

Butler University Digital Commons @ Butler University

On Hamiltonian Line Graphs

Zhi-Hong Chen
Butler University, chen@butler.edu

Follow this and additional works at: https://digitalcommons.butler.edu/facsch_papers
Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation

Chen, Zhi-Hong, "On Hamiltonian Line Graphs" Ars Combinatoria / (1992): 289-294.
Available at https://digitalcommons.butler.edu/facsch_papers/1054

This Article is brought to you for free and open access by the College of Liberal Arts \& Sciences at Digital Commons @ Butler University. It has been accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler University. For more information, please contact digitalscholarship@butler.edu.

On Hamiltonian Line Graphs

Zhi-Hong Chen
Deparlment of Mathematics
Wayne State University
Detroit Mi 48202

Abstract

Let G te a 3 -edge-connected simple triangle-free graph of order n. Using a contraction method, we prove that if $\delta(G) \geq 4$ and if $d(u)+d(v)>n / 10$ whenever $u v \in E(G)$ (or whenever uv $\notin E(G)$), then the graph G has a spanning culerian subgraph. This implies that the line graph $L(G)$ is hamiltonian. We shall also characterize the extremal graphs.

Introduction.

We follow the notation of Bondy and Murty [3], except that graphs have no loops. The line graph $L(G)$ of graph G is a graph whose set of vertices is the set $\dot{E}(G)$ of edges of G; two vertices e_{1} and e_{2} of $L(G)$ are adjacent if and only if e_{1} and e_{2} have a common vertex in G. For $v \in V(G)$, we define the neighborhood $N(v)$ of v in G to be the set of vertices adjacent to v in G. A bond is a minimal nonempty edge cut. We shall use P to denote the Petersen graph.

A graph is eulerian if it is connected and every vertex has even degree. An culerian subgraph H is called a dominating eulerian subgraph of G if $E(G-$ $V(H))=\emptyset$. A graph G is called supereulerian if it has a spanning eulerian subgraph H. For a graph G, let $O(G)$ denote the set of vertices of odd degree in G. A graph G is called collapsible if for every even set $X \subseteq V(G)$ there is a spanning connected subgraph H_{X} of G, such that $O\left(H_{X}\right)=X$. Thus, the trivial graph K_{1} is both supereulerian and collapsible. Denote the family of superculerian graphs by $S C$, and denote the family of collapsible graphs by $C \mathcal{L}$. Obviously, $C \mathcal{C} \subseteq S \mathcal{S}$, and collapsible graphs are 2 -edge-connected. Examples of graphs in $C \mathcal{L}$ include the cycles C_{2}, C_{3}, but not C_{t} if $t \geq 4$.

Let G be a graph, and let H be a connected subgraph of G. The contraction G / H is the graph obtained from G by contracting all edges of H, and by deleting any resulting loops. Even when G is simple, G / H may not be.

In [5], Catlin showed that every graph G has a unique collection of maximal collapsible subgraphs $H_{1}, H_{2}, \cdots, H_{c}$. Define G_{1} to be the graph obtained from G by contracting each H_{i} into a single vertex $v_{i}^{\prime},(1 \leq i \leq c)$. Since $V(G)=$ $V\left(H_{1}\right) \cup \cdots \cup V\left(H_{c}\right)$, the graph G_{1} has order c and $V\left(G_{1}\right)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \cdots, v_{c}^{\prime}\right\}$. We call the graph G_{1} the reduction of G and call H_{i} the preimage of v_{i}^{\prime} in G. In this paper we also say that G can be contracted to G_{1} if G_{1} is the reduction of G.

Any graph G has a unique reduction G_{1} [5]. A graph is collapsible if and only if its reduction is K_{1}. We shall use $d(v)$ and $d_{1}(v)$ to mean the degree of a vertex v in G and G_{1}, respectively. A graph is reduced if it is the reduction of some other graph.

Theorem A (Catlin [5]). Let G be a graph.

(a) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(b) Let H be a collapsible subgraph of G. Then G is collapsible if and only if G / H is collapsible.
(c) Let H be a collapsible subgraph of G. Then G is supereulerian if and only if G / H is supereulerian.

In this note, we will discuss some best possible conditions for a triangle-free graph such that its line graph is hamiltonian.

