v) \ge 2$ and $\{u_2, u_4\} \subseteq V(T_v)$. Next, we shall prove that $|\mathcal{E}_{G(v)}(T_v)| \ge 2\overline{\sigma_2}(G) - 3 - i(T_v)$.

Since
$$\{u_2, u_4\} \subseteq V(T_v)$$
 and $E_{G(v)}(u_2) \cap E_{G(v)}(u_4) = \emptyset$, $E_{G(v)}(u_2) \cup E_{G(v)}(u_4) \subseteq \mathcal{E}_{G(v)}(T_v)$ and

$$|\mathcal{E}_{G(v)}(T_v)| \geq |E_{G(v)}(u_2)| + |E_{G(v)}(u_4)| = d_{G(v)}(u_2) + d_{G(v)}(u_4).$$
(4)

For $u \in \{u_2, u_4\}$ and a vertex $w \in N_{G(v)}(u)$, since $d_G(w) + d_G(u) \ge \overline{\sigma}_2(G)$, by (3),

$$d_{G(v)}(u) = d_G(u) - i(u) \ge \overline{\sigma}_2(G) - d_G(w) - i(u).$$
(5)

For each $z \in N_{G(v)}(u)$ where $u \in \{u_2, u_4\}$, since *G* is K_3 -free and $\alpha'(G(v)) = 2$, $N_{G(v)}(z) \subseteq \{u_2, u_4\}$, and either $d_{G(v)}(z) = 1$ or $d_{G(v)}(z) = 2$.

Case 1. There is a vertex z in $N_{G(v)}(u)$ where $u \in \{u_2, u_4\}$ (say $u = u_2$) such that $d_{G(v)}(z) = 1$. We have the following two sub cases:

Subcase 1.1. $d_G(z) = d_{G(v)}(z) = 1$. Then zu_2 is a pendant edge. By (5) with $u = u_2$ and w = z, $d_{G(v)}(u_2) \ge \overline{\sigma}_2(G) - 1 - i(u_2)$. Since $u_1 \in N_{G(v)}(u_4)$ and $d_G(u_1) = 2$, by (5) with $u = u_4$ and $w = u_1$, $d_{G(v)}(u_4) \ge \overline{\sigma}_2(G) - 2 - i(u_4)$. By (4) and $i(u_2) + i(u_4) \le i(T_v)$,

$$|\mathcal{E}_{G(v)}(T_v)| \ge d_{G(v)}(u_2) + d_{G(v)}(u_4) \ge (\overline{\sigma}_2(G) - 1 - i(u_2)) + (\overline{\sigma}_2(G) - 2 - i(u_4)) \ge 2\overline{\sigma}_2(G) - 3 - i(T_v).$$

In the following, we assume that no vertices in $V(C_4)$ are incident with a pendant edge in *G*. Subcase 1.2. $d_{G(v)}(z) = 1$ and $d_G(z) \neq 1$.

Since G is essentially 3-edge-connected and $\alpha'(G(v)) = 2$, z must be incident with an edge in $E_{G_T}(v) \cap X_2(G)$ and $d_G(z) = 2$ and i(z) = 1.

Let Z_i be the set of vertices in $N_{G(v)}(u_i)$ that are incident with an edge in $E_{G_T}(v) \cap X_2(G)$ (i = 2, 4). Then $|Z_2| + |Z_4| \ge i(z) = 1$ and $|Z_2| + i(u_2) + |Z_4| + i(u_4) \le d_{G_T}(v) = 3$. Without loss of generality, we assume that $|Z_2| + i(u_2) \le 1$.

Let $W = N_{G(v)}(u_2) \cap N_{G(v)}(u_4)$. Then $|N_{G(v)}(u_i)| = |W| + |Z_i|$ and $|N_G(u_i)| = |N_{G(v)}(u_i)| + i(u_i)$ for $i \in \{2, 4\}$. By (5) with $u = u_2$ and $w = u_1$, $d_{G(v)}(u_2) \ge \overline{\sigma}_2(G) - 2 - i(u_2)$. Hence, $|W| \ge \overline{\sigma}_2(G) - 2 - |Z_2| - i(u_2)$. Then by (4) and $2(|Z_2| + i(u_2)) \le 2 \le i(T_v)$,

$$\begin{split} |\mathcal{E}_{G(v)}(T_v)| &\geq |N_{G(v)}(u_2)| + |N_{G(v)}(u_4)| = 2|W| + |Z_2| + |Z_4| \geq 2|W| + 1 \\ &\geq 2(\overline{\sigma}_2(G) - 2 - |Z_2| - i(u_2)) + 1 = 2\overline{\sigma}_2(G) - 3 - 2(|Z_2| + i(u_2)) \geq 2\overline{\sigma}_2(G) - 3 - i(T_v). \end{split}$$

We are done for this case.

Case 2. For any *z* in $N_{G(v)}(u_2) \cup N_{G(v)}(u_4)$, $d_{G(v)}(z) = 2$.

Then $N_{G(v)}(z) = \{u_2, u_4\}$ and $N_{G(v)}(u_2) = N_{G(v)}(u_4)$. We have a T_v trail containing the vertices that are incident with the three edges in $E_{G_T}(v)$. Thus, $i(u_2) + i(u_4) \le i(T_v) = 3$. We assume $i(u_2) \le 1$.

By (5) with $u \in \{u_2, u_4\}$ and $w = u_1$, and by $i(u_2) \le 1$ and $d_G(u_1) = 2$, $d_{G(v)}(u_2) = d_G(u_2) - i(u_2) \ge \overline{\sigma}_2(G) - d_G(u_1) - 1 = \overline{\sigma}_2(G) - 2 - i(u_2)$. Therefore, by (4) and $2i(u_2) + 1 \le 3 = i(T_v)$,

$$\begin{aligned} |\mathcal{E}_{G(v)}(T_v)| &\geq |E_{G(v)}(u_2)| + |E_{G(v)}(u_4)| = |N_{G(v)}(u_2)| + |N_{G(v)}(u_4)| = 2|N_{G(v)}(u_2)| \\ &\geq 2(\overline{\sigma}_2(G) - 2 - i(u_2)) = 2\overline{\sigma}_2(G) - 3 - (1 + 2i(u_2)) \geq 2\overline{\sigma}_2(G) - 3 - i(T_v). \end{aligned}$$

The proof is complete.

4 Associated Theorems and the proof of Theorem **2.4**

The following theorem plays an important role in our approach to prove Theorem 2.4.

Theorem 4.1. ([7]). Let G be a 3-edge-connected simple graph. Let $S \subseteq V(G)$ be a vertex subset with $|S| \leq 12$. Then either G has a closed trail C such that $S \subseteq V(C)$, or G can be contracted to P in such a way that the preimage of each vertex of P contains at least one vertex in S.

We shall choose a subset S of $V(G'_0)$ that allow us to find a DCT subgraph in G with large size according to whether G'_0 is contractible to the Petersen graph or G'_0 has a closed trail containing S.

Let G be an essentially 3-edge-connected K_3 -free graph. We will use the following notation:

- $S_0 = \{v \in V(G'_0) \mid v \text{ is a contracted vertex in } G'_0, \text{ i.e., } \Gamma(v) \neq K_1\};$
- $S_1 = V(G'_0) S_0$, (then $d_G(v) = d_{G_0}(v) = d_{G'_0}(v)$ if $v \in S_1$);
- $S_1^* = \{v \in S_1 D_3(G'_0) \mid d_{G'_0}(v) \ge \overline{\sigma}_2(G) 3\};$
- $S_2 = V(G'_0) (S_0 \cup S_1^*);$
- $\Phi = G'_0[S_2]$, the subgraph induced by S_2 in G'_0 ;
- let M_{Φ} be a maximum matching in Φ and let S_M be the set of end vertices of the edges in M_{Φ} ;
- let $S_3 = V(G'_0) (S_0 \cup S_1^* \cup S_M)$, and so $S_3 = V(\Phi) S_M = S_2 S_M$;
- let $V_a = S_0 \cup S_1^* \cup S_M$.

Theorem 2.4 can be proved by establishing the following two associated theorems.

Theorem 4.2. Let G be an essentially 3-edge-connected K_3 -free simple graph with |E(G)| = n. Let G'_0 be the reduction of G_0 . Suppose that $G'_0 \notin SL \cup \{P\}$ and G'_0 can not be contracted to P in such a way that the preimage of each vertex in P contains at least one vertex in V_a . Then each of the following holds:

- (a) if $\overline{\sigma}_2(G) \ge 18$, then G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{12\overline{\sigma}_2(G) 34, n\}$;
- (b) if $\overline{\sigma}_2(G) \ge 25$, then G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{12\overline{\sigma}_2(G) 31, n\}$.

Theorem 4.3. Let G be an essentially 3-edge-connected K_3 -free simple graph with |E(G)| = n and $\overline{\sigma}_2(G) \ge 8$. Let G'_0 be the reduction of G_0 . Let V_a be the set defined above. If $G'_0 = P$ or G'_0 can be contracted to P in such a way that the preimage of each vertex in P contains at least one vertex in V_a , then each of the following holds:

- (a) either G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{10\overline{\sigma}_2(G) 23, n\}$ or $G \in \mathcal{P}_1$;
- (b) either G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{11\overline{\sigma}_2(G) 29, n\}$ or $G \in \mathcal{P}_1 \cup \mathcal{P}_2$;
- (c) if $\overline{\sigma}_2(G) \ge 9$, then either G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{11\overline{\sigma}_2(G) 25, n\}$ or $G \in \bigcup_{i=1}^3 \mathcal{P}_i$;
- (d) either G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{12\overline{\sigma}_2(G) 34, n\}$ or $G \in \bigcup_{i=1}^4 \mathcal{P}_i$;
- (e) if $\overline{\sigma}_2(G) \ge 12$, then either G has a DCT subgraph Θ with $|E(\Theta)| \ge \min\{12\overline{\sigma}_2(G) 31, n\}$ or $G \in \bigcup_{i=1}^5 \mathcal{P}_i$.

With Theorems 4.3 and 4.2 we can prove Theorem 2.4.

Proof of Theorem 2.4. By Theorem 3.2, G_0 and G'_0 are 3-edge-connected. If $G'_0 \in SL$, then by Theorem 3.1, $G_0 \in SL$. By Theorem 3.2, G has a DCT. Theorem 2.4 is proved for this case.

Next, we assume that $G'_0 \notin \mathcal{SL}$. Let $V_a = S_0 \cup S_1^* \cup S_M$ be the subset of $V(G'_0)$ defined above.

If $G'_0 = P$ or G'_0 can be contracted to P in the way stated in Theorem 4.3, then Theorem 2.4 follows from Theorem 4.3. Otherwise, Theorem 2.4 follows from Theorem 4.2.

5 Technical lemmas

The following lemma will be needed which can be proved easily and a proof can be found in [4].

Lemma 5.1 ([4]). Let G be a 2-edge-connected graph. Let $\{x, y, z\}$ be a set of vertices in G (possibly x = y or x = z). Then for any two vertices (say x and y) in $\{x, y, z\}$, G has a (x, y)-trail containing z.

