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Abstract

The identification of biomarkers predictive of neoadjuvant chemotherapy response in breast cancer 

patients would be an important advancement in personalized cancer therapy. In this study, we 

hypothesized that due to similarities between radiation- and chemotherapy-induced cellular 

response mechanisms, radiation-responsive genes may be useful in predicting response to 

neoadjuvant chemotherapy. Murine p53 null breast cancer cell lines representative of the luminal, 

basal-like and claudin-low human breast cancer subtypes were irradiated to identify radiation-

responsive genes across subtypes. These murine tumor radiation-induced genes were then 

converted to their human orthologs, and subsequently tested as a predictor of pathologic complete 

response (pCR), which was validated on two independent published neoadjuvant chemotherapy 

datasets of genomic data with chemotherapy response. A radiation-induced gene signature 

consisting of 30 genes was identified on a training set of 337 human primary breast cancer tumor 

samples that was prognostic for survival. Mean expression of this signature was calculated for 

individual samples on two independent published datasets and was found to be significantly 

predictive of pCR. Multivariate logistic regression analysis in both independent datasets showed 
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that this 30 gene signature added significant predictive information independent of that provided 

by standard clinical predictors and other gene expression-based predictors of pCR. This study 

provides new information for radiation-induced biology, as well as information regarding response 

to neoadjuvant chemotherapy and a possible means of improving the prediction of pCR.

INTRODUCTION

Neoadjuvant chemotherapy has been widely used in recent years as part of the standard of 

care for locally advanced breast cancer patients. Although neoadjuvant and adjuvant 

chemotherapy have similar efficacy in terms of disease-free and overall survival rates (1), 

neoadjuvant chemotherapy has been shown to improve breast-conserving operability in 

locally advanced breast cancers (2, 3). Another advantage of neoadjuvant chemotherapy is 

that it allows for the direct and timely observation of tumor treatment response. Twenty to 

thirty percent of breast cancer patients who receive neoadjuvant chemotherapy achieve a 

pathologic complete response (pCR) (4), which has been correlated with improved long-

term, disease-free and overall survival (1–3, 5–9) and thus is a valuable surrogate end point 

for survival.

The prediction of neoadjuvant chemotherapy response (i.e., pCR) is an active area of 

research. Since patients who achieve pCR after neoadjuvant chemotherapy are more likely to 

experience excellent cancer-free, long-term survival (1–3, 5–9), the accurate prediction of 

pCR would be of significant value. It would serve to identify those patients who could 

benefit most from neoadjuvant chemotherapy and identify those unlikely to benefit from 

therapy and thus be spared treatment-associated toxicities and be selected to receive 

alternative therapeutic approaches. Rouzier et al. (10) published in 2005, a nomogram 

consisting of clinical variables including tumor size, histologic grade and estrogen receptor 

(ER) status to predict pCR to neoadjuvant FAC (fluorouracil, doxorubicin and 

cyclophosphamide) or T/FAC (paclitaxel, FAC) chemotherapy. This same group reported in 

another study (11) that intrinsic breast cancer subtype as determined by gene expression 

profiling of tumors prior to treatment, was associated with pCR. In this study, basal-like and 

HER2-enriched (HER2-E) intrinsic subtypes were associated with the highest rates of pCR 

(45%) while luminal A and luminal B tumors showed the lowest rate of pCR (6%). Building 

on these studies, we sought to determine whether we could identify a novel biomarker that 

could add predictive information independent of that provided by known clinical variables 

and other gene expression-based predictors of pCR.

Cellular responses to radiation and chemotherapy involve multiple overlapping pathways. 