There are some prior results on hamiltonian line graph of simple triangle-free graph.

Theorem B (Bauer [1]). Let $G \subseteq K_{n m}$ be bipartite, where $m \geq n \geq 2$. If $\delta(G)>m / 2$, then $L(G)$ is hamiltonian.

Theorem C (Lai [10]). Let G be a 2-edge-connected triangle-free simple graph on $n>30$ vertices. If $\delta(G)>\frac{\pi}{10}$, then $L(G)$ is hamiltonian.

Remark: Several authors have studied the same kind of questions for simple graphs (see [2], [4], [5], [6], [7], [9] and [11]).

We shall use the following
Theorem D (Harary and Nash-Williams [8]). The line graph $L(G)$ of a simple graph G with at least three edges contains a hamiltonian cycle if and only if G has a dominating eulerian subgraph.

Theorem E (Chen [6]). Let G be a 3 -edge-connected simple graph of order n. If every bond $E \subseteq E(G)$ with $|E|=3$ satisfies the property that each component of $G-E$ has order at least $\pi / 10$, then exactly one of the following holds:
(i) $G \in S C$;
(ii) $n=10 \mathrm{~s}$ for some integer s, and G can be contracted to P (i.e. $G_{1}=P$) such that the preimage of each vertex of P is a collapsible subgraph of G on exactly $s=\pi / 10$ vertices.

Main Results.

Theorem 1. Let G be a 3-edge-connected simple triangle-free graph of order n If $\delta(G) \geq 4$ and if every $น v \in E(G)$ satisfies

$$
\begin{equation*}
d(u)+d(v) \geq \frac{n}{10} \tag{1}
\end{equation*}
$$

then exactly one of the following holds:
(i) $G \in S \mathcal{L}$;
(ii) $n=10 m$ for some integer $m \geq 8$, and G can be contracted to P such that the preimage of each vertex $v_{i}(1 \leq i \leq 10)$ of P is either $K_{t, s}$ or $K_{t, s}-e$ for some e, where t and s are dependent on $i, t+s=m=n / 10$ and $\min \{t, s\} \geq 4$.

Proof: By (c) of Theorem A, and since P is not supereulerian, the conclusions (i) and (ii) are clearly mutually exclusive.

Let E be a bond of G with $|E|=3$, and let H be a component of $G-E$. For any $e \in E(G)$, let n_{e} denote the number of edges of E adjacent in G to e. By $\delta(G) \geq 4$ and $|E|=3$, we have $|V(H)|>1$. Hence, H has an edge, say $x y$. By $\delta(G) \geq 4$ and $|E|=3$, and since G is simple,

$$
4+4 \leq d(x)+d(y) \leq 2(|V(H)|-1)+n_{x y} \leq 2|V(H)|+1
$$

and so $|V(H)| \geq 4>3=|E|$. Then H has a vertex, say u, that is not incident with any edge of E. By $d(u) \geq \delta(G) \geq 4>|E|$, u has a neighbor in H, say v, that is also not incident with any edge of E, and so $N(v) \subseteq V(H)$ and $N(u) \subseteq V(H)$. Since G is triangle-free, $N(u) \cap N(v)=\emptyset$. Hence, by (1),

$$
|V(H)| \geq|N(u)|+|N(v)|=d(u)+d(v) \geq \frac{\pi}{10}
$$

By Theorem E, either $G \in \mathcal{S C}$, or $n=10 m$ for some $m \geq 8$ and G can be contracted to P such that all preimages $H_{1}, H_{2}, \cdots, H_{10}$ have order $m=\pi / 10$.

Suppose G can be contracted to $G_{1}=P$. Let $V(P)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \cdots, v_{10}^{\prime}\right\}$. Thus $d_{1}\left(v_{i}^{\prime}\right)=3$ for $1 \leq i \leq 10$. The corresponding maximal collapsible subgraphs are $H_{1}, H_{2}, \cdots, H_{10}$. Each $H_{i}(1 \leq i \leq 10)$ is joined to the remainder of G by a bond consisting of the $d_{1}\left(v_{i}^{\prime}\right)=3$ edges that are incident with v_{i}^{\prime} in P. Then from above we can see that each $H_{i}(1 \leq i \leq 10)$ has u_{i} and v_{i} in $V\left(H_{i}\right)$ such that

$$
V\left(H_{i}\right)=N\left(v_{i}\right) \cup N\left(u_{i}\right) \text { and } N\left(u_{i}\right) \cap N\left(v_{i}\right)=
$$

