87 research outputs found

    Ki67 Index, HER2 Status, and Prognosis of Patients With Luminal B Breast Cancer

    Get PDF
    "Background Gene expression profiling of breast cancer has identified two biologically distinct estrogen receptor (ER)-positive subtypes of breast cancer: luminal A and luminal B. Luminal B tumors have higher proliferation and poorer prognosis than luminal A tumors. In this study, we developed a clinically practical immunohistochemistry assay to distinguish luminal B from luminal A tumors and investigated its ability to separate tumors according to breast cancer recurrence-free and disease-specific survival. Methods Tumors from a cohort of 357 patients with invasive breast carcinomas were subtyped by gene expression profile. Hormone receptor status, HER2 status, and the Ki67 index (percentage of Ki67-positive cancer nuclei) were determined immunohistochemically. Receiver operating characteristic curves were used to determine the Ki67 cut point to distinguish luminal B from luminal A tumors. The prognostic value of the immunohistochemical assignment for breast cancer recurrence-free and disease-specific survival was investigated with an independent tissue microarray series of 4046 breast cancers by use of Kaplan–Meier curves and multivariable Cox regression. Results Gene expression profiling classified 101 (28%) of the 357 tumors as luminal A and 69 (19%) as luminal B. The best Ki67 index cut point to distinguish luminal B from luminal A tumors was 13.25%. In an independent cohort of 4046 patients with breast cancer, 2847 had hormone receptor–positive tumors. When HER2 immunohistochemistry and the Ki67 index were used to subtype these 2847 tumors, we classified 1530 (59%, 95% confidence interval [CI] = 57% to 61%) as luminal A, 846 (33%, 95% CI = 31% to 34%) as luminal B, and 222 (9%, 95% CI = 7% to 10%) as luminal–HER2 positive. Luminal B and luminal–HER2-positive breast cancers were statistically significantly associated with poor breast cancer recurrence-free and disease-specific survival in all adjuvant systemic treatment categories. Of particular relevance are women who received tamoxifen as their sole adjuvant systemic therapy, among whom the 10-year breast cancer–specific survival was 79% (95% CI = 76% to 83%) for luminal A, 64% (95% CI = 59% to 70%) for luminal B, and 57% (95% CI = 47% to 69%) for luminal–HER2 subtypes. Conclusion Expression of ER, progesterone receptor, and HER2 proteins and the Ki67 index appear to distinguish luminal A from luminal B breast cancer subtypes.

    Dissecting the predictive value of MAPK/AKT/estrogen-receptor phosphorylation axis in primary breast cancer to treatment response for tamoxifen over exemestane: a Translational Report of the Intergroup Exemestane Study (IES)-PathIES

    Get PDF
    Purpose The prognostic and predictive values of the MAPK/AKT/ERα phosphorylation axis (pT202/T204MAPK, pT308AKT, pS473AKT, pS118ERα and pS167ERα) in primary tumours were assessed to determine whether these markers can differentiate between patient responses for switching adjuvant endocrine therapy after 2–3 years from tamoxifen to exemestane and continued tamoxifen monotherapy in the Intergroup Exemestane Study (IES). Methods Of the 4724 patients in IES, 1506 were managed in a subset of centres (N = 89) participating in PathIES. These centres recruited 1282 (85%, 1282/1506) women into PathIES of whom 1036 had phospho-marker data. All phospho-markers were analysed by immunohistochemistry staining. Multivariable Cox proportional hazards models of the phospho-markers for disease-free survival (DFS) and overall survival (OS) were adjusted for clinicopathological factors. Treatment effects on the biomarker expression were determined by interaction tests. Benjamini–Hochberg adjustment for multiple testing with a false discovery rate of 10% was applied (pBH). Results Phospho-T202/T204MAPK, pS118ERα and pS167ERα were all found to be correlated (pBH = 0.0002). These markers were not associated with either DFS or OS when controlling for the established clinicopathological factors. Interaction terms between the phospho-markers and treatment strategies for either DFS or OS were not statistically significant (pBH > 0.05 for all). Conclusions This PathIES study confirmed previously described associations between the phosphorylation site markers of AKT, MAPK and ERα activity in postmenopausal breast cancer patients. No prognostic correlations between the phosphorylation markers and clinical outcome were found, nor were they predictive for clinical outcomes among patients who switched therapy over those treated with tamoxifen alone