Lemma 5.2. Let G be a connected K_3 -free simple graph. Let G_T be a contraction graph of G. For a vertex $v \in V(G_T)$, let G(v) be the preimage of v in G and let M be a matching of size t in G(v). Let $\Theta(v)$ be a connected subgraph of G(v) and $\mathcal{E}_{G(v)}(\Theta(v))$ contains all the edges of M. Then

$$|\mathcal{E}_{G(\nu)}(\Theta(\nu))| \ge t\overline{\sigma}_2(G) - t^2 - i(\Theta(\nu)) \ge t\overline{\sigma}_2(G) - t^2 - d_{G_T}(\nu).$$
(6)

Furthermore, each of the following holds:

- (a) if $G_T = G'_0$ and M is a matching of size $t \ge 3$ in G(v) and all the edges in M are in G'_0 , then $|\mathcal{E}_{G(v)}(\Theta(v))| \ge t\overline{\sigma}_2(G) 4t + 5 i(\Theta(v));$
- (b) if $\Theta(v)$ is a connected dominating subgraph of G(v) with $i(\Theta(v)) \ge 2$, $d_{G_T}(v) \ge 3$ and $t = \alpha'(G(v)) \ge 4$, then $|\mathcal{E}_{G(v)}(\Theta(v))| \ge t\overline{\sigma}_2(G) t^2 i(\Theta(v)) + 2$.

Proof. Let $M = \{y_1z_1, y_2z_2, \dots, y_tz_t\}$ be a matching in G(v) such that $\mathcal{E}_{G(v)}(\Theta(v))$ contains all the edges in M. Let $Y = \{y_1, \dots, y_t\}$ and $Z = \{z_1, \dots, z_t\}$ and let $G_M = G[Y \cup Z]$. Note that each edge in G_M occurs in exactly two of the edge sets of $\{E_G(y_i), E_G(z_i) \mid 1 \le i \le t\}$. Thus,

$$\sum_{i=1}^{t} (|E_G(y_i)| + |E_G(z_i)|) - |E(G_M)| \le |\bigcup_{i=1}^{t} (E_G(y_i) \cup E_G(z_i))|.$$
(7)

Let $E_{G_T}(v)$ be the set of edges in E(G) - E(G(v)) incident with some vertices in $\Theta(v)$. Let $A(v) = E_{G_T}(v) \cap \left(\bigcup_{i=1}^t (E_G(y_i) \cup E_G(z_i))\right)$. Then $\bigcup_{i=1}^t (E_G(y_i) \cup E_G(z_i)) \subseteq A(v) \cup \mathcal{E}_{G(v)}(\Theta(v))$ and $|A(v)| = i(\Theta(v))$. Since $d_G(y_i) + d_G(z_i) \ge \overline{\sigma}_2(G)$, by (7),

$$t\overline{\sigma}_{2}(G) - |E(G_{M})| \leq \sum_{i=1}^{l} (|E_{G}(y_{i})| + |E_{G}(z_{i})|) - |E(G_{M})| \leq i(\Theta(v)) + |\mathcal{E}_{G(v)}(\Theta(v))|.$$
(8)

Now, we need to find $|E(G_M)|$ in terms of t, which is depended on how the edges in M are selected. Since G is K_3 -free simple graph, G_M is K_3 -free and simple. By Turán's Theorem, G_M has at most t^2 edges. Since $|A(v)| = i(\Theta(v)) \le d_{G_T}(v)$ and $|E(G_M)| \le t^2$, (6) follows from (8).

If all the edges in *M* are the edges in G'_0 , we have a better estimate on $|E(G_M)|$ for $t \ge 3$.

Note that we regard $E(G'_0) \subseteq E(G)$. Let $M' = \{y'_1z'_1, y'_2z'_2, \cdots, y'_tz'_t\}$ be a matching in G'_0 , which are the edges in G(v). Let $\Gamma(y'_i)$ and $\Gamma(z'_i)$ be the preimages of y'_i and z'_i ($1 \le i \le t$) in G, respectively. Then for each $y'_iz'_i$ in M', there are y_i in $\Gamma(y'_i)$ and z_i in $\Gamma(z'_i)$ such that y_iz_i is the edge in G corresponding to $y'_iz'_i$ in G'_0 . Thus, $M = \{y_1z_1, y_2z_2, \cdots, y_tz_t\}$ is a matching in G(v). Let $Y' = \{y'_1, \cdots, y'_t\}$ and $Z' = \{z'_1, \cdots, z'_t\}$. Let $G'_{M'} = G'_0[Y' \cup Z']$. Since $y_i \in V(\Gamma(y'_i))$, the number of edges in $E_G(y_i)$ (or $E_G(z_i)$) incident with vertices in $Y \cup Z$ is no more than the number of edges in $E_{G'_0}(y'_i)$ incident with vertices in $Y' \cup Z'$. Thus, $|E(G_M)| \le |E(G'_{M'})|$. Since $G'_{M'}$ is a subgraph of G'_0 , $G'_{M'}$ is reduced. Since $t \ge 3$, $G'_{M'} \notin \{K_1, K_2, K_{2,s}\}$. By Theorem 3.1, $|E(G'_{M'})| \le 2|V(G'_{M'})| - 5 = 4t - 5$. By (8) and $|A(v)| = i(\Theta(v)), |\mathcal{E}_{G(v)}(\Theta(v))| \ge t\overline{\sigma_2}(G) - 4t + 5 - i(\Theta(v))$. Case (a) is proved.

For (b), $\Theta(v)$ is a dominating subgraph of G(v) with $i(\theta(v)) \ge 2$, $d_{G_T}(v) \ge 3$ and $t = \alpha'(G(v)) \ge 4$.

To the contrary, suppose that (b) is false, i.e.,

$$|\mathcal{E}_{G(v)}(\Theta(v))| \le t\overline{\sigma}_2(G) - t^2 - i(\Theta(v)) + 1.$$
(9)

By (8) and (9), $|E(G_M)| \ge t^2 - 1$. We further assume that *M* is a maximum matching in G(v) with $|E(G_M)|$ as small as possible.

Since $|E(G_M)| \ge t^2 - 1$ and $t \ge 4$, the total number of edge incidents in G_M is $\sum_{i=1}^t (d_{G_M}(y_i) + d_{G_M}(z_i)) = 2|E(G_M)| \ge 2t^2 - 2$. At least one vertex in *Y* is adjacent to all the vertices in *Z* (otherwise, we relabel them). Since *G* is K_3 -free, *Z* is an independent set in *G*. Similarly, at least one vertex in *Z* is adjacent to all the vertices in *Y* and so *Y* is an independent set in *G*.

Let $U = V(\Theta(v)) - (Y \cup Z)$. Then we have the following facts:

Claim 1. (a) U is an independent set and so $E_{G(v)}(u_1) \cap E_{G(v)}(u_2) = \emptyset$ for any $u_1 \neq u_2$ in U;

(b) each vertex v in $Y \cup Z$ is adjacent to at most one end of each edge in M and so $d_{G_M}(v) \le t$.

(c) each $u \in U$ is adjacent to one end of each edge in M and so $d_G(u) = t$.

Proof of Claim 1. Since $\Theta(v)$ is a dominating subgraph of G(v), G is K_3 -free and M is a maximum matching in $\Theta(v)$, (a) and (b) are trivially true. Thus, we only need to prove case (c).

To the contrary, suppose that u is not adjacent to either ends of an edge e, say $e = y_1 z_1$.

Since U is independent, each $u \in U$ is only adjacent to vertices in $Y \cup Z$. Furthermore, $u \in U$ is adjacent to at least t - 1 vertices in $Y \cup Z$. Otherwise, if u is only adjacent to at most t - 2 vertices in $Y \cup Z$ (say u is adjacent to y_3), then $M_1 = (M - \{y_3 z_3\}) \cup \{uy_3\}$ is a maximum matching. Since at least two edge-incidents at u are missing, $|E(G_{M_1})| \le t^2 - 2 < |E(G_M)|$, a contradiction.

Thus, *u* is adjacent to one end of each of the edges in $\{y_2z_2, \dots, y_tz_t\}$. We may assume that $uy_2 \in E(G)$ and y_2 is adjacent to all the vertices in *Z*. Since *G* is K_3 -free, *u* cannot adjacent to any vertex in *Z*. Thus, *u* is adjacent to all the vertices in $Y - \{y_1\}$.

If $|E(G_M)| = t^2$, then $M_1 = (M - \{y_2 z_2\}) \cup \{uy_2\}$ is a maximum matching. Since *u* is not adjacent to y_1 and z_1 , $|E(G_{M_1})| < |E(G_M)|$, a contradiction.

If $|E(G_M)| = t^2 - 1$, then a vertex $y \in Y$ is not adjacent to a vertex $z \in Z$. If $y \neq y_1$ (say $y = y_3$), then $M_b = (M - \{y_3z_3\}) \cup \{uy_3\}$ is a maximum matching. Since one edge-incident is missing at u and one edge-incident is missing at y_3 and $uy_3 \in M_b$, $|E(G_{M_b})| < |E(G_M)|$, a contradiction.

If $y = y_1$, the $M_b = (M - \{y_4z_4\}) \cup \{uy_4\}$ is a maximum matching. Again, since one edge-incident is missing at u and one edge-incident is missing at y_4 and $uy_4 \in M_b$, $|E(G_{M_b})| < |E(G_M)|$, a contradiction. We reach contradiction for all the possible cases. Claim 1 is proved

We reach contradiction for all the possible cases. Claim 1 is proved.

Let $W = V(G(v)) - V(\Theta(v))$. Since $\Theta(v)$ is a dominating subgraph of G(v), an edge in G(v)incident with a vertex in W must be incident with a vertex in $\Theta(v)$ and W is an independent set. Thus, $E_{G(v)}(w_1) \cap E_{G(v)}(w_2) = \emptyset$ for any $w_1 \neq w_2$ in W and $\bigcup_{w \in W} E_{G(v)}(w) \subseteq \mathcal{E}_{G(v)}(\Theta(v))$. If $i(\Theta(v)) < d_{G_T}(v)$, then $W \neq \emptyset$. Since $d_{G_T}(v) \ge 3$ and $i(\Theta(v)) \ge 2$,

$$i(\Theta(v)) + |W| \ge 3. \tag{10}$$

By Claim 1 and W is an independent set with $\bigcup_{w \in W} E_{G(v)}(w) \subseteq \mathcal{E}_{G(v)}(\Theta(v))$, we have

$$|\mathcal{E}_{G(v)}(\Theta(v))| = |E(G_M)| + \sum_{u \in U} d_{G(v)}(u) + \sum_{w \in W} d_{G(v)}(w) \ge |E(G_M)| + t|U| + |W|.$$
(11)

For each $y_i z_i$ in M, by Claim 1(c),

$$d_G(y_j) + d_G(z_j) = d_{G_M}(y_j) + d_{G_M}(z_j) + i(y_j) + i(z_j) + |U|.$$
(12)

Since $t \ge 4$, at least one edge (say $y_4 z_4$) in M is not adjacent to any edges in A(v). Thus $i(y_4) = i(z_4) = 0$. Since $\max\{d_{G_M}(y_4), d_{G_M}(z_4)\} \le t$, by (12)

$$\overline{\sigma}_2(G) \le d_G(y_4) + d_G(z_4) = d_{G_M}(y_4) + d_{G_M}(z_4) + i(y_4) + i(z_4) + |U| \le 2t + |U|.$$
(13)

Since $|E(G_M)| \ge t^2 - 1$, by (9), (11) and (13),

$$\begin{aligned} t^{2} - 1 + t|U| + |W| &\leq |\mathcal{E}_{G(v)}(\Theta(v))| \leq t\overline{\sigma}_{2}(G) - t^{2} - i(\Theta(v)) + 1 \\ &\leq t(2t + |U|) - t^{2} - i(\Theta(v)) + 1 = t^{2} + t|U| - i(\Theta(v)) + 1, \end{aligned}$$

which yields $|W| + i(\Theta(v)) \le 2$, contrary to (10). The proof is completed.