Since only $d_{1}\left(v_{i}^{\prime}\right)=3$ edges of G have one end in H_{i} and by (1), it follows that H_{i} is $K_{t, s}$ or $K_{t, s}-e$ for some $e \in E\left(K_{t, s}\right)$, where $t=\left|N\left(u_{i}\right)\right|$ and $s=\left|N\left(v_{i}\right)\right|$, and so $t+s=\left|V\left(H_{i}\right)\right|=n / 10$ and $\min \{t, s\} \geq \delta(G) \geq 4$.

Theorem 2. Let G be a 3-edge-connected simple triangle-free graph of ordern. If $\delta(G) \geq 4$ and if

$$
\begin{equation*}
d(u)+d(v) \geq \frac{n}{10} \tag{2}
\end{equation*}
$$

whenever uv $\notin E(G)$, then exactly one of the following holds:
(i) $G \in S C$;
(ii) $n=20 s$ for some integer $s \geq 4$, and G can be contracted to P in such a way that the preimage of each vertex of P is either $K_{s, s}$ or $K_{\mathrm{a}, \mathrm{s}}-e$ for some edge e.

Proof: Let E be a bond of G with $|E|=3$, and let H be a component of $G-E$. From the proof of Theorem 1, we know that there is an edge, say $u v$, such that $N(v) \subseteq V(H)$ and $N(u) \subseteq V(H)$. Since G is triangle-free, $N(v) \cap N(u)=\emptyset$. Hence

$$
\begin{equation*}
|V(H)| \geq|N(u)|+|N(v)| \tag{3}
\end{equation*}
$$

Case $1(n \leq 80)$. Since $\delta(G) \geq 4$, by (3),

$$
|V(H)| \geq d(v)+d(u) \geq 2 \delta(G) \geq 8 \geq \frac{n}{10} .
$$

By Theorem E, it is easy to see that the theorem holds.
Case $2(n \geq 81)$. Since $\delta(G) \geq 4$ and $|E|=3$, either $N(u)$ or $N(v)$ has at least two vertices x and y which are not adjacent to any edges of E and then $N(x) \subseteq V(H)$ and $N(y) \subseteq V(H)$. We may assume that x and y are in $N(u)$. Since G is triangle-free, $x y \notin E(G)$. By (2),

$$
2 \max \{|N(x)|,|N(y)|\} \geq|N(x)|+|N(y)|=d(x)+d(y) \geq \frac{n}{10}
$$

We may assume

$$
\begin{equation*}
|N(x)| \geq \frac{\pi}{20} \tag{4}
\end{equation*}
$$

Since $n \geq 81,|N(x)| \geq 5$ and so we can find $w, z \in N(x)$ such that w and z are not adjacent to any edges of E and then $N(w) \subseteq V(H)$ and $N(z) \subseteq V(H)$. Since G is K_{3}-free, $w z \notin E(G)$. By (2),

$$
2 \max \{|N(w)|,|N(z)|\} \geq|N(w)|+|N(z)|=d(w)+d(z) \geq \frac{n}{10}
$$

and so we may assume

$$
\begin{equation*}
|N(z)| \geq \frac{n}{20} \tag{5}
\end{equation*}
$$

Since $z \in N(x)$ and G is triangle-free, $N(x) \cap N(z)=0$. Since $N(x) \subseteq V(H)$, and $N(z) \subseteq V(H)$, by (4) and (5),

$$
\begin{equation*}
|V(H)| \geq|N(x)|+|N(z)| \geq \frac{n}{20}+\frac{n}{20}=\frac{n}{10} . \tag{6}
\end{equation*}
$$

Therefore, by Theorem E, either $G \in S C$, or G can be contracted to P such that the preimages $H_{1}, H_{2}, \cdots, H_{10}$ of vertices of P have order $\frac{\pi}{10}$.

