128 research outputs found
A viscoelastic deadly fluid in carnivorous pitcher plants
Background : The carnivorous plants of the genus Nepenthes, widely
distributed in the Asian tropics, rely mostly on nutrients derived from
arthropods trapped in their pitcher-shaped leaves and digested by their
enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms
and its mechanism of trapping has long intrigued scientists. The slippery inner
surfaces of the pitchers, which can be waxy or highly wettable, have so far
been considered as the key trapping devices. However, the occurrence of species
lacking such epidermal specializations but still effective at trapping insects
suggests the possible implication of other mechanisms. Methodology/Principal
Findings : Using a combination of insect bioassays, high-speed video and
rheological measurements, we show that the digestive fluid of Nepenthes
rafflesiana is highly viscoelastic and that this physical property is crucial
for the retention of insects in its traps. Trapping efficiency is shown to
remain strong even when the fluid is highly diluted by water, as long as the
elastic relaxation time of the fluid is higher than the typical time scale of
insect movements. Conclusions/Significance : This finding challenges the common
classification of Nepenthes pitchers as simple passive traps and is of great
adaptive significance for these tropical plants, which are often submitted to
high rainfalls and variations in fluid concentration. The viscoelastic trap
constitutes a cryptic but potentially widespread adaptation of Nepenthes
species and could be a homologous trait shared through common ancestry with the
sundew (Drosera) flypaper plants. Such large production of a highly
viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the
plant kingdom and suggests novel applications for pest control
Effects of an irregular bedtime schedule on sleep quality, daytime sleepiness, and fatigue among university students in Taiwan
<p>Abstract</p> <p>Background</p> <p>An irregular bedtime schedule is a prevalent problem in young adults, and could be a factor detrimentally affecting sleep quality. The goal of the present study was to explore the association between an irregular bedtime schedule and sleep quality, daytime sleepiness, and fatigue among undergraduate students in Taiwan.</p> <p>Methods</p> <p>A total of 160 students underwent a semi-structured interview and completed a survey comprising 4 parts: Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and a rating of irregular bedtime frequency. Participants were grouped into 3 groups in terms of irregular bedtime frequency: low, intermediate, or high according to their 2-week sleep log. To screen for psychological disorders or distress that may have affected responses on the sleep assessment measures, the Chinese health questionnaire-12 (CHQ-12) was also administered.</p> <p>Results</p> <p>We found an increase in bedtime schedule irregularity to be significantly associated with a decrease in average sleep time per day (Spearman r = -0.22, p = 0.05). Multivariate regression analysis revealed that irregular bedtime frequency and average sleep time per day were correlated with PSQI scores, but not with ESS or FSS scores. A significant positive correlation between irregular bedtime frequency and PSQI scores was evident in the intermediate (partial r = 0.18, p = 0.02) and high (partial r = 0.15, p = 0.05) frequency groups as compared to low frequency group.</p> <p>Conclusion</p> <p>The results of our study suggest a high prevalence of both an irregular bedtime schedule and insufficient sleep among university students in Taiwan. Students with an irregular bedtime schedule may experience poor sleep quality. We suggest further research that explores the mechanisms involved in an irregular bedtime schedule and the effectiveness of interventions for improving this condition.</p
The FGGY carbohydrate kinase family : insights into the evolution of functional specificities
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Computational Biology 7 (2011): e1002318, doi:10.1371/journal.pcbi.1002318.Function diversification in large protein families is a major mechanism driving expansion of cellular networks, providing organisms with new metabolic capabilities and thus adding to their evolutionary success. However, our understanding of the evolutionary mechanisms of functional diversity in such families is very limited, which, among many other reasons, is due to the lack of functionally well-characterized sets of proteins. Here, using the FGGY carbohydrate kinase family as an example, we built a confidently annotated reference set (CARS) of proteins by propagating experimentally verified functional assignments to a limited number of homologous proteins that are supported by their genomic and functional contexts. Then, we analyzed, on both the phylogenetic and the molecular levels, the evolution of different functional specificities in this family. The results show that the different functions (substrate specificities) encoded by FGGY kinases have emerged only once in the evolutionary history following an apparently simple divergent evolutionary model. At the same time, on the molecular level, one isofunctional group (L-ribulokinase, AraB) evolved at least two independent solutions that employed distinct specificity-determining residues for the recognition of a same substrate (L-ribulose). Our analysis provides a detailed model of the evolution of the FGGY kinase family. It also shows that only combined molecular and phylogenetic approaches can help reconstruct a full picture of functional diversifications in such diverse families.This study was funded by NIH and DOE grants
Impact Factor: outdated artefact or stepping-stone to journal certification?