Lemma 5.3. Let G be an essentially 3-edge-connected K_3 -free graph with $\overline{\sigma}_2(G) \ge 7$. Let G'_0 be the reduction of G_0 . For each $v \in V(G'_0)$, let $\Gamma(v)$ be the preimage of v in G. Let S_0 , S_1 , S_1^* , S_2 and S_3 be the sets defined in Section 4. Then each of the following holds:

- (a) For each $v \in S_0$ and $1 \le t \le \alpha'(\Gamma(v))$, $|E(\Gamma(v))| \ge t\overline{\sigma}_2(G) t^2 d_{G'_0}(v)$.
- (b) For each $v \in D_3(G'_0) \cap S_1$, $N_{G'_0}(v) \subseteq S_0 \cup S_1^*$.
- (c) S_3 is an independent set.
- (d) All the vertices in S_2 are trivial vertices in G'_0 and so all the nontrivial vertices are in $S_0 \cup S_1^*$.

Proof. (a) For each $v \in S_0$, since v is a contracted vertex in G'_0 , $\alpha'(\Gamma(v)) \ge 1$. This is the special case of Lemma 5.2 with $G_T = G'_0$ and $\Theta(v) = G(v) = \Gamma(v)$.

(b) If $v \in D_3(G'_0) \cap S_1$, then $d_{G'_0}(v) = d_G(v) = 3$. If $u \in N_{G'_0}(v)$ and $u \notin S_0$, then $d_{G'_0}(u) = d_G(u)$ and $d_{G'_0}(v) + d_{G'_0}(u) = d_G(v) + d_G(u) \ge \overline{\sigma}_2(G)$. Thus, $d_{G'_0}(u) \ge \overline{\sigma}_2(G) - 3 \ge 4$ and so $u \in S_1^*$. (b) is proved.

(c) Since $S_3 = S_2 - S_M$ and M_{Φ} is a maximum matching in $G'_0[S_2]$, no edge has two ends in S_3 .

(d) If $v \in S_2 = V(G'_0) - (S_0 \cup S_1^*)$, then v is not a contracted vertex and so $d_G(v) = d_{G'_0}(v)$. To the contrary, suppose that v is nontrivial. Then v is adjacent to a vertex u in $D_2(G)$. Then $d_{G'_0}(v) + 2 = d_G(v) + d_G(u) \ge \overline{\sigma}_2(G) \ge 7$ and $d_{G'_0}(v) \ge \overline{\sigma}_2(G) - 2 > \overline{\sigma}_2(G) - 3$. Hence, $v \in S_1^*$, a contradiction. \Box

6 Proof of Theorem 4.2

We prove the following lemma first.

Lemma 6.1. Let G'_0 be the reduction of the core G_0 of an essentially 3-edge-connected graph G. Let Φ be the subgraph of G'_0 defined in section 4, and let M_{Φ} be a maximum matching in Φ . Then

$$|D_3(G'_0)| \ge 10 + |M_{\Phi}|(\overline{\sigma}_2(G) - 8).$$
(14)

Proof. Since $\delta(G'_0) \ge 3$, $G'_0 \notin \{K_1, K_2, K_{2,s}(s \ge 2)\}$. By Theorem 3.1, $|E(G'_0)| \le 2|V(G'_0)| - 5$. Since $2|E(G'_0)| = \sum_{v \in V(G'_0)} d_{G'_0}(v) = \sum_{i=3} i|D_i(G'_0)|$ and $|V(G'_0)| = \sum_{i=3} |D_i(G'_0)|$, we have

$$2|E(G'_{0})| \leq 4|V(G'_{0})| - 10;$$

$$3|D_{3}(G'_{0})| + 4|D_{4}(G'_{0})| \cdots + i|D_{i}(G'_{0})| + \cdots \leq 4(|D_{3}(G'_{0})| + |D_{4}(G'_{0})| \cdots + |D_{i}(G_{0})| \cdots) - 10;$$

$$|D_{5}(G'_{0})| + 2|D_{6}(G'_{0})| \cdots + (i - 4)|D_{i}(G'_{0})| \cdots \leq |D_{3}(G'_{0})| - 10.$$
(15)

Recall that S_M is the set of the vertices in M_{Φ} . Let $D_i^M = D_i(G'_0) \cap S_M$. By the definition of M_{Φ} , for each $uv \in M_{\Phi}$, $d_G(u) = d_{G'_0}(u) \ge 4$, $d_G(v) = d_{G'_0}(v) \ge 4$, and so $d_G(u) + d_G(v) \ge \overline{\sigma}_2(G)$. By (15),

$$|M_{\Phi}|(\overline{\sigma}_{2}(G) - 8) \leq \sum_{uv \in M_{\Phi}} (d_{G}(u) - 4 + d_{G}(v) - 4)$$

=
$$\sum_{x \in S_{M}} (d_{G}(x) - 4) = |D_{5}^{M}| + 2|D_{6}^{M}| + \dots + (i - 4)|D_{i}^{M}| + \dots$$

$$\leq |D_{5}(G'_{0})| + 2|D_{6}(G'_{0})| \dots + (i - 4)|D_{i}(G'_{0})| \dots \leq |D_{3}(G'_{0})| - 10.$$

This proves Lemma 6.1.

Proof of Theorem 4.2. Let $V_a = S_0 \cup S_1^* \cup S_M$ which are defined in Section 4. By Lemma 5.3, $S_3 = V(G'_0) - V_a$ is an independent set and all the nontrivial vertices are in $S_0 \cup S_1^*$. Then V_a is a vertex covering of G'_0 containing all the nontrivial vertices of G'_0 .

Claim 1. If G'_0 has a vertex covering V_c with $|V_c| \le 12$ and V_c contains all the nontrivial vertices of G'_0 , then G has a DCT.

By Theorem 3.2, $\kappa'(G'_0) \ge 3$. Since G'_0 can not be contracted to the Petersen graph in the way stated in Theorem 4.1 with $S = V_c$, G'_0 has a closed trail Θ_c such that $V_c \subseteq V(\Theta_c)$. Since V_c is a vertex covering of G'_0 , Θ_c is a DCT of G'_0 . Since V_c contains all the nontrivial vertices of G'_0 , Θ_c contains all the nontrivial vertices of G'_0 . By Theorem 3.2, G has a DCT. Claim 1 is proved.

If $|V_a| \le 12$, then by Claim 1, G has a DCT. We are done for this case.

In the following, we assume that $|S_0| + |S_1^*| + |S_M| = |V_a| \ge 13$.

Case 1. $|S_0| + |S_1^*| \le 11$.

Since $|S_0| + |S_1^*| + |S_M| = |V_a| \ge 13$, $|S_M| \ge 2$. Thus, $|M_{\Phi}| \ge 1$. By Lemma 6.1 and $\overline{\sigma}_2(G) \ge 18$, $|D_3(G'_0)| \ge 10 + |M_{\Phi}|(\overline{\sigma}_2(G) - 8) \ge 20$.

Let
$$S_0^3 = D_3(G'_0) \cap S_0$$
, let $S_0^* = S_0 - S_0^3$ and let $S_1^3 = D_3(G'_0) - S_0^3$. Then $|S_0| = |S_0^3| + |S_0^*|$ and

$$|S_1^3| = |D_3(G_0')| - |S_0^3|.$$
(16)

Note that $S_1^3 = D_3(G'_0) \cap S_1$. Since $\overline{\sigma}_2(G) \ge 18$, by Lemma 5.3(b), for each $v \in S_1^3$, $N_{G'_0}(v) \subseteq S_0 \cup S_1^*$. Thus S_1^3 is an independent set in G'_0 . Let $Y = \bigcup_{v \in S_1^3} N_{G'_0}(v)$. Then $Y \subseteq S_0 \cup S_1^*$ and so

$$|Y| \le |S_0| + |S_1^*|. \tag{17}$$

Let Θ_b be the subgraph in G'_0 induced by the edges between S_1^3 and Y. Then $|V(\Theta_b)| = |S_1^3| + |Y|$. Since $d_{G'_0}(v) = 3$ for each $v \in S_1^3$ and S_1^3 is an independent set, $|E(\Theta_b)| = 3|S_1^3|$. Since $|S_0^3| \le |S_0| \le 11$ and $|D_3(G'_0)| \ge 20$, $|S_1^3| = |D_3(G'_0)| - |S_0^3| \ge 9$ and so $\Theta_b \notin \{K_1, K_2, K_{2,s}\}$. By Theorem 3.1, $|E(\Theta_b)| \le 2|V(\Theta_b)| - 5$. By (16), (17) and $|S_0| = |S_0^3| + |S_0^*|$,

$$\begin{aligned} 3|S_{1}^{3}| &= |E(\Theta_{b})| \leq 2|V(\Theta_{b})| - 5 = 2|S_{1}^{3}| + 2|Y| - 5;\\ 5 + |S_{1}^{3}| &\leq 2|Y| \leq 2|S_{0}| + 2|S_{1}^{*}|;\\ 5 + |D_{3}(G_{0}')| - |S_{0}^{3}| \leq 2|S_{0}^{3}| + 2|S_{0}^{*}| + 2|S_{1}^{*}|;\\ 5 + |D_{3}(G_{0}')| &\leq 3|S_{0}^{3}| + 2|S_{0}^{*}| + 2|S_{1}^{*}| \leq 3|S_{0}| + 2|S_{1}^{*}|. \end{aligned}$$
(18)

By Lemma 6.1, $|D_3(G'_0)| \ge 10 + |M_{\Phi}|(\overline{\sigma}_2(G) - 8)$. By (18), $\overline{\sigma}_2(G) \ge 18$ and $|S_0| + |S_1^*| \le 11$,

$$5 + (10 + |M_{\Phi}|(\overline{\sigma}_{2}(G) - 8)) \leq 5 + |D_{3}(G'_{0})| \leq 3|S_{0}| + 2|S_{1}^{*}| \leq 3(|S_{0}| + |S_{1}^{*}|);$$

$$15 + 10|M_{\Phi}| \leq 33.$$

Since $|M_{\Phi}| > 0$ is an integer, $|M_{\Phi}| = 1$.

Let e = ab be the edge in M_{Φ} . Since M_{Φ} is a maximum matching in $\Phi = G'_0[S_2]$, at most one (say *b*) of the vertices of $\{a, b\}$ may be adjacent to some vertices in $S_2 - \{a, b\}$ and the other one (say *a*) is not adjacent to vertices in $S_2 - \{a, b\}$. Thus, $S_2 - \{b\}$ is an independent set.

Let $V_b = S_0 \cup S_1^* \cup \{b\}$. Then V_b is a vertex covering of G'_0 and contains all the nontrivial vertices in G'_0 . Since $|S_0| + |S_1^*| \le 11$, $|V_b| \le 12$. By Claim 1, G has a DCT. We are done for this case.

Case 2. $|S_0| + |S_1^*| \ge 12$.

We prove the following claim first.

Claim 2. $|S_0| \ge 11$. Furthermore if $\overline{\sigma}_2(G) \ge 25$, $|S_0| \ge 12$.