    Predicting response and survival in chemotherapy-treated triple-negative breast cancer

    Get PDF
    In this study, we evaluated the ability of gene expression profiles to predict chemotherapy response and survival in triple-negative breast cancer (TNBC). Gene expression and clinical-pathological data were evaluated in five independent cohorts, including three randomised clinical trials for a total of 1055 patients with TNBC, basal-like disease (BLBC) or both. Previously defined intrinsic molecular subtype and a proliferation signature were determined and tested. Each signature was tested using multivariable logistic regression models (for pCR (pathological complete response)) and Cox models (for survival). Within TNBC, interactions between each signature and the basal-like subtype (vs other subtypes) for predicting either pCR or survival were investigated. Within TNBC, all intrinsic subtypes were identified but BLBC predominated (55-81%). Significant associations between genomic signatures and response and survival after chemotherapy were only identified within BLBC and not within TNBC as a whole. In particular, high expression of a previously identified proliferation signature, or low expression of the luminal A signature, was found independently associated with pCR and improved survival following chemotherapy across different cohorts. Significant interaction tests were only obtained between each signature and the BLBC subtype for prediction of chemotherapy response or survival. The proliferation signature predicts response and improved survival after chemotherapy, but only within BLBC. This highlights the clinical implications of TNBC heterogeneity, and suggests that future clinical trials focused on this phenotypic subtype should consider stratifying patients as having BLBC or not

    Evaluation of applying IHC4 as a prognostic model in the translational study of Intergroup Exemestane Study (IES): PathIES

    Get PDF
    Background: Intergroup Exemestane Study (IES) was a randomised study that showed a survival benefit of switching adjuvant endocrine therapy after 2–3 years from tamoxifen to exemestane. This PathIES aimed to assess the role of immunohistochemical (IHC)4 score in determining the relative sensitivity to either tamoxifen or sequential treatment with tamoxifen and exemestane. Patients and methods: Primary tumour samples were available for 1274 patients (27% of IES population). Only patients for whom the IHC4 score could be calculated (based on oestrogen receptor, progesterone receptor, HER2 and Ki67) were included in this analysis (N = 430 patients). The clinical score (C) was based on age, grade, tumour size and nodal status. The association of clinicopathological parameters, IHC4(+C) scores and treatment effect with time to distant recurrence-free survival (TTDR) was assessed in univariable and multivariable Cox regression analyses. A modified clinical score (PathIEscore) (N = 350) was also estimated. Results: Our results confirm the prognostic importance of the original IHC4, alone and in conjunction with clinical scores, but no significant difference with treatment effects was observed. The combined IHC4 + Clinical PathIES score was prognostic for TTDR (P < 0.001) with a hazard ratio (HR) of 5.54 (95% CI 1.29–23.70) for a change from 1st quartile (Q1) to Q1–Q3 and HR of 15.54 (95% CI 3.70–65.24) for a change from Q1 to Q4. Conclusion: In the PathIES population, the IHC4 score is useful in predicting long-term relapse in patients who remain disease-free after 2–3 years. This is a first trial to suggest the extending use of IHC4+C score for prognostic indication for patients who have switched endocrine therapies at 2–3 years and who remain disease-free after 2–3 years

    Response and survival of breast cancer intrinsic subtypes following multi-agent neoadjuvant chemotherapy.