A review of Garfield's journal impact factor and its specific implementation
as the Thomson Reuters Impact Factor reveals several weaknesses in this
commonly-used indicator of journal standing. Key limitations include the
mismatch between citing and cited documents, the deceptive display of three
decimals that belies the real precision, and the absence of confidence
intervals. These are minor issues that are easily amended and should be
corrected, but more substantive improvements are needed. There are indications
that the scientific community seeks and needs better certification of journal
procedures to improve the quality of published science. Comprehensive
certification of editorial and review procedures could help ensure adequate
procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table
Invasive alien aquatic plants in South African freshwater ecosystems
FWN – Publicaties zonder aanstelling Universiteit Leide
Automated functional classification of experimental and predicted protein structures
BACKGROUND: Proteins that are similar in sequence or structure may perform different functions in nature. In such cases, function cannot be inferred from sequence or structural similarity. RESULTS: We analyzed experimental structures belonging to the Structural Classification of Proteins (SCOP) database and showed that about half of them belong to multi-functional fold families for which protein similarity alone is not adequate to assign function. We also analyzed predicted structures from the LiveBench and the PDB-CAFASP experiments and showed that accurate homology-based functional assignments cannot be achieved approximately one third of the time, when the protein is a member of a multi-functional fold family. We then conducted extended performance evaluation and comparisons on both experimental and predicted structures using our Functional Signatures from Structural Alignments (FSSA) algorithm that we previously developed to handle the problem of classifying proteins belonging to multi-functional fold families. CONCLUSION: The results indicate that the FSSA algorithm has better accuracy when compared to homology-based approaches for functional classification of both experimental and predicted protein structures, in part due to its use of local, as opposed to global, information for classifying function. The FSSA algorithm has also been implemented as a webserver and is available at
Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells
ORP5 and ORP8, members of the oxysterol-binding protein (OSBP)-related proteins (ORP) family, are endoplasmic reticulum membrane proteins implicated in lipid trafficking. ORP5 and ORP8 are reported to localize to endoplasmic reticulum-plasma membrane junctions via binding to phosphatidylinositol-4-phosphate (PtdIns(4)P), and act as a PtdIns(4)P/phosphatidylserine counter exchanger between the endoplasmic reticulum and plasma membrane. Here we provide evidence that the pleckstrin homology domain of ORP5/8 via PtdIns(4,5)P 2, and not PtdIns(4)P binding mediates the recruitment of ORP5/8 to endoplasmic reticulum-plasma membrane contact sites. The OSBP-related domain of ORP8 can extract and transport multiple phosphoinositides in vitro, and knocking down both ORP5 and ORP8 in cells increases the plasma membrane level of PtdIns(4,5)P 2 with little effect on PtdIns(4)P. Overall, our data show, for the first time, that phosphoinositides other than PtdIns(4)P can also serve as co-exchangers for the transport of cargo lipids by ORPs.ORP5/8 are endoplasmic reticulum (ER) membrane proteins implicated in lipid trafficking that localize to ER-plasma membrane (PM) contacts and maintain membrane homeostasis. Here the authors show that PtdIns(4,5)P 2 plays a critical role in the targeting and function of ORP5/8 at the PM
Study protocol: healthy urban living and ageing in place (HULAP): an international, mixed methods study examining the associations between physical activity, built and social environments for older adults the UK and Brazil
Abstract Background The ability to ‘age in place’ is dependent on a range of inter-personal, social and built environment attributes, with the latter being a key area for potential intervention. There is an emerging body of evidence that indicates the type of built environment features that may best support age friendly communities, but there is a need to expand and consolidate this, while generating a better understanding of how on how research findings can be most effectively be translated in to policy and practice. Methods The study is based on two case study cities, Curtiba (Brazil) and Belfast (UK), which have highly contrasting physical, social and policy environments. The study deploys a mix methods approach, mirrored in each city. This includes the recruitment of 300 participants in each city to wear GPS and accelerometers, a survey capturing physical functioning and other personal attributes, as well as their perception of their local environment using NEWS-A. The study will also measure the built environments of the cities using GIS and develop a tool for auditing the routes used by participants around their neighbourhoods. The study seeks to comparatively map the policy actors and resources involved in healthy ageing in the two cities through interviews, focus groups and discourse analysis. Finally, the study has a significant knowledge exchange component, including the development of a tool to assess the capacities of both researchers and research users to maximise the impact of the research findings. Discussion The HULAP study has been designed and implemented by a multi-disciplinary team and integrates differing methodologies to purposefully impact on policy and practice on healthy ageing in high and low-middle income countries. It has particular strengths in its combination of objective and self-reported measures using validated tools and the integration of GPS, accelerometer and GIS data to provide a robust assessment of ‘spatial energetics’. The strong knowledge exchange strand means that the study is expected to also contribute to our understanding of how to maximise research impact in this field and create effective evidence for linking older adult’s physical activity with the social, built and policy environments
A Novel Protein Kinase-Like Domain in a Selenoprotein, Widespread in the Tree of Life
Selenoproteins serve important functions in many organisms, usually providing essential oxidoreductase enzymatic activity, often for defense against toxic xenobiotic substances. Most eukaryotic genomes possess a small number of these proteins, usually not more than 20. Selenoproteins belong to various structural classes, often related to oxidoreductase function, yet a few of them are completely uncharacterised
- …