If $|S_1^*| = 0$, then $|S_0| \ge 12$. Claim 2 is true trivially. In the following, we assume that $S_1^* \ne \emptyset$. Combining (15) and (18), and by the definitions of $D_i(G'_0)$ and $D_i^*(G'_0)$, for $i \ge 5$, we have

$$15 + (i-4)|D_i^*(G_0')| \le 3|S_0| + 2|S_1^*|.$$
⁽¹⁹⁾

Since $\overline{\sigma}_2(G) \ge 18$, for each $v \in S_1^*$, $d_{G_0'}(v) = d_G(v) \ge \overline{\sigma}_2(G) - 3 \ge 15$ and so $v \in D_{15}^*(G_0')$. Thus, $|S_1^*| \le |D_{15}^*(G_0')|$. By (19) with i = 15 and $|S_1^*| \ge 12 - |S_0|$,

$$\begin{aligned} 15 + 9|S_1^*| &\leq 15 + 11|D_{15}^*(G_0')| - 2|S_1^*| &\leq 3|S_0|; \\ 15 + 9(12 - |S_0|) &\leq 3|S_0|. \end{aligned}$$

Thus, $123 \le 12|S_0|$ and so $|S_0| \ge 11$.

Similarly, if $\overline{\sigma}_2(G) \ge 25$, then i = 25 and so $243 \le 22|S_0|$. Thus, $|S_0| \ge 12$. The claim is proved.

Let V_{12} be a subset of V_a with $|V_{12}| = 12$ in which the vertices are chosen in the following way: first pick vertices from S_0 , then if $|S_0| = 11$ pick a vertex from S_1^* . By Claim 2, V_{12} contains at most one vertex in S_1^* .

By Theorem 4.1, G'_0 has a closed trail T_b such that $V_{12} \subseteq V(T_b)$. We assume that

 T_b is a closed trail with $V_{12} \subseteq V(T_b)$ and with as many vertices of $V(G'_0)$ as possible. (20)

Let $Z_0 = V_{12} \cap S_0$, and let $Z_1 = V_{12} \cap S_1^*$. Then $V_{12} = Z_0 \cup Z_1$ and $|Z_1| \le 1$. Let $V_T = V(T_b) - V_{12}$. Then $V(T_b) = V_{12} \cup V_T$, $V_T \subseteq S_1$ and

$$|V(T_b)| = |V_{12}| + |V_T| = 12 + |V_T|, \quad |Z_0| + |Z_1| = |V_{12}| = 12 \text{ and } |Z_0| \ge 11.$$
(21)

Let $\Phi_0 = G'_0[V(T_b)]$, the graph induced by the vertex set $V(T_b)$. Then $V(\Phi_0) = V(T_b)$, $E(T_b) \subseteq E(\Phi_0)$, and T_b is a spanning closed trail of Φ_0 . Thus, $\Phi_0 \in SL$.

For $v \in Z_0$, let $\Gamma_0(v)$ be the collapsible preimage of v in G_0 . Let $\Phi_1 = G[E(\Phi_0) \cup_{v \in Z_0} E(\Gamma_0(v))]$. Then the reduction of $\Phi_1 = \Phi_1/(\bigcup_{v \in Z_0} E(\Gamma_0(v))) = \Phi_0 \in SL$. By Theorem 3.1, $\Phi_1 \in SL$ with $(\bigcup_{v \in Z_0} V(\Gamma_0(v))) \cup Z_1 \cup V_T \subseteq V(\Phi_1)$.

For $v \in V(T_b) \subseteq V(G'_0)$, let $E_0(v)$ be the set of edges incident with v in Φ_0 . Then $|E_0(v)| = d_{\Phi_0}(v)$. Let $\Gamma_+(v)$ be the subgraph induced by the edges of $E(\Gamma(v))$ and all the edges incident with v in G'_0 . Then $|E(\Gamma_+(v))| = |E(\Gamma(v))| + d_{G'_0}(v)$. For any $u, v \in Z_0$ and $u \neq v$,

$$(E(\Gamma_{+}(u)) - E_{0}(u)) \cap (E(\Gamma_{+}(v)) - E_{0}(v)) = \emptyset.$$
(22)

For $v \in Z_0$, by Lemma 5.3(a), $|E(\Gamma(v))| \ge \overline{\sigma}_2(G) - d_{G'_0}(v) - 1$. Then

$$|E(\Gamma_{+}(v)) - E_{0}(v)| \geq (|E(\Gamma(v))| + d_{G'_{0}}(v)) - d_{\Phi_{0}}(v) \geq \overline{\sigma}_{2}(G) - 1 - d_{\Phi_{0}}(v).$$

Hence,

$$\sum_{v \in Z_0} |E(\Gamma_+(v)) - E_0(v)| \ge |Z_0|(\overline{\sigma}_2(G) - 1) - \sum_{v \in Z_0} d_{\Phi_0}(v).$$
(23)

For $v \in Z_1 \cup V_T$, $d_{G'_0}(v) = d_G(v)$. For any $u, v \in Z_1 \cup V_T$ and $u \neq v$,

$$(E_G(u) - E_0(u)) \cap (E_G(v) - E_0(v)) = \emptyset.$$
 (24)

For $v \in Z_1$, $d_G(v) \ge \overline{\sigma}_2(G) - 3$ and $|E_G(v) - E_0(v)| = d_G(v) - d_{\Phi_0}(v) \ge (\overline{\sigma}_2(G) - 3) - d_{\Phi_0}(v)$. Then

$$\sum_{v \in Z_1} |E_G(v) - E_0(v)| = \sum_{v \in Z_1} (d_G(v) - d_{\Phi_0}(v)) \ge |Z_1| (\overline{\sigma}_2(G) - 3) - \sum_{v \in Z_1} d_{\Phi_0}(v).$$
(25)

For $v \in V_T \subseteq S_1$, since $d_G(v) = d_{G_0}(v) \ge 3$,

$$\sum_{\nu \in V_T} d_G(\nu) \ge 3|V_T|.$$
(26)

Let $\Phi_2 = G[E(\Phi_0) \cup_{v \in Z_0} E(\Gamma_+(v)) \cup_{v \in Z_1 \cup V_T} E_G(v)]$. Then Φ_1 is a dominating subgraph in Φ_2 . Since Φ_1 has a SCT, Φ_2 has a DCT and

$$E(\Phi_2) \supseteq E(\Phi_0) \cup_{v \in Z_0} (E(\Gamma_+(v)) - E_0(v)) \cup_{v \in Z_1 \cup V_T} (E_G(v) - E_0(v)).$$
(27)

By (27), (22) and (24), and by (23) and (25),

$$|E(\Phi_{2})| \geq |E(\Phi_{0})| + \sum_{v \in \mathbb{Z}_{0}} |E(\Gamma_{+}(v)) - E_{0}(v)| + \sum_{v \in \mathbb{Z}_{1} \cup V_{T}} |E_{G}(v) - E_{0}(v)|$$

$$\geq |E(\Phi_{0})| + |\mathbb{Z}_{0}|(\overline{\sigma}_{2}(G) - 1) - \sum_{v \in \mathbb{Z}_{0}} d_{\Phi_{0}}(v)$$

$$+ |\mathbb{Z}_{1}|(\overline{\sigma}_{2}(G) - 3) - \sum_{v \in \mathbb{Z}_{1}} d_{\Phi_{0}}(v) + \sum_{v \in V_{T}} (d_{G}(v) - d_{\Phi_{0}}(v)).$$
(28)

Therefore, by (28), $\sum_{v \in V(\Phi_0)} d_{\Phi_0}(v) = 2|E(\Phi_0)|$ and $V(\Phi_0) = Z_0 \cup Z_1 \cup V_T$,

$$|E(\Phi_{2})| \geq (|Z_{0}| + |Z_{1}|)\overline{\sigma}_{2}(G) - |Z_{0}| - 3|Z_{1}| + |E(\Phi_{0})| - \sum_{v \in V(\Phi_{0})} d_{\Phi_{0}}(v) + \sum_{v \in V_{T}} d_{G}(v);$$

$$|E(\Phi_{2})| \geq (|Z_{0}| + |Z_{1}|)\overline{\sigma}_{2}(G) - |Z_{0}| - 3|Z_{1}| - |E(\Phi_{0})| + \sum_{v \in V_{T}} d_{G}(v).$$
(29)

Since $|V(\Phi_0)| \ge |V_{12}| = 12$, $\Phi_0 \notin \{K_1, K_2\}$. As a subgraph of G'_0 , Φ_0 is a reduced graph. By Theorem 3.1(c), $|E(\Phi_0)| \le 2|V(\Phi_0)| - 4$. Since $|V(\Phi_0)| = |V(T_b)| = |V_{12}| + |V_T|$,

$$|E(\Phi_0)| \leq 2|V(\Phi_0)| - 4 = 2|V(T_b)| - 4 = 2|V_{12}| + 2|V_T| - 4 = 20 + 2|V_T|.$$
(30)

By (29), (30), (26), (21) $|Z_0| + |Z_1| = 12$ and $|Z_1| \le 1$,

$$\begin{aligned} |E(\Phi_2)| &\geq (|Z_0| + |Z_1|)\overline{\sigma}_2(G) - |Z_0| - 3|Z_1| - |E(\Phi_0)| + \sum_{v \in V_T} d_G(v) \\ &\geq 12\overline{\sigma}_2(G) - 12 - 2|Z_1| - (20 + 2|V_T|) + 3|V_T| \\ &\geq 12\overline{\sigma}_2(G) - 32 - 2|Z_1| + |V_T| \geq 12\overline{\sigma}_2(G) - 34. \end{aligned}$$

Thus, Φ_2 is a DCT subgraph Θ of G with $|E(\Theta)| \ge 12\overline{\sigma}_2(G) - 34$. Theorem 4.2(a) is proved.

For Theorem 4.2(b), we have $\overline{\sigma}_2(G) \ge 25$. By Claim 2 above, $|Z_0| = |V_{12}| = 12$ and $|Z_1| = 0$. Note that by Theorem 3.1(c) either $\Phi_0 = K_{2,r}$ or $|E(\Phi_0)| \le 2|V(\Phi_0)| - 5$.

If $|E(\Phi_0)| \le 2|V(\Phi_0)| - 5$, then by (29) with $|Z_1| = 0$, $|Z_0| = 12$ and $|V(\Phi_0)| = |V(T_b)| = 12 + |V_T|$,

$$\begin{split} |E(\Phi_2)| &\geq |Z_0|\overline{\sigma}_2(G) - |Z_0| - |E(\Phi_0)| + \sum_{v \in V_T} d_G(v) \\ &\geq 12\overline{\sigma}_2(G) - 12 - (24 + 2|V_T| - 5) + 3|V_T| = 12\overline{\sigma}_2(G) - 31 + |V_T| \geq 12\overline{\sigma}_2(G) - 31. \end{split}$$

Theorem 4.2(b) is proved for this case.

Next, we assume that $\Phi_0 = K_{2,r}$ where $r = |V(\Phi_0)| - 2$.

Claim 3. $|V_T| > 0$.