Suppose that G can be contracted to P. Let $V(P)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \cdots, v_{10}^{\prime}\right\}$. The corresponding maximal collapsible subgraphs are $H_{1}, H_{2}, \cdots, H_{10}$. From above and (6), and since $\left|V\left(H_{i}\right)\right|=n / 10$, we can see that for each $i(1 \leq i \leq 10)$, $V\left(H_{i}\right)=N\left(x_{i}\right) \cup N\left(z_{i}\right)$ for some $x_{i}, z_{i} \in V\left(H_{i}\right)$ with $N\left(x_{i}\right) \cap N\left(z_{i}\right)=\emptyset$ and $\left|N\left(x_{i}\right)\right|=n / 20,\left|N\left(z_{i}\right)\right|=n / 20$. Since only $d_{1}\left(v_{i}^{\prime}\right)=3$ edges have exactly one end in H_{i} and by (2), H_{i} is either $K_{\mathrm{s}, \mathrm{d}}$ or $K_{s, n}-e$ for some $e \in E\left(K_{\mathrm{s}, \mathrm{s}}\right)$, where $s=n / 20$.
Corollary 3. Let G be a 3-edge-connected simple triangle-free graph on $n \geq 61$ vertices. If

$$
\delta(G) \geq \frac{n}{20}
$$

then either $G \in S C$ or $n=20 s$ for some integer $s \geq 4$ and G can be contracted to P in such a way that the preimage of each vertex of P is either $K_{s, s}$ or $K_{s, s}-e$ for some $e \in E\left(K_{s, s}\right)$.
Proof: The inequalities $n \geq 61$ and $\delta(G) \geq n / 20$ imply that $\delta(G) \geq 4$ and (2) holds in Theorem 2. Hence Corollary 3 follows.
Remark: Let t and s be two integers with $t+s=43$ and $\min \{t, s\} \geq 4$. Let G be the graph obtained by taking the union of bipartite graph $K_{t, s}$ and the Blanusa snark, and by identifying a pair of vertices, one from each component. Then G is a 3-edge-connected simple triangle-free graph of order $n=60$ and

$$
\delta(G)=3 \geq \frac{\pi}{20}
$$

and so for any two vertices u and v in G (no matter whether $u v \in E(G)$ or not),

$$
d(u)+d(v) \geq 6 \geq \frac{n}{10} .
$$

But the reduction of G is the Blanusa snark, which is a nonsupereulerian trianglefree cubic graph on 18 vertices, and so the graph G does not satisfy any conclusions of Theorem 1, 2 and Corollary 3. One can see that other reduced nonsupereulerian cubic graphs of order $n \leq 60$ can also be used to construct such graphs G. This shows that the condition $\delta(G) \geq 4$ in Theorem 1 and Theorem 2 is necessary and $\pi \geq 61$ in Corollary 3 is best possible in some sense.

By Theorem D and Theorem I or 2, we have the following

Corollary 4. Let G be a 3-edge-connected simple triangle-free graph of order n. If $\delta(G) \geq 4$ and if

$$
d(u)+d(v)>\frac{n}{10},
$$

whenever $u \in \in(G)$ (or whenever $u \cup \notin E(G)$), then $L(G)$ is hamiltonian.

Acknowledgqment.

The author wishes to thank Paul A. Catlin for his many helpful suggestions.

References

1. D. Bauer, On hamiltonian cycles in line graphs, Stevens Research Report, PAM No. 8501, Stevens Institute of Technology, Hoboken, NJ.
2. A. Benhocine, L. Clark, N. Kőhler, and H. J. Veldman, On circuits and pancyclic line graphs, J. Graph Theory 10 (1986), 411-425.
3. J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications", American Elsevier, New York, 1976.
4. R. A. Brualdi and R. F. Shanny, Hamiltonian line graphs, J. Graph Theory 5 (1981), 307-314.
5. P. A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988), 29-45.
6. Z.-H. Chen, Supereulerian graphs and the Petersen graph, Submitted.
7. Z.-H. Chen, A degree condition for spanning eulerian subgraphs, Submitted.
8. F. Harary and C. St. J. A. Nash-Williams, On spanning and dominating circuits in graphs, Can. Math. Bull. 20 (1977), 215-220.
9. H.-J. Lai, Eulerian subgraphs in a class of graphs, Ars Combinatoria (to appear).
10. H.-J. Lai, Contractions and Hamiltonian line graphs, J. Graph Theory 12 (1988), 11-15.
11. X.-W. Li, On S-circuits of graphs, Preprint.
