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On Hamiltonian Line Graphs <
Zhi-Hong Chen

Department of Mathematics
Wayne State University
Delroit Mi 48202

Abstract. Lel G be a 3-edge-connected simple triangle-free graph of order n. Using a
contraction method, we prove that if §(G) > 4 and if d(u) + d(v) > n/10 whencver
uv € E(G) (or whenever uv & E(G)), then the graph G bas a spanning culcrian sub-
graph. This implies that the line graph ,{G) is hamiltonian. We shall also characterize
the extremal graphs,

Introduction.

We follow the notation of Bondy and Murty-[3], except that graphs bave no loops.
The line graph L(G) of graph G is a graph whose set of vertices is the set E(QG)
of edges of G; two vertices ey and ez of L(QG) are adjacent if and only if ey and
ez have a common vertex in G. For v € V(G), we define the neighborhood
N(v) of v in G to be the set of vertices adjacent to v in G. A bond is a minimal
nonemply edge cut. We shall use P to denole the Petersen graph.

A graph is eulerian if it is connected and every vertex has even degree. An
culerian subgraph H is called a dominating eulerian subgraph of G if E(G ~
V(H)) = 0. A graph G is called supereulerian if it has a spanning eulcrian
subgraph H. For agraph G, Ict O(G) denote the set of vertices of odd degree in G.
A graph G is called coliapsible if for every even set X C V(G) there is a spanning
connected subgraph H x of G, such that O( H x) = X. Thus, the trivial graph K,
is both superculerian and collapsible. Denote the family of superculerian graphs
by SC, and denote the family of collapsible graphs by CC. Obviously, CC C SC,
and collapsible graphs are 2-edge-connected. Examples of graphs in CC include
the cycles C,, Gy, butnot Gy if t > 4.

Let G be a graph, and let If be a connected subgraph of G'. The contraction
G/ I is the graph obtained from G by contracting all edges of H, and by deleting
any rcsulting loops. Even when G is simple, G/ H may not be.

In [S], Catlin showed that every graph G has a unique collection of maximal
collapsible subgraphs Hy, 2, .- , H.. Define Gy to be the graph obtained {rom
G by contracting each F; into a single vertex v}, (1 < 1 < ¢). Since V(G) =
V(H\) U UV (Il,),the graph Gy has order cand V(Gy) = {v{,v5, -+ ,¥.}.
We call the graph G the reduction of G and call H; the preimage of v} in G. In
this paper we also say that G can be contracted to G if G is the reduction of G

ARS COMBINATORIA 33(1992), pp. 289-294

]




Any graph G has a unique reduction G1 [5). A graph is collapsible if and
only if its reduction is K,. We shall use d(v) and d; (v) to mean the degree of
a vertex v in G and Gy, respectively. A graph is reduced if it is the reduction of
some other graph.

Theorem A (Catlin [S]). LetG be a graph.

(@ G is reduced if and only if G has no nontrivial collapsible sub-
graphs.

(b) Let H beacollapsible subgraph of G. Then G is collapsible if and
only if G/ H is collapsible.

(©) Let H be a coliapsible subgraph of G. Then G is supereulerian if
and only if G/ H is supereulerian. I

In this note, we will discuss some best possible conditions for a triangle-free
graph such that its line graph is hamiltonian.

There are some prior results on hamiltonian line graph of simple iriangle-free
graph.

Theorem B (Bauer [1]). Let G C Kam be bipartite, wherem > n > 2. If
5(G) > m/2, then L(G) is hamiltonian. g

Theorem C (Lai [10]). Let G be a 2-edge-connected triangle-free simple graph
onn > 30 vertices. If6(G) > &, then L(G) is hamiltonian. [}

Remark: Several authors have studied the same kind of questions for simple graphs
(see [2], [4], [5], [6], (7], [9] and [11]).