To the contrary, suppose that $|V_T| = 0$. Then $|V(\Phi_0)| = |V(T_b)| = |V_{12}| = 12$ and so $\Phi_0 = K_{2,10}$. Let $V(\Phi_0) = \{x_1, x_2, \dots, x_{10}, y_1, y_2\}$ where $d_{\Phi_0}(x_i) = 2$ $(1 \le i \le 10)$ and $d_{\Phi_0}(y_j) = 10$ (j = 1, 2). Since G'_0 is simple and K_3 -free with $\kappa'(G'_0) \ge 3$, x_1 is adjacent to a vertex $z \notin \{x_1, \dots, x_{10}, y_1, y_2\}$. Furthermore, $G'_0 - zx_1$ is 2-edge-connected. Therefore, there is a path P_z in $G'_0 - zx_1$ joining z to a vertex in $V(\Phi_0)$.

If P_z is a path from z to x_1 in $G'_0 - zx_1$, then $T_z = G'_0[E(T_b) \cup E(P_z) \cup \{zx_1\}]$ is a closed trail with $V(T_z) \supseteq V(T_b) \cup \{z\} \supset V_{12}$, contrary to (20).

If P_z is a path from z to y_i (i = 1, 2) (say y_1) in $G'_0 - zx_1$, then $T_z = G'_0[(E(T_b) - \{x_1y_1\}) \cup E(P_z) \cup \{zx_1\}]$ is a closed trail with $V(T_z) \supseteq V(T_b) \cup \{z\} \supset V_{12}$. contrary to (20).

If P_z is a path from z to x_j ($2 \le i \le 10$) (say x_2) in $G'_0 - zx_1$, then $T_z = G'_0[(E(T_b) - \{x_1y_1, x_2y_1\}) \cup E(P_z) \cup \{zx_1\}]$ is a closed trail with $V(T_z) \supseteq V(T_b) \cup \{z\} \supset V_{12}$, contrary to (20).

We reach contradictions for all the cases. Claim 3 is proved.

Since $\Phi_0 = K_{2,r}$ and $|V(\Phi_0)| = 12 + |V_T|$, $|E(\Phi_0)| = 2|V(\Phi_0)| - 4 = 20 + 2|V_T|$. By (29), $|Z_0| = 12$, $|Z_1| = 0$ and by Claim 3 $|V_T| \ge 1$,

$$\begin{split} |E(\Phi_2)| &\geq (|Z_0| + |Z_1|)\overline{\sigma}_2(G) - |Z_0| - 3|Z_1| - |E(\Phi_0)| + \sum_{v \in V_T} d_G(v) \\ &\geq 12\overline{\sigma}_2(G) - 12 - (20 + 2|V_T|) + 3|V_T| \geq 12\overline{\sigma}_2(G) - 12 - 20 + |V_T| \geq 12\overline{\sigma}_2(G) - 31. \end{split}$$

Thus, Φ_2 is a DCT subgraph of G for Theorem 4.2(b). The proof is complete.

7 Graphs that are contractible to the Petersen graph

In the following, we assume that *G* is an essentially 3-edge-connected K_3 -free simple graph with $\overline{\sigma}_2(G) \ge 7$. Let P_0 be the Petersen graph with $V(P_0) = \{v_1, \dots, v_{10}\}$. When we say P_0 is a contraction graph of a graph *G*, it means that P_0 is obtained from *G* by the following sequence of contractions:

1) $G_1 = G/E_1$; 2) $G_0 = G_1/X_2(G)$; 3) $G'_0 = G_0/(E(\Gamma^0_1) \cup \cdots \cup E(\Gamma^0_c))$ where Γ^0_i $(1 \le i \le c)$ is a maximum collapsible subgraph of G_0 ; 4) $P_0 = G'_0/(E(\Gamma^1_0(v_1)) \cup \cdots \cup E(\Gamma^1_0(v_{10})))$ where $\Gamma^1_0(v_i)$ is connected reduced subgraph of G'_0 .

For each $v \in V(P_0)$, we define the following:

- $\Gamma_0^1(v)$ is the preimage of v in G'_0 (a reduced subgraph of G'_0).
- For each $u \in V(\Gamma_0^1(v))$, let $\Gamma_0(u)$ be the collapsible preimage of u in G_0 .
- $\Gamma_0^2(v) = G_0[\bigcup_{u \in V(\Gamma_0^1(v))} V(\Gamma_0(u))]$ and so $\Gamma_0^1(v)$ is the reduction of $\Gamma_0^2(v)$.

- $\Gamma_1^2(v)$ is the preimage of v in G_1 . Thus, $\Gamma_0^2(v) = \Gamma_1^2(v)/(X_2(G) \cap E(\Gamma_1^2(v)))$.
- $\Gamma^*(v)$ is the preimage of v in G, which is the subgraph in G induced by the edges in $E(\Gamma_1^2(v))$ and the edges in E_1 that are incident with some vertices in $\Gamma_1^2(v)$.
- $\partial(\Gamma^*(v)) = \{u \in V(\Gamma^*(v)) \mid u \text{ is incident with an edge of } P_0 \}$, the set of vertices in $V(\Gamma^*(v))$ that are incident with some edges in $E_P(v)$. Then $|\partial(\Gamma^*(v))| \le 3$.

If $\Gamma_0^1(v) = K_1$, then $\Gamma_0^2(v) = \Gamma_0(v)$, $\Gamma_1^2(v) = \Gamma_1(v)$ and $\Gamma^*(v) = \Gamma(v)$. Fig. 7.1 shows the contraction process from *G* to P_0 .

Fig. 7.1: A contraction process from G to a vertex v in P_0 .

Fact 7.1. For a vertex $v \in V(P_0)$, if $\Gamma_0^j(v) \neq K_1$ (j = 1, 2), each of the following holds: (i) $\Gamma_0^j(v)$ is 2-edge-connected and so $d_{\Gamma_0^j(v)}(x) \ge 2$ for any $x \in V(\Gamma_0^j(v))$. (ii) $D_2(\Gamma_0^j(v)) \subseteq \partial(\Gamma^*(v))$ and so $|D_2(\Gamma_0^j(v))| \le 3$.

Proof. Since *G* is essentially 3-edge-connected, by Theorem 3.2 $\kappa'(G'_0) \ge \kappa'(G_0) \ge 3$. Since $\Gamma_0^1(v)$ is the reduction of $\Gamma_0^2(v)$, $\kappa'(\Gamma_0^1(v)) \ge \kappa'(\Gamma_0^2(v))$. We only need to prove (i) for the case $\Gamma_0^2(v)$.

To the contrary, suppose that $\kappa'(\Gamma_0^2(v)) = 1$. Let Φ_1 and Φ_2 be the two components of $\Gamma_0^2(v) - e$ where *e* is an edge-cut. Since $d_{P_0}(v) = 3$, only three edges of G_0 outside of $\Gamma_0^2(v)$ incident with some vertices in $\Gamma_0^2(v)$. Of these three edges, at most one of them is incident with one of Φ_i (*i* = 1, 2). Thus, G_0 is at most 2-edge-connected, contrary to that $\kappa'(G_0) \ge 3$. Case (i) is proved.

Case (ii) follows from the definition and the fact that $\kappa'(G_0) \ge 3$ and $|\partial(\Gamma^*(v))| \le d_{P_0}(v) = 3$. \Box

With P_0 as a contraction graph of G, to find a DCT subgraph of G with large size, it is a reverse process of the contraction sequence above. The following lemma will be needed when $\Gamma_0^1(v) \neq K_1$.

Lemma 7.2. For a vertex $v \in V(P_0)$, let $\Gamma_0^1(v)$ be the preimage of v in G'_0 and $\Gamma_0^1(v) \neq K_1$. Then $D_2(\Gamma_0^1(v)) \subseteq \partial(\Gamma^*(v))$ and $|\partial(\Gamma^*(v))| \leq 3$. Furthermore, for any $x, y, z \in \partial(\Gamma^*(v))$ (x, y and z may not be distinct) there is a (x, y)-trail T_v containing z such that $\alpha'(T_v) \geq 2$ and one of the following holds:

- $\begin{aligned} (a) \ \ \Gamma_0^1(v) \in \{K_{2,3}, K_{1,3}(1,1,1), J'(1,1)\} \ and \\ |\mathcal{E}_{\Gamma^*(v)}(T_v)| \ge \begin{cases} 2\overline{\sigma}_2(G) 2 & if \ \Gamma_0^1(v) = K_{2,3} \ and \ \alpha(\Gamma^*(v)) = 2; \\ 3\overline{\sigma}_2(G) 6 & if \ \Gamma_0^1(v) \in \{K_{2,3}, K_{1,3}(1,1,1)\} \ and \ \alpha(\Gamma^*(v)) = 3; \\ 4\overline{\sigma}_2(G) 10 & if \ \Gamma_0^1(v) \in \{K_{2,3}, K_{1,3}(1,1,1), J'(1,1)\} \ and \ \alpha(\Gamma^*(v)) \ge 4. \end{aligned}$
- (b) $|V(\Gamma_0^1(v))| \ge 8$. Then $\alpha'(\Gamma^*(v)) \ge \alpha'(\Gamma_0^1(v)) \ge 4$ and $\Gamma_0^1(v)$ has an (x, y)-trail T_v^0 where $x, y \in V(\Gamma_0^1(v))$ that are incident with two of the edges in $\{e_v^1, e_v^2, e_v^3\}$ and $|\mathcal{E}_{\Gamma^*(v)}(T_v^0)| \ge 4\overline{\sigma}_2(G) 14$.

Proof. Since G'_0 is 3-edge-connected and K_3 -free and $\Gamma_0^1(v)$ is a subgraph of G'_0 , $\Gamma_0^1(v)$ is reduced and K_3 -free. By Fact 7.1, $\Gamma_0^1(v)$ is 2-edge-connected, $D_2(\Gamma_0^1(v)) \subseteq \partial(\Gamma^*(v))$ and $|\partial(\Gamma^*(v))| \leq 3$. Let $\partial(\Gamma^*(v)) = \{x, y, z\}$ (*x*, *y* and *z* may not be distinct). By Lemma 5.1, $\Gamma_0^1(v)$ has a (*x*, *y*)-trail T_v containing *z*. We assume that T_v is a longest one.

We prove $\alpha'(T_v) \ge 2$ first.

To the contrary, suppose that $\alpha'(T_v) = 1$. Then one of the following holds.

(1) $T_v = xy$ (and so $z \in \{x, y\}$, say z = y); (2) $T_v = xzy$.

(1) $T_v = xy$ with z = y. Since $\Gamma_0^1(v)$ is 2-edge-connected and K_3 -free, there is a longer path in $\Gamma_0^1(v)$ joining x and y in $\Gamma_0^1(v) - \{xy\}$, contrary to that T_v is a longest one.

(2) $T_v = xzy$.

Since $\Gamma_0^1(v)$ is 2-edge-connected, x is adjacent to a vertex (say w) in $N_{\Gamma_0^1(v)}(x) - \{z\}$. Since G'_0 is 3-edge-connected, by Menger's Theorem, there are at least three edge-disjoint paths joining w and a vertex (say u) in $G'_0 - V(\Gamma_0^1(v))$. Since $\{x, y, z\}$ is a vertex cut of G'_0 that separates w and u, there are at least two edge-disjoint paths (say P_w^1 and P_w^2) joining w to vertices in $\{x, y, z\}$ in $\Gamma_0^1(v) - \{xw\}$. We assume that P_w^i (i = 1, 2) is a shortest path joining w to a vertex in $\{x, y, z\}$.

