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On Hamiltonian Line Graphs 

Zhi-Hong Chen 

Deparlment of Mathematics 
Wayne Slate University 

Detroit Mi 48202 

Abstract. Lel G be a 3-edge-conncclcd simple triangle-free graph of order n. Using a 
contraction method, we prove that if 8( G) ;:::: 4 and if d( u) + d( v) > n/ 10 whenever 
uv E E( G) (or whenever uv rt E( G) ), then the graph G has a spanning eulerian sub­
graph. This implies that the line graph Ii G) is hami1tonian. We shall also characterize 
the extremal graphs, 

Introduction. 

We follow the notation of Bondy and Murty[3], except that graphs have no loops. 
The line graph L( G) of graph G is a graph whose set of vertices is the set E( G) 
of edges of G; two vertices e, and e2 of L( G) are adjacent if and only if e1 and 
e2 have a common vertex in G. For v E V ( G), we define (he neighborhood 
N( v) of v in G to be the set of vertices adjacent to v in G. A bond is a minimal 
nonempty edge cut. We shall use P to denole the Petersen graph. 

A graph is eulerian if it is connected and every vertex has even degree. An 
eulerian subgraph H is called a dominating eulerian subgraph of G if E( G -
V( H)) = 0. A graph G is called supereulerian if it has a spanning eulerian 
subgraph H. For a graph G, let 0( G) denote the set of vertices of odd degree in G. 
A graph G is called collapsible if for every even setX � V( G) there is a spanning 
connected subgraph Hx ofG,such thatO(Hx) = X. Thus, the trivial graph K 1 

is boU1 supereulerian and collapsible. Denote the family of supcreulerian graphs 
by SI:,, and denote the family of collapsible graphs by CC. Obviously, CC � SL,, 
and collapsible graphs are 2-edge-connected. Examples of graphs in CC include 
the cycles C2 , C3 , but not C, if t ? 4 . 

Let G be a graph, and let fl be a connected subgraph of G. The contraction 
G / II is the graph obtained from G by contracting all edges of If, and by deleting 
any resulling loops. Even when G is simple, G/ JI may not be. 

In [SJ, Catlin showed that every graph G has a unique collection of maximal 
collapsible subgraphs H1 , H2,. • • , II,. Define G1 to be the graph obtained from 
G by contracting each fl; into a single vertex v;, ( I :,; i :,; c). Since V ( G) = 
V(Hi) U • • • U V(Il,), the graph G 1 has orderc and V(G1 ) = {v\, v;, • • • ,v;}. 
We call the graph G1 the reduction of G and call H; the preimage of v/ in G. In 
this paper we also say that G can be contracted to G1 if G1 is the reduction of G. 
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Any graph G has a unique reduction G1 [5]. A graph is collapsible if and 
only if its reduction is K1 • We shall used( v) and d1 ( v) to mean the degree of 
a vertex v in G and G1 , respectively. A graph is reduced if it is the reduction of 
some other graph. 

Theorem A (Catlin [SD. LetG be a graph.

(a) G is reduced if and only if G has no nontrivial collapsible sub­
graphs.

(b) LetH beacollapsiblesubgraphofG. ThenG is collapsible if and
only ifG / H is collapsible.

(c) Let H be a collapsible subgraph ofG. Then G is supereulerian if
and only ifG / H is supereulerian. I 

In this note, we will discuss some best passible conditions for a triangle-free 
graph such that its line graph is hamiltonian. 

There are some prior results on hamiltonian line graph of simple triangle-free 
graph. 

Theorem B (Bauer [1]). Let G i;:: K
.,

,. be bipartite, where m 2 n 2 2. If 
5( G) > m/2, the n L( G) is hamiltonian. I 

Theorem C (Lai (10]). Let G be a 2-edge-connected triangle-free simple graph 
onn> 30 vertices. Ifli(G) > 1�, thenL(G) ishamiltonian. I

Remark: Several authors have studied the same kind of questions for simple graphs 
(see [2], [4], [SJ, [6], [7], [9] a'ld (11]). 