We shall use the following

Theorem D (Harary and Nash-Williams [8]). The line graph L(G) of a simple
graph G with at least three edges contains a hamiltonian cycle if and only if G has
a dominating eulerian subgraph. [ |

Theorem E (Chen [6]). Let G be a 3-edge-connected simple graph of order n.
Ifeverybond E C E(G) with|E| = 3 satisfies the property that each component
of G — F has order at Jeast n/ 10, then exactly one of the following holds:

D Ges&,
(i) =n = 10s for some integer s, and G can be contracted fOP (e.

G = P)such that the preimage of each vertex of P is a collapsible
subgraph of G on exactly s = n/10 vertices. |
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Main Results.

Theorem 1. Let G be a 3-edge-connected simple triangle-free graph of order n.
If6(G) > 4 and ifevery uv € E(G) satisfies

-

d(u) + d(v) >~ (1)
10
then exactly one of the following holds:
(i) GeSC
(i) n = 10m for some integer m > 8, and G can be contracted to
P such that the preimage of each vertex v; (1 < 1 £ 10) of P is

either K; , or K, — e for some e, wheret and s are dependent on
i,t+s=m=n/10 andmin{t, s} > 4.

Proof: By (c) of Theorem A, and since P is not supereulerian, the conclusions (i)
and (ii) are clearly mutually exclusive.

Let E be a bond of G with |E| = 3, and let H be a component of G — E.
For any e € E(G), let . denote the number of edges of E adjacent in G to e. By
8(G) > 4 and |E] = 3, we have |[V(H)| > 1. Hence, H has an edge, say zy.
By 6(G) > 4 and |E| = 3, and since G is simple,

444 <d(z) +d(y) SAVH)|— 1) + gy < 2[V(H] + 1,

and so |V(H)| >4 > 3 = |E|. Then H has a vertex, say u, that is not incident
with any edge of £. By d(u) > 6(G) > 4 > |E|, u has a neighbor in H,
say v, that is also not incident with any edge of F, and so N(v) C V(H) and
N(u) C V(H). Since G is triangle-free, N(u) N N(v) = &. Hence, by (1),

T
V()] 2 IN(w) |+ |N(v)| = d(u) + d(v) > 0
By Theorem E, either G € SC, or n = 10m for somem > 8 and G can be
contracted to P such that all preimages H, Ha,--- , Hio have order m = 5/10.

Suppose G can be contracted to Gy = P. Let V(P) = {v},v}, -+ ,v}0}-
Thus d;(v)) = 3 for 1 < i < 10. The corresponding maximal collapsible
subgraphs are Hy, H,,--- , Hio. Each H; (1 < 1 < 10) is joined to the remainder
of G by a bond consisting of the d;(v}) = 3 edges that are incident with v in P.
Then from above we can see that each H; (1 < 7 < 10) has u; and v; in V(H;)
such that

V(H;) = N(v) UN(w) and N(u) N N(v;) = 8.

Since only d;(v]) = 3 edges of G have one end in H; and by (1), it follows that
H;is K¢ 0t Ky s— e forsomee € E( K ,), wheret = |N(u;)| and s = |[N(v;)],
andsot+ s =|V(H;)|=nr/10 and min{t,s} > §(G) > 4. |
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Theorem 2. Let G be a 3-edge-connected Simpie triangle-fiee graph of ordern,
If6(G) >4 andif

o n
d(u) + d(v) > o 19))

whenever uv & E(Q), then exactly one of the follo wing holds:
@ Gesc

(i) n=20s for some integer s >4, and G can be contracted to P in

such a way that the preimage of each vertex of P is either K, s Or
K., — e for some edge e.

Proof: Let E be a bond of G with [Ef = 3, and let H be acomponent of G — E.
From the proof of Theorem 1, we know that there is an edge, say uv, such that
N(v) CV(H)and N(u) C V(H). Since G is triangle-free, N(v) NN (u) = 0
Hence

[V(H)] > IN(u)|+ |N(v)]. @

Case 1 (n < 80). Since §(G) > 4,by (3),
[V(H)] 2 d(v) +d(u) >26(G) >8> Tﬁ"
By Theorem E, it is easy to see that the theorem holds.