If P_w^1 (or P_w^2) is a (w, x)-path in $\Gamma_0^1(v) - \{xw\}$, then xwP_w^1 is a cycle and so $T_x = G'_0[\{xw\} \cup E(P_w^1) \cup \{zy\}]$ is a (x, y)-trail containing z in $\Gamma_0^1(v)$, contrary to that T_v is a longest one.

If P_w^1 (or P_w^2) is a (w, z)-path in $\Gamma_0^1(v) - \{xw\}$, then $T_x = G'_0[\{xw\} \cup E(P_w^1) \cup \{zy\}]$ is a (x, y)-trail containing z in $\Gamma_0^1(v)$, contrary to that T_v is a longest one.

If none of the P_w^1 and P_w^2 is a (w, x)- or (w, z)-path, then P_w^1 and P_w^2 are edge-disjoint (w, y)-paths and so $G'_0[E_{G'_0}(P_w^1) \cup E_{G'_0}(P_w^2)]$ is a closed trail containing y. Then $T_y = G'_0[\{xz, zy\} \cup E(P_w^1) \cup E(P_w^2)]$ is a (x, y)-trail containing z in $\Gamma_0^1(v)$ which has more vertices than T_v has, a contradiction.

Thus,
$$\alpha'(T_v) \ge 2$$
.

Next, we find the size of $\mathcal{E}_{\Gamma^*(v)}(T_v)$ which is defined by (2) with $\Gamma^*(v) = G_T(v)$ and $T_v = \Theta(v)$.

Case (a) $|V(\Gamma_0^1(v))| \le 7$.

By Theorem 3.1(d), $\Gamma_0^1(v) \in \{K_{2,3}, K_{1,3}(1, 1, 1), J'(1, 1)\}$. For each edge $zw \in E(\Gamma_0^1(v))$, since $d_{G'_0}(z) + d_{G'_0}(w) \le 6$ and $\overline{\sigma}_2(G) \ge 7$, either z or w is a contracted vertex of G'_0 . Let W be the set of the contracted vertices in $\Gamma_0^1(v)$. Let $\beta = \beta(\Gamma_0^1(v))$ be the covering number of $\Gamma_0^1(v)$. Then $|W| \ge \beta$.

For a vertex $w \in W$, either $\Gamma_0(w)$ is a nontrivial collapsible preimage of w in G_0 or $\Gamma(w) = K_{1,s}$. Then $E(\Gamma(w)) \subseteq \mathcal{E}_{\Gamma^*(v)}(T_v)$. Since $W \subseteq S_0$, by Lemma 5.3(a) with t = 1, $|E(\Gamma(w))| \ge \overline{\sigma}_2(G) - 4$.

For $\Gamma_0^1(v) \in \{K_{2,3}, K_{1,3}(1, 1, 1), J'(1, 1)\}$, since $E(T_v^0) \bigcup_{w \in W} E(\Gamma(w)) \subseteq \mathcal{E}_{\Gamma^*(v)}(T_v)$

$$|\mathcal{E}_{\Gamma^*(\nu)}(T_{\nu})| \ge |E(\Gamma_0^1(\nu))| + \sum_{w \in W} |E(\Gamma(w))| \ge |E(\Gamma_0^1(\nu))| + |W|\overline{\sigma}_2(G) - 4|W|.$$
(31)

Picking an edge from $\Gamma(w)$ for each $w \in W$, we have a matching of $\Gamma^*(v)$. Thus, $\alpha'(\Gamma^*(v)) \ge |W|$. Since $\beta(K_{2,3}) = 2$, $\beta(K_{1,3}(1,1,1)) = 3$ and $\beta(J'(1,1)) = 4$, by (31), $\alpha'(\Gamma^*(v)) \ge |W| \ge \beta$ and $6 = |E(K_{2,3})| < 9 = |E(K_{1,3}(1,1,1))| = |E(J'(1,1))|$,

$$\begin{split} |\mathcal{E}_{\Gamma^*(v)}(T_v)| &\geq |W|\overline{\sigma}_2(G) + |E(\Gamma_0^1(v))| - 4|W| \geq |W|\overline{\sigma}_2(G) + 6 - 4|W| \\ &\geq \begin{cases} 2\overline{\sigma}_2(G) - 2 & \text{if } \Gamma_0^1(v) = K_{2,3} \text{ and } \alpha'(\Gamma^*(v)) = |W| = 2; \\ 3\overline{\sigma}_2(G) - 6 & \text{if } \Gamma_0^1(v) \in \{K_{2,3}, K_{1,3}(1, 1, 1)\} \text{ and } \alpha'(\Gamma^*(v)) = |W| = 3; \\ 4\overline{\sigma}_2(G) - 10 & \text{if } \Gamma_0^1(v) \in \{K_{2,3}, K_{1,3}(1, 1, 1), J'(1, 1)\} \text{ and } \alpha'(\Gamma^*(v)) \geq 4. \end{cases}$$

For |W| = 4 + j $(j \ge 0)$, $|W|\overline{\sigma}_2(G) + 6 - 4|W| = 4\overline{\sigma}_2(G) - 10 + j(\overline{\sigma}_2(G) - 4) \ge 4\overline{\sigma}_2(G) - 10$. Thus, $|\mathcal{E}_{\Gamma^*(v)}(T_v)| \ge 4\overline{\sigma}_2(G) - 10$ if $\alpha'(\Gamma^*(v)) \ge |W| \ge 4$. Lemma 7.2(a) is proved.

Case (b) $n_1 = |V(\Gamma_0^1(v))| \ge 8$.

Since $l = |D_2(\Gamma_0^1(v))| \le 3$, $\Gamma_0^1(v) \ne K_{2,s}$. By Theorem 3.1(e),

$$\alpha'(\Gamma_0^1(v)) \ge \min\left\{\frac{n_1-1}{2}, \frac{n_1+5-l}{3}\right\} \ge \min\left\{\frac{8-1}{2}, \frac{8+5-3}{3}\right\} > 3$$

Thus, $\alpha'(\Gamma_0^1(v)) \ge 4$.

Let *M* be a matching of size 4 in $\Gamma_0^1(v)$ and let V_8 be the set of the 8 vertices in *M*. Let v_p be a vertex in $V(P_0) - V(\Gamma_0^1(v))$ and let $S = V_8 \cup \{v_p\}$. Then $|S| \le 9$. By Theorem 4.1, G_0 has a closed trail T_1 containing all the vertices in *S*. Then T_1 contain exactly two of the edges in $\{e_v^1, e_v^2, e_v^3\}$. We may assume $e_i^1 = v_2 x_i, e_i^2 = v_3 y_i \in E(T_1)$ where x_i and y_i are in $\Gamma_0^1(v)$. Thus, edges in $E(T_1) \cap E(\Gamma_0^1(v))$ induced a (x_i, y_i) -trail T_v^0 containing all the vertices in V_8 . Since T_v^0 contains the vertices of a matching of size 4, by Lemma 5.2(a) with t = 4 and $i(T_v^0) \le d_{G_T}(v) = d_{G'_0}(v) = 3$, $|\mathcal{E}_{\Gamma^*(v)}(T_v^0)| \ge 4\overline{\sigma_2}(G) - 14$. \Box

Remark 7.3. When we say we have a T_v trail with the estimated size $|\mathcal{E}_{\Gamma^*(v)}(T_v)|$ in Lemma 5.2 or Lemma 7.2, it means that such trail T_v exists for any preselected two edges in $E_P(v)$. For the T_v^0 trail in case (b) above, we only know that T_v^0 is incident with two edges in $E_P(v)$, not for any preselected two edges. When $|V(\Gamma_0^1(v))| \ge 8$, for any two preselected edges in $E_P(v)$, we can have a trail T_v for the two selected edges but we only know that $\alpha'(T_v) \ge 2$ and by Lemma 5.2 $|\mathcal{E}_{\Gamma^*(v)}(T_v)| \ge 2\overline{\sigma}_2(G) - 7$, that is smaller than $|\mathcal{E}_{\Gamma^*(v)}(T_v^0)| \ge 4\overline{\sigma}_2(G) - 14$. In the proof of Theorem 4.3, if a vertex $v \in V(P_0)$ has its preimage $\Gamma_0^1(v)$ with $|V(\Gamma_0^1(v))| \ge 8$, we use a (x, y)-trail T_v^0 with $|\mathcal{E}_{\Gamma^*(v)}(T_v^0)| \ge 4\overline{\sigma}_2(G) - 14$ given in Lemma 7.2(b) and so we know the two edges in $E_P(v)$ incident with x and y in T_v^0 , respectively. Thus, to select a dominating cycle Θ_0 in P_0 , we pick the vertex v and the two edges first, and then pick the rest of the vertices and edges to form the dominating cycle Θ_0 in P_0 .

For each $v \in V(P_0)$, let $E_P(v) = \{e_v^1, e_v^2, e_v^3\}$ be the set of three edges in P_0 incident with v, which is considered as a subset of E(G). We assume that e_v^i is incident with x_v^i in $\Gamma_1^2(v)$ (i = 1, 2, 3) (note that x_v^1, x_v^2 and x_v^3 may not be distinct). If $x_v^i \in D_2(G) \cap V(\Gamma_1^2(v))$, then let $y_v^i x_v^i$ be an edge in $X_2(G)$ with $y_v^i \in V(\Gamma_1^2(v))$. Then y_v^i is a nontrivial vertex and $d_{\Gamma_1^2(v)}(x_v^i) = 1$. Since G is essentially 3-edgeconnected, $d_{\Gamma_2^2(v)}(y_v^i) \ge 3$. If $x_v^i \notin D_2(G)$, we use $y_v^i = x_v^i$ in $V(\Gamma_1^2(v))$ (see Fig. 7.1 (a) and (d)).

The following is the procedures to construct a DCT in G from P_0 :

- (a) Pick a 9 vertex cycle Θ_0 . We assume that $V(\Theta_0) = \{v_1, v_2, \dots, v_9\}$ and $E(\Theta_0) = \{e_{v_j}^1, e_{v_j}^2 \mid j = 1, \dots 9\}$. By Lemma 7.2 and Remark 7.3, we assume that v_1 is the vertex with largest $\alpha'(\Gamma_0^1(v))$.
- (b) For each $v \in V(\Theta_0)$ with $\Gamma_0^2(v) \neq K_1$ and with y_v^1 and y_v^2 in $\Gamma_0^2(v)$ that are incident with the two edges e_v^1 and e_v^2 in Θ_0 , we construct a (y_v^1, y_v^2) -trail T_v according to $\Gamma_0^1(v) = K_1$ or not: (b1) If $\Gamma_0^1(v) = K_1$ then $\Gamma_0^2(v) = \Gamma_0(v)$, a collapsible graph. Let $R = \{y_v^1, y_v^2\}$ if $y_v^1 \neq y_v^2$; and let R = 0 if $v_v^1 = v_v^2$. Since $\Gamma_0^2(v)$ is collapsible $\Gamma_0^2(v)$ has a summing sector of $v_v^1 = v_v^2$.

 $R = \emptyset$ if $y_v^1 = y_v^2$. Since $\Gamma_0^2(v)$ is collapsible, $\Gamma_0^2(v)$ has a spanning connected subgraph Ψ_v such that $O(\Psi_v) = R$. Then $T_v = \Psi_v$ is a spanning (y_v^1, y_v^2) -trail in $\Gamma_0^2(v)$. Thus, T_v is a dominating (y_v^1, y_v^2) -trail in $\Gamma^*(v)$ and $E(\Gamma^*(v)) = \mathcal{E}_{\Gamma^*(v)}(T_v)$.