We shall use the following 

Theorem D (Harary and Nash-Williams [8]). The line graph L( G) of a simple 
graphG with at least three edges contains a hamiltonian cycle if and only ifG has 
a dominating eulerian subgraph. I 

Theorem E (Chen [6]). Let G be a 3-edge-connected simple graph of order n. 
If every bond E <;: E( G) with /El = 3 satisfies the property that each component 
ofG - E has order at least n/ IO, then exactly one of the following holds: 

(i) GE SC;
(ii) n = 10 s for some integers, and G can be contracted to P (i.e.

G1 = P}such thatthepreimageofeach vertex of Pis a collapsible
subgraphofG onexactlys = n/10 vertices. I 
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Main Results. 

Theorem 1. Let G be a 3-edge-connected simple triangle-free graph of order n. 
If5(G) 2 4 andifeveryuv E E(G) satisfies

d(u) + d(v) 210, (!) 

then exactly one of the following holds: 

(i) GE SC;
(ii) n = 10 m for some integer m 2 8, and G can be contracted to

P such that the pre image of each vertex v; ( 1 :,;; i :,;; 10) of P is
eith.er Kt .a or Kt,a - e for some e� wheret ands are dependent on

i,t+s=m=n/10 andmin{t,s}24.

Proof: By (c) of Theorem A, and since Pis not supereulerian, the conclusions (i) 
and (ii) are clearly mutually exclusive. 

Let E be a bond of G with /El = 3, and let H be a component of G - E. 
For any e E E( G), let n,, denote the number of edges of E adjacent in G toe. By 
5(G) 24 and/El= 3,we havelV(H)I > 1. Hence,Hhasanedge, sayxy. 
By 5(G) 2 4 and /El= 3, and since G is simple, 

4+ 4 :5; d(x) + d(y) :5; 2(1V(H)l-1) + ""• :5; 2IV(H)I + 1, 

and so IV( H) I 2 4 > 3 = IE/. Then H has a venex. say u, that is not incident
with any edge of E. By d( u) 2 5( G) 2 4 > IEI, u has a neighbor in H,
say v. that is also not incident with any edge of E, and so N(v) <;: V(H) and 
N( u) i;:: V(H). Since G is triangle-free, N( u) n N( v) = 0. Hence, by (1), 

IV(H)I 2 IN(u)I + !N(v)I = d(u) + d(v) 210. 

By Theorem E, either G E SC, or n = 10m for some m 2 8 and G can be 
contracted to P such that all pre images H 1 , H 2 , • • • , H 10 have order m = n/ 10 . 

SupposeGcanbecontractedtoG1 = P. LetV(P) = {v;, v2,··· , v;0}. 
Thus d1 ( v:) = 3 for I :,;; i :,;; JO. The corresponding maximal collapsible 
subgraphs are H1, H2, • • • , H10 . Each JI; (I :,;; i :,;; 10) is joined to the remainder 
of G by a bond consisting of the d1 ( v;) = 3 edges that are incident with v; in P.

Then from above we can see that each H; ( 1 :,;; i:,;; 10) has u; and v; in V(H;)
such that 

V( H;) = N( v;) UN( u;) and N( u,) n N( v;) = 0.

Since only d1 ( v:) = 3 edges of G have one end in H; and by (1), it follows that 
H; is K,., or K,,, - e for some e E E(K,.,), wheret = !N(u;) I ands= IN( v,)I, 
and sot+ s = IV( H;) I = n/10 and min {t, s} 2: 5( G) ;::: 4. I
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Theorem 2. Let G be a 3-edge-connected simple triangle-free graph of ordern. 
Ifo(G) z4 andif 

n d(u) + d(v) > -, (2)- IO 

whenever uv ¢ E( G), then exaclly one of the following holds:
(i) GE SC; 

(ii) n = 20 s for some integers 2 4, and G can be contracted to P in
such a way that the preimage of each vertex of Pis either K,,, orKa,3 - e forsomeedgee.

Proof: Let Ebe a bond of G with !El = 3, and let H be a component of G - E.