    Get PDF
    Background Predicting treatment benefit and/or outcome before any therapeutic intervention has taken place would be clinically very useful. Herein, we evaluate the ability of the intrinsic subtypes and the risk of relapse score at diagnosis to predict survival and response following neoadjuvant chemotherapy. In addition, we evaluated the ability of the Claudin-low and 7-TNBCtype classifications to predict response within triple-negative breast cancer (TNBC). Methods Gene expression and clinical-pathological data were evaluated in a combined dataset of 957 breast cancer patients, including 350 with TNBC, treated with sequential anthracycline and anti-microtubule-based neoadjuvant regimens. Intrinsic subtype, risk of relapse score based on subtype and proliferation (ROR-P), the Claudin-low subtype and the 7-TNBCtype subtype classification were evaluated. Logistic regression models for pathological complete response (pCR) and Cox models for distant relapse-free survival (DRFS) were used. Results Basal-like, Luminal A, Luminal B, and HER2-enriched subtypes represented 32.7 %, 30.6 %, 18.2 %, and 10.3 % of cases, respectively. Intrinsic subtype was independently associated with pCR in all patients, in hormone receptor-positive/HER2-negative disease, in HER2-positive disease, and in TNBC. The pCR rate of Basal-like disease was >35 % across all clinical cohorts. Neither the Claudin-low nor the 7-TNBCtype subtype classifications predicted pCR within TNBCs after accounting for intrinsic subtype. Finally, intrinsic subtype and ROR-P provided independent prognostic information beyond clinicopathological variables and type of pathological response. A 5-year DRFS of 97.5 % (92.8-100.0 %) was observed in these neoadjuvant-treated and clinically node-negative patients predicted to be low risk by ROR-P (i.e. 57.4 % of Luminal A tumors with clinically node-negative disease). Conclusions Intrinsic subtyping at diagnosis provides prognostic and predictive information for patients receiving neoadjuvant chemotherapy. Although we could not exclude a survival benefit of neoadjuvant chemotherapy in patients with early breast cancer with clinically node-negative and ROR-low disease at diagnosis, the absolute benefit of cytotoxic therapy in this group might be rather small (if any)

    Major Impact of Sampling Methodology on Gene Expression in Estrogen Receptor-Positive Breast Cancer.

    Get PDF
    To investigate the impact of sampling methodology on gene expression data from primary estrogen receptor-positive (ER+) breast cancer biopsies, global gene expression was measured in core-cut biopsies at baseline and surgery from patients randomly assigned to receive either two weeks of presurgical aromatase inhibitor (AI; n = 157) or no presurgical treatment (n = 56). Those genes most markedly altered in the AI group (eg, FOS, DUSP1, RGS1, FOSB) were similarly altered in the no treatment group; some widely investigated genes that were apparently unaffected in the AI group (eg, MYC) were counter-altered in the control group, masking actual AI-dependent changes. In the absence of a control group, these artefactual changes would likely lead to the most affected genes being the erroneous focus of research. The findings are likely relevant to all archival collections of ER+ breast cancer

    Protein expression, survival and docetaxel benefit in node-positive breast cancer treated with adjuvant chemotherapy in the FNCLCC - PACS 01 randomized trial

    Get PDF
    International audienceABSTRACT: INTRODUCTION: The PACS01 trial has demonstrated that docetaxel addition to adjuvant anthracycline-based chemotherapy improves disease-free survival (DFS) and overall survival of node-positive early breast cancer (EBC). We searched for prognostic and predictive markers for docetaxel benefit. METHODS: Tumor samples from 1.099 recruited women were analyzed for the expression of 34 selected proteins using immunohistochemistry. The prognostic and predictive values of each marker and four molecular subtypes (luminal A, luminal B, HER2-overexpressing, and triple-negative) were tested. RESULTS: Progesterone receptor-negativity (HR=0.66; 95%CI 0.47-0.92, P=0.013), and Ki67-positivity (HR=1.53; 95%CI 1.12-2.08, P=0.007) were independent adverse prognostic factors. Out of the 34 proteins, only Ki67-positivity was associated with DFS improvement with docetaxel addition (adjusted HR=0.51, 95%CI 0.33-0.79 for Ki67-positive versus HR=1.10, 95%CI 0.75-1.61 for Ki67-negative tumors, P for interaction=0.012). Molecular subtyping predicted the docetaxel benefit, but without providing additional information to Ki67 status. The luminal A subtype did not benefit from docetaxel (HR=1.16, 95%CI 0.73-1.84); the reduction in the relapse risk was 53% (HR=0.47, 95%CI 0.22-1.01), 34% (HR=0.66, 95%CI 0.37-1.19), and 12% (HR=0.88, 95%CI 0.49-1.57) in the luminal B, HER2-overexpressing, and triple-negative subtypes, respectively. CONCLUSIONS: In patients with node-positive EBC receiving adjuvant anthracycline-based chemotherapy, the most powerful predictor of docetaxel benefit is Ki67-positivity
    • 

    corecore