(b2) If $\Gamma_0^1(v) \neq K_1$, then we construct a (y_v^1, y_v^2) -trail T_v as discussed in Lemma 7.2.

Since $\Gamma_0^2(v) = \Gamma_1^2(v)/(X_2(G) \cap E(\Gamma_1^2(v)))$, T_v can be extended as (x_v^1, x_v^2) -trail containing y_v^3 in $\Gamma_1^2(v)$ (and in $\Gamma^*(v)$). If $y_v^3 \neq x_v^3$, then y_v^3 is a nontrivial vertex and $i(T_v) = 2$ since the edge incident with x_v^3 in $E_P(v)$ is not incident with a vertex in T_v , but $y_v^3 x_v^3 \in \mathcal{E}_{\Gamma^*(v)}(T_v)$. In the following, for each $v_j = v \in V(P_0)$, we use T_j for T_v as the (x_j^1, x_j^2) -trail containing y_j^3 in $\Gamma^*(v_j)$ with $|\mathcal{E}_{\Gamma^*(v_j)}(T_j)|$ as large as possible. (See Fig. 7.2 for an example).

- (c) Let $\Theta_1 = G[E(\Theta_0) \cup_{j=1}^9 E(T_j)]$ where $T_j = T_{v_j}$ found in step (b). Then Θ_1 is a closed trail.
- (d) Let Θ be the graph induced by all the edges in $E(\Theta_1)$ and all the edges incident with vertices in $V(\Theta_1)$. Then Θ is a DCT subgraph of *G* since Θ_1 is a DCT in Θ .

In Lemmas 5.2, $i(T_j)$, the number of the edges outside of $\Gamma^*(v_j)$ incident with some vertices in $V(T_j)$, is not counted for $|\mathcal{E}_{\Gamma^*(v_j)}(T_j)|$. If $i(T_j) = 3$, then $E_P(v_j) \subseteq E(\Theta)$. If $i(T_j) = 2$, then maybe

only two of the edges in $E_P(v_j)$ are in $E(\Theta)$ but by Lemmas 5.2 the lower bound on $|\mathcal{E}_{\Gamma(v_j)}(T_j)|$ is one more than the case of $i(T_j) = 3$. Thus, for counting the number of edges in $E(\Theta)$, we can assume that $i(T_j) = 3$ and so we assume $E(P_0) \subseteq E(\Theta)$. Therefore,

$$E(\Theta) \supseteq E(P_0) \cup_{i=1}^9 \mathcal{E}_{\Gamma^*(v_i)}(T_j).$$
(32)

Fig. 7.2: A process to obtain a DCT (marked by thick-lines) from P_0 to G.

8 **Proof of Theorem 4.3**

Proof of Theorem 4.3. Without loss of generality, we assume that *G* does not have a DCT. Let P_0 be the Petersen graph with $V(P_0) = \{v_1, \dots, v_{10}\}$ as the contraction graph of G'_0 as stated. Without loss of generality, we assume that $|V(\Gamma^*(v_{10}))| = \min\{|V(\Gamma^*(v_i))| | v_i \in V(P_0)\}$.

Claim 1. $|V(\Gamma^*(v_{10}))| > 1$.

To the contrary, suppose that $|V(\Gamma^*(v_{10}))| = 1$. Then $d_{G'_0}(v_{10}) = d_G(v_{10}) = d_{P_0}(v_{10}) = 3$. **Case 1**. $G'_0 = P_0$, i.e., $|V(\Gamma_0^1(v_i))| = 1$ for all $v_i \in V(P_0)$ $(1 \le i \le 10)$.

Since $|V(\Gamma^*(v_{10}))| = 1$, $d_G(v_{10}) = d_{G'_0}(v_{10}) = 3$. Since $\overline{\sigma}_2(G) \ge 7$, v_{10} is not adjacent to any vertex in $D_2(G)$ and so v_{10} is a trivial vertex in G'_0 . By inspection, G'_0 has a cycle Θ_0 containing v_i ($1 \le i \le 9$). Then Θ_0 contains all the nontrivial vertices of G'_0 . By Theorem 3.2(b), G has a DCT, a contradiction.

Case 2. G'_0 is contracted to P_0 such that $V(\Gamma_0^1(v_i)) \cap V_a \neq \emptyset$ for all $v_i \in V(P_0)$ $(1 \le i \le 10)$. Since $|V(\Gamma^*(v_{10}))| = 1$, $V(\Gamma_0^1(v_{10})) = \{v_{10}\}$. Thus, $\{v_{10}\} = V(\Gamma_0^1(v_{10})) \cap V_a \subseteq V_a = S_0 \cup S_1^* \cup S_M$. If $v_{10} \in S_0$, then v_{10} is a contracted vertex and so $|V(\Gamma^*(v_{10}))| > 1$, a contradiction.

If $v_{10} \in S_1^*$, then since $\overline{\sigma}_2(G) \ge 7$, $d_{G'_0}(v_{10}) \ge \overline{\sigma}_2(G) - 3 \ge 4$, contrary to that $d_{G'_0}(v_{10}) = 3$.

If $v_{10} \in S_M$, then there is a non-contracted vertex z in S_M such that $zv_{10} \in E(G'_0) \subseteq E(G)$ with $d_G(v_{10}) = d_{G'_0}(v_{10})$ and $d_G(z) = d_{G'_0}(z)$. Therefore, $d_{G'_0}(v_{10}) + d_{G'_0}(z) = d_G(v_{10}) + d_G(z) \ge \overline{\sigma}_2(G)$. Since $d_G(v_{10}) = 3$, $d_G(z) \ge \overline{\sigma}_2(G) - 3$. Thus, $z \in S_1^*$, contrary to that $z \in S_M \subseteq V(G'_0) - (S_0 \cup S_1^*)$.

We reach a contradiction for each of the cases above. Claim 1 is proved.

If $\Gamma^*(v_i) = K_{1,r}$ for all $v_i \in V(P_0)$, then $G \in \mathcal{P}_1$. Theorem 4.3(a) is proved.

In the following we assume that $\Gamma^*(v_1) \neq K_{1,r}$. Then $\Gamma^*(v_1)$ is not a tree and $\Gamma_1^2(v_1)$ is a nontrivial connected subgraph in G_1 and so $\alpha'(T_1) \ge 1$. But $\Gamma_0^1(v_1)$ may be either trivial or nontrivial.

Let Θ_0 , Θ_1 and Θ be the subgraphs defined in Section 7. If there is a vertex $v \in V(P_0)$ with $|V(\Gamma_0^1(v))| \ge 8$, Θ_0 is the one defined in Remark 7.3 after Lemma 7.2.

For each $v_i \in V(P_0)$, if $\Gamma^*(v_i) = K_{1,r}$. then $T_i = K_1$. By Proposition 3.3, $|\mathcal{E}_{\Gamma^*(v_i)}(T_i)| \ge \overline{\sigma}_2(G) - 4$. If $\Gamma^*(v_i) \ne K_{1,r}$, then by Lemmas 5.2 and 7.2, $\Gamma^*(v)$ has a trail T_i as a part of the subgraph Θ_1 with $|\mathcal{E}_{\Gamma^*(v_i)}(T_i)| \ge 2\overline{\sigma}_2(G) - 7 \ge \overline{\sigma}_2(G)$. Thus, for each $v_i \in V(P_0)$, in the worst case,

$$|\mathcal{E}_{\Gamma^*(\nu_i)}(T_i)| \ge \overline{\sigma}_2(G) - 4. \tag{33}$$

If $|V(\Gamma_0^1(v_1))| \ge 8$, then by Lemma 7.2(b), $\Gamma_0^1(v_1)$ has a trail $T_{v_1}^0$ with $|\mathcal{E}_{\Gamma^*(v_1)}(T_{v_1}^0)| \ge 4\overline{\sigma}_2(G) - 14$. Hence, by (32), (33) and $|\mathcal{E}_{\Gamma^*(v_1)}(T_{v_1}^0)| \ge 4\overline{\sigma}_2(G) - 14$,

$$\begin{aligned} |E(\Theta)| &\geq |E(P_0)| + |\mathcal{E}_{\Gamma^*(v_1)}(T^0_{v_1})| + \sum_{i=2} |\mathcal{E}_{\Gamma^*(v_i)}(T_i)| \\ &\geq 15 + (4\overline{\sigma}_2(G) - 14) + 8(\overline{\sigma}_2(G) - 4) = 12\overline{\sigma}_2(G) - 31. \end{aligned}$$

Thus, Theorem 4.3 holds.

In the following, we assume that $|V(\Gamma_0^1(v_i))| \le 7$ for all $v_i \in V(P_0)$ and

 $\alpha'(\Gamma^*(v_1)) \ge \alpha'(\Gamma^*(v_2)) \dots \ge \alpha'(\Gamma^*(v_{10})).$ (34)

Claim 2. For $v \in V(\Theta_0)$, if $\Gamma^*(v) \neq K_{1,r}$, then $\alpha'(\Gamma^*(v)) \ge 2$ and Θ contains a subgraph $\Psi(v)$ of $\Gamma^*(v)$ such that $\mathcal{E}_{\Gamma^*(v)}(\Psi(v)) \subseteq \mathcal{E}_{\Gamma^*(v)}(T_v) \subseteq E(\Theta)$ where T_v is the trail as a part of Θ defined above and

$$|\mathcal{E}_{\Gamma^{*}(v)}(\Psi(v))| \geq \begin{cases} 2\overline{\sigma}_{2}(G) - 6 & \text{if } \alpha'(\Gamma^{*}(v)) = 2; \\ 3\overline{\sigma}_{2}(G) - 12 & \text{if } \alpha'(\Gamma^{*}(v)) = 3; \\ 4\overline{\sigma}_{2}(G) - 17 & \text{if } \alpha'(\Gamma^{*}(v)) \ge 4; \\ 4\overline{\sigma}_{2}(G) - 14 & \text{if } \alpha'(\Gamma^{*}(v)) \ge 5 \text{ and } \overline{\sigma}_{2}(G) \ge 12. \end{cases}$$
(35)

Case A. $\Gamma_0^1(v) = K_1$. Then $\Gamma^*(v) = \Gamma(v)$ and $\Gamma_1^2(v) = \Gamma_1(v)$.