Case 2 (n > 81). Since §(&) > 4 and |E] = 3, cither N(u) or N(v) has
at least two vertices = and y which are not adjacent to any edges of E and then
N(z) CV(H)and N(y) C V(H). We may assume that z and y are in N(u).
Since G is triangle-free, zy ¢ E(G). By (2),

2max{IN(@)IN(®I} > IN(2)[+ |N(9)] = d(z) + d(y) > %,

We may assume

%
IN(2)] > 55 @)

Since n > 81, |N(z)| > 5 and so we can find w, z € N(z) such that w and =z
are not adjacent to any edges of £ and then N(w) C V(H) and N(z) C V(H).
Since G is K3-free, wz € E(G). By (2),

2 max{|N(w)|,IN(2)[} > [N(w)|+ |N(2)| = d(w) + d() > T"-

and so we may assume

n !
!N(Z)} > -ZT]- (5)
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Since z € N(z) and G is triangle-free, N(z) NN (z) = 8. Since N(z) C V(H),
and N(z) C V(H), by (4) and (5),

V()| 2 N1+ NG| > 55+ 55 = 75+ Q)

Therefore, by Theorem E, either G € SC, or G can be contracted to P such that
the preimages Hi, Ha, - - - , Hyo of vertices of P have order % .
Suppose that G can be contracted to P. Let V(P) = {v],v},--- ,vjo}. The
corresponding maximal collapsible subgraphs are H, Ha, - - - , Hio. From above
and (6), and since |V (H;)| = n/10, we can see that for each i (1 < i < 10),
V(H;) = N(z;) UN(z;) for some z;, z; € V(H;) with N(z;) N N(2) = $and
IN(z:)| = n/20, |[N(z)| = n/20. Since only di (v}) = 3 edges have exactly
one end in H; and by (2), H; is either K,, or K,, — e for some e € E(K,,),
where s=n/20. [ ]

-

Corollary 3. LetG be a 3-edge-connected simple triangle-free graphonn > 61 |
vertices. If

n
8(G) 2 55

then either G € SC orn = 20s for some integer s > 4 and G can be contracted
to P in such a way that the preimage of each vertex of P is either K, s or K, , — ¢
forsomee € E(K,,).

Proof: The inequalities » > 61 and 5(G) > n/20 imply that §(G) > 4 and (2)

holds in Theorem 2. Hence Corollary 3 follows. | |
Remark: Lett and s be two integers with t + s = 43 and min{t,s} > 4. LetG
be the graph obtained by taking the union of bipartite graph K, and the Blanu3a
snark, and by identifying a pair of vertices, one from each component. Then G is
a 3-edge-connected simple triangle-free graph of order n= 60 and

(G)=3>— 20
and so for any two vertices u and v in G (no matter whether uv € E{G) or not),

d(u) +d(v) 26 > — 10
But the reduction of G is the Blanu3a snark, which is a nonsupereulerian triangie-
free cubic graph on 18 vertices, and so the graph & does not satisfy any conclusions
of Theorem 1, 2 and Corollary 3. One can see that other reduced nonsupereulerian
cubic graphs of order n < 60 can also be used to construct such graphs G. This
shows that the condition §(G) > 4 in Theorem 1 and Theorem 2 is necessary and
n > 61 in Corollary 3 is best possible in some sense.

By Theorem D and Theorem 1 or 2, we have the following
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Corollary 4. Let G be a 3-edge-connected simple triangle-free graph of order n.
IF§(G) > 4 and if .

'1—0")

whenever uv € E(G) (or wheneveruv ¢ E(G)), then L(G) is hamiltonian.

d(u) + d(v) >
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