From the proof of Theorem 1, we know that there is an edge, say uv, ·such that
N(v) <;;; V(H) andN(u) <;;; V(H). SinceGistriangle-free,N(u)nN(u) = 0.
Hence

fV(H)f 2 fN(u)I+ IN(v)I. (3)
Case 1 (n::;; 80 ). Since 8( G) 2 4, by (3),

fV(H)f 2 d(v) + d(u) 2 2/i(G) 2 8 2 1�.
By Theorem E, it is easy to see that the theorem holds.
Case 2 (n 2 81). Since Ii( G) 2 4 and IEI = 3, either N( u) or N( v) has

at least two vertices x and y which are not adjacent to any edges of E and then
N(x) <;;; V(H) andN(y) <;;; V(H). We mayassumethatxandyare inN(u).
Since G is triangle-free, xy ¢ E(G). By (2),

n2max{fN(x)l,IN(y)l}z IN(x)f+ fN(y)f = d(x) +d(y) 2 w·

We may assume
nIN(x)I 2 20 · (4)

Sincenz 81, fN(x)l 2 5 andso we canfindw,z E N(x) such thatwandz
are notadjacenttoany edges of E and then N(w) <;;; V(H) andN(z) <;;; V(H).
Since G is K3 -free, wz ¢ E( G). By (2),

n2 max{IN(w)f,IN(z)l} 2 fN(w)f+ IN(z)I = d(w) + d(z) 210,
and so we may assume

nfN(z)f 2 20 ·
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(5)

Sincez E N(x) andGistriangle-free,N(x)nN(z) = 0. SinceN(x) <;;; V(H),
and N( z) <;;; V(H), by (4) and (5),

n n n fV(H)I 2 fN(x)I + fN(z)l 2 20 + 20 = IO· (6)

Therefore, bY Theorem E, either G E SC, or G can be contracted to P such that
the preimages H, , H 2 , • · · , H 1 o of vertices of P have order 1';, • 

Suppose thatG can be contracted to P. Let V(P) = {11;, v�, .. • , 11i0}. The
corresponding maximal collapsible subgraphs are H 1 , H 2 , • • • , H 10• From above
and(6),and sincefV(H,)I = n/10,we can seethatforeachi(l 5 i::;; 10),
V( H;) = N(x,) UN(z,) for some x,, z, E V(H,) with N(x;) nN(z,) = 0 and
IN(x,)I = n/20,IN(z,)I = n/20. Since onlyd,(v:J = 3 edgeshaveexactly
one end in H, and by (2), H; is either K,,, or K,,, - e for some e E E( K,,,),
where s=n/20. I
Coro Dary 3. LetG be a 3-edge-connected simple triangle-free graph on n 2 61
vertices. If

8(G)220·
then eitherG E SC orn = 20s for some integers 2 4 andG can be contracted
to Pin such a way/hat thepreimageofeach vertex of Pis either K,,, or K,.,- e
forsomee E E(K,.,).

Proof: The inequalities n 2 61 and Ii( G) 2 n/20 imply that Ii( G) 2 4 and (2)
holds in Theorem 2. Hence Corollary 3 follows. I
Remark: Lett and s be two integeis with t + s = 43 and min { t, s} 2 4. Let G
be the graph obtained by taking the union of bipartite graph K,,. and the Blan�a
snark, and by identifying a pair of vertices, one from each componenL Then G is
a 3-edge-connected simple triangle-free graph of order n = 60 and

n
li(G) = 3 2 20,

and so for any two vertices u and u in G (no matter whether uv E E( G) or not),
nd(u)+d(v)262

10
.

But the reduction of G is the Blanusa snark, which is a nonsupereulerian triangle­
free cubic graph on 18 vertices, and so the graph G does not satisfy any conclusions
of Theorem I, 2 and Corollary 3. One can see that other reduced nonsupereulerian
cubic graphs of order n::;; 60 can also be used to construct such graphs G. This
shows that the condition Ii( G) 2 4 in Theorem l and Theorem 2 is necessary and
n 2 6 I in C:.orollary 3 is best possible in some sense.

By Theorem D and Theorem I or 2, we have the following
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Corollary 4. LetG be a 3-edge-connected simple triangle-free gmph of ordern. 
lf5(G) ;:,: 4 and if 

n 
d(u) + d(v) > 

10
, 

wheneveruv E E(G) (or wheneveruv 1/. E(G)), then L(G) is hamiltonian. I 
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