Since $\Gamma^*(v) \notin \{K_1, K_{1,r}\}, \Gamma_0^2(v) = \Gamma_0(v)$ is a nontrivial collapsible subgraph of G_0 . Let $\Psi(v) = \Gamma_0(v)$. By the definition of Θ , $\mathcal{E}_{\Gamma^*(v)}(\Psi(v)) = E(\Gamma^*(v)) = \mathcal{E}_{\Gamma^*(v)}(T_v) \subseteq E(\Theta)$. Since *G* is K_3 -free and simple, $\Gamma(v)$ and $\Gamma_1(v)$ are K_3 -free and simple. Hence, $\alpha'(\Gamma^*(v)) \ge \alpha'(\Gamma_1^2(v)) \ge 2$. By Proposition 3.3 when $\alpha'(\Gamma^*(v)) = 2$, by (6) of Lemma 5.2 when $\alpha'(\Gamma^*(v)) = 3$ and by Lemma 5.2(b) when $\alpha'(\Gamma^*(v)) \ge 4$,

$$|\mathcal{E}_{\Gamma^{*}(v)}(\Psi(v))| = |E(\Gamma^{*}(v))| \ge \begin{cases} 2\overline{\sigma}_{2}(G) - 6 & \text{if } \alpha'(\Gamma^{*}(v)) = 2; \\ 3\overline{\sigma}_{2}(G) - 12 & \text{if } \alpha'(\Gamma^{*}(v)) = 3; \\ t\overline{\sigma}_{2}(G) - t^{2} - 1 & \text{if } t = \alpha'(\Gamma^{*}(v)) \ge 4. \end{cases}$$
(36)

Case B. $\Gamma_0^1(v) \neq K_1$ and $|V(\Gamma_0^1(v))| \leq 7$. Then $\Gamma_0^1(v)$ is a nontrivial reduced subgraph. Since $|V(\Gamma_0^1(v))| \leq 7$, by Lemma 7.2, $\Gamma^*(v)$ has a trail T_v as a part of Θ with

$$|\mathcal{E}_{\Gamma^*(\nu)}(T_{\nu})| \ge \begin{cases} 2\overline{\sigma}_2(G) - 2 & \text{if } \alpha'(\Gamma^*(\nu)) = 2; \\ 3\overline{\sigma}_2(G) - 6 & \text{if } \alpha'(\Gamma^*(\nu)) = 3; \\ 4\overline{\sigma}_2(G) - 10 & \text{if } \alpha'(\Gamma^*(\nu)) \ge 4. \end{cases}$$
(37)

Thus, for $2 \le \alpha'(\Gamma^*(v)) \le 4$, (37) implies (36). If $\alpha'(\Gamma^*(v)) \ge 5$ and $\overline{\sigma}_2(G) \ge 12$, then by (36) with t = 5, $5\overline{\sigma}_2(G) - 26 \ge 4\overline{\sigma}_2(G) - 14$. Then T_v is the subgraph $\Psi(v)$. Claim 2 is proved.

Let n_0 be the number of $\Gamma^*(v_i) \neq K_{1,r}$. By Claim 2 and (34), for $1 \le i \le n_0$, Θ contains a subgraph $\Psi(v_i)$ in $\Gamma^*(v_i)$ with $|\mathcal{E}_{\Gamma^*(v_i)}(T_i)| = |\mathcal{E}_{\Gamma^*(v_i)}(\Psi(v_i))| \ge 2\overline{\sigma}_2(G) - 6$. By (32) and by (33) (for $i > n_0$),

$$|E(\Theta)| \geq |E(P_0)| + \sum_{i=1}^{n_0} |\mathcal{E}_{\Gamma^*(\nu_i)}(T_i)| + \sum_{i=n_0+1}^{9} |\mathcal{E}_{\Gamma^*(\nu_i)}(T_i)|$$
(38)

$$\geq 15 + n_0(2\overline{\sigma}_2(G) - 6) + (9 - n_0)(\overline{\sigma}_2(G) - 4) = (n_0 + 9)\overline{\sigma}_2(G) - 21 - 2n_0.$$
(39)

If $n_0 \ge 3$, then $G \notin \bigcup_{i=1}^5 \mathcal{P}_i$. Let $n_0 = 3 + j$ and $j \ge 0$. Then by (39) and $\overline{\sigma}_2(G) \ge 7$,

$$|E(\Theta)| \ge (n_0 + 9)\overline{\sigma}_2(G) - 21 - 2n_0 = 12\overline{\sigma}_2(G) - 27 + j(\overline{\sigma}_2(G) - 2) > 12\overline{\sigma}_2(G) - 31.$$

Thus, Theorem 4.3(d) is proved for this case.

If $n_0 = 2$ and $\max\{\alpha'(\Gamma^*(v_1)), \alpha'(\Gamma^*(v_2))\} \ge 3$, then $G \notin \bigcup_{i=1}^5 \mathcal{P}_i$. By (38), (33) and Claim 2,

$$\begin{aligned} |E(\Theta)| &\geq |E(P_0)| + |\mathcal{E}_{\Gamma^*(\nu_1)}(T_1)| + |\mathcal{E}_{\Gamma^*(\nu_2)}(T_2)| + \sum_{i=3}^9 |\mathcal{E}_{\Gamma^*(\nu_i)}(T_i)| \\ &\geq 15 + (3\overline{\sigma}_2(G) - 12) + (2\overline{\sigma}_2(G) - 6) + 7(\overline{\sigma}_2(G) - 4) = 12\overline{\sigma}_2(G) - 31 \end{aligned}$$

Again, Theorem 4.3(d) holds.

Thus, we only need to consider the cases $n_0 = 1$ and $n_0 = 2$ with $\alpha'(\Gamma^*(v_1)) = \alpha'(\Gamma^*(v_2)) = 2$. Now, we can complete our proof by checking on each of the cases of Theorem 4.3.

(a) $G \notin \mathcal{P}_1$. By (39) with $n_0 \in \{1, 2\}$, in the worst case, $|E(\Theta)| \ge 10\overline{\sigma}_2(G) - 23$. Theorem 4.3(a) holds.

(b) $G \notin \mathcal{P}_1 \cup \mathcal{P}_2$. Then either $n_0 = 2$ or $n_0 = 1$ and $\alpha'(\Gamma^*(v_1)) \ge 3$. If $n_0 = 2$, then by (39) with $n_0 = 2$, $|E(\Theta)| \ge 11\overline{\sigma_2}(G) - 25 > 11\overline{\sigma_2}(G) - 29$. Case (b) is proved. If $n_0 = 1$ and $\alpha'(\Gamma^*(v_1)) \ge 3$, then by Claim 2, $|\mathcal{E}_{\Gamma^*(v_1)}(T_1)| \ge 3\overline{\sigma_2}(G) - 12$. By (38) and (33), $|E(\Theta)| \ge 15 + (3\overline{\sigma_2}(G) - 12) + 8(\overline{\sigma_2}(G) - 4) = 11\overline{\sigma_2}(G) - 29$. Theorem 4.3(b) is proved.

(c) $G \notin \bigcup_{i=1}^{3} \mathcal{P}_{i}$ and $\overline{\sigma}_{2}(G) \ge 9$. Then either $n_{0} = 2$ or $n_{0} = 1$ and $\alpha'(\Gamma^{*}(v_{1})) \ge 4$. If $n_{0} = 2$, then by (39) with $n_{0} = 2$, $|E(\Theta)| \ge 11\overline{\sigma}_{2}(G) - 25$. Case (c) is proved. If $n_{0} = 1$ and $\alpha'(\Gamma^{*}(v_{1})) \ge 4$, then by Claim 2, $|\mathcal{E}_{\Gamma^{*}(v_{1})}(T_{1})| \ge 4\overline{\sigma}_{2}(G) - 17$. By (38), (33) and $\overline{\sigma}_{2}(G) \ge 9$, $|E(\Theta)| \ge 15 + (4\overline{\sigma}_{2}(G) - 17) + 8(\overline{\sigma}_{2}(G) - 4) = 12\overline{\sigma}_{2}(G) - 34 \ge 11\overline{\sigma}_{2}(G) - 25$. (c) is proved.

(d) $G \notin \bigcup_{i=1}^{4} \mathcal{P}_{i}$. If $n_{0} = 2$ with $\alpha'(\Gamma^{*}(v_{i})) = 2$ (i = 1, 2), then $G \in \mathcal{P}_{4}$, a contradiction. Thus, $n_{0} = 1$. Since $G \notin \bigcup_{i=1}^{4} \mathcal{P}_{i}$, $\alpha'(\Gamma^{*}(v_{1})) \ge 4$. By Claim 2, $|\mathcal{E}_{\Gamma^{*}(v_{1})}(T_{1})| \ge 4\overline{\sigma}_{2}(G) - 17$. By (38) and (33), $|\mathcal{E}(\Theta)| \ge 15 + (4\overline{\sigma}_{2}(G) - 17) + 8(\overline{\sigma}_{2}(G) - 4) = 12\overline{\sigma}_{2}(G) - 34$. Theorem 4.3(d) is proved.

(e) $G \notin \mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3 \cup \mathcal{P}_4 \cup \mathcal{P}_5$ and $\overline{\sigma}_2(G) \ge 12$.

Using the same argument for case (d) above, we have $n_0 = 1$. Since $G \notin \bigcup_{i=1}^5 \mathcal{P}_i$, $\alpha'(\Gamma^*(v_1)) \ge 5$. By Claim 2 for $\alpha'(\Gamma^*(v_1)) \ge 5$ and $\overline{\sigma}_2(G) \ge 12$, $|\mathcal{E}_{\Gamma^*(v_1)}(T_1)| \ge 4\overline{\sigma}_2(G) - 12$. By (38) and (33), $|E(\Theta)| \ge 15 + (4\overline{\sigma}_2(G) - 12) + 8(\overline{\sigma}_2(G) - 4) = 12\overline{\sigma}_2(G) - 31$. Theorem 4.3(e) is proved.

References

- [1] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications", American Elsevier, New York (1976).
- [2] P. A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988), 29 - 45.
- [3] P. A. Catlin, Z. Han, and H.-J. Lai, Graphs without spanning Eulerian trails, Discrete Math. 160 (1996) 81–91.
- [4] Z.-H. Chen, Circumferences of 3-connected claw-free graphs, Discrete Math. 339 (2016) 1640-1650.

- [5] Z.-H. Chen, Chvátal-Erdös type conditions for hamiltonicity of claw-free graphs, Graphs and Combinatorics, (2016) 32: 2253-2266.
- [6] W.-G. Chen and Z.-H. Chen, Spanning Eulerian subgraphs and Catlin's reduced graphs, J. Combinatorial Mathematics and Combinatorial Computing, 96 (2016), pp. 41-63.
- [7] Z.-H. Chen, H.-J. Lai, X.W. Li, D.Y. Li, J. Z. Mao, Eulerian subgraphs in 3-edge-connected graphs and Hamiltonian line graphs, J. Graph Theory 42 (2003) 308-319.
- [8] Z.-H. Chen, H.-J. Lai, L. M. Xiong, Minimum degree conditions for the Hamiltonicity of 3connected claw-free graphs, J. Combin. Theory Ser. B 122 (2017) 167-186.
- [9] F. Harary and C. St. J. A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701 - 710.
- [10] H.-J. Lai, Y. Shao, M. Zhan, Hamiltonicity in 3-connected claw-free graphs, J. Combin. Theory Ser. B 96 (2006) 493-504.
- [11] M. Li, Circumferences of regular claw-free graphs, Discrete Math. 306 (2006) 2682-2694.
- [12] M. Li, Hamiltonian theory in claw-free graphs, in Discrete Mathematics Research Progress, editor: Kenneth B. Moore, pp. 139-211. © 2008 Nova Science Publishers, Inc.
- [13] M. Li, Y. Cui, L.M. Xiong, Y. Tian, H. Jiang, X. Yuan, Circumferences and minimum degrees in 3-connected claw-free graphs, Discrete Math. 309 (2009) 3580-3587.
- [14] M. M. Mathews, D. P. Sumner, Longest paths and cycles in $K_{1,3}$ -free graphs, J. Graph Theory 9(1985) 269-277.
- [15] N. D. Roussopoulos, A max $\{m, n\}$ algorithm for determining the graph *H* from its line graph *G*, Information Processing Letters 2 (1973) 108-112.
- [16] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70(1997) 217-224.
- [17] Y. Shao, Claw-free graphs and line graphs, Ph.D dissertation, West Virginia University, 2005.