Both therapies involve cytotoxic agents that can ultimately induce apoptosis in target cells 

(12, 13). Radiation therapy and many chemotherapeutics result in DNA damage, activating 

multiple overlapping proteins/pathways, such as the ATM and ATR protein kinases, TP53 

and TP53-independent pathways including CHK2-mediated signaling (14). Other proteins/

pathways induced by both radiation and chemotherapy includes the extracellular signal-

regulated kinase (ERK) pathway, Jun-N-terminal kinase (JNK) pathway, p38 MAPK family, 

NK-kB, AKT, mTOR and the checkpoint proteins (14–18). We hypothesized that due to the 

similarities in the cellular response mechanisms to radiation and chemotherapy, radiation-
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responsive genes may be useful in predicting response to neoadjuvant chemotherapy for 

breast cancer.

MATERIALS AND METHODS

Cell Culture

To identify radiation-responsive genes, we used cell lines derived from the T11, 2225L and 

2250L murine mammary tumors described by Herschkowitz et al. (19). Briefly, these tumors 

were produced by removal and transplantation of 6-week-old BALB/c p53−/− mammary 

tissues into 3-week-old wild-type BALB/c recipients. This was necessary to circumvent the 

appearance of other tumor types that occurred with short latency in mice homozygous for 

p53 loss. As described by Herschkowitz et al. (19), based on murine-intrinsic gene list 

expression analysis, the T11 tumor had characteristics of the claudin-low human breast 

carcinoma subtype; the 2225L tumor had characteristics of the basal-like human breast 

carcinoma subtype; the 2250L tumor had characteristics of the luminal human breast 

carcinoma subtype. Respective tumor samples stored in liquid nitrogen were thawed and 

placed into appropriate media to allow cell line formation as follows: for the T11 cell line, 

the media used was RPMI 1640 containing 10% FBS, 100 U/ml penicillin and 100 µg/ml 

streptomycin; for the 2225L and 2250L cell lines, media used were HMEC media containing 

5% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin and HMEC supplement (Gibco® 

Life Technologies, Grand Island, NY). Cells were incubated in a humidified incubator at 

37°C in 95% air/5% CO2. Genomic DNA was harvested from cell lines using QIAGEN 

DNeasy Kit (QIAGEN, Valencia, CA), and presence of the p53 null transgene was verified 

using polymerase chain reaction.

Cell Irradiation and Collection of RNA

Cells were plated in 150 mm dishes and grown until 50% confluence. Cells were then 

irradiated to a dose of 8 Gy using an RS 2000 irradiator (Rad Source Technologies Inc., 

Suwanee, GA) operating at a dose rate of 100 cGy/min. Cells were then immediately 

returned to the incubator and harvested at 4, 8, 12, 24 and 48 h after irradiation, at which 

point RNA was isolated using the QIAGEN RNeasy Mini Kit. A control nonirradiated RNA 

sample for each cell line was collected from cells harvested immediately after mock 

irradiation.

Microarray Experiments

Mouse whole-genome 4×180,000 features microarrays (Agilent Technologies Inc., Palo 

Alto, CA) were hybridized according to manufacturer’s protocol with Cy3-CTP-labeled 

cRNA from mock-irradiated cells (2 ug/sample) and Cy5-CTP-labeled cRNA from 

irradiated cells (2 ug/sample), with replicates for a 24 h time point for each cell line. 

Microarrays were scanned and image files analyzed as described previously (19). All 

primary microarray data are available from the University of North Carolina (Chapel Hill, 

NC) Microarray Database (https://genome.unc.edu) and the Gene Expression Omnibus 

[GEO; National Center for Biotechnology Information (NCBI)] (http://

www.ncbi.nlm.nih.gov/geo/) with series number GSE48073.

Oh et al. Page 3

Radiat Res. Author manuscript; available in PMC 2016 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://genome.unc.edu
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Analysis of Microarray Data to Identify Radiation-Responsive Genes

Data from microarray experiments were calculated as described (19), where we used the 

Lowess normalized log2R/G ratio. To identify radiation-responsive genes, we used a one-

class Significance Analysis of Microarrays (SAM) to identify genes that changed in all time 

points for all three cell lines (as a single class) relative to the mock-irradiated cells (20). 

Using a false discovery rate (FDR) of 0%, SAM identified 4,278 radiation-induced genes 

and 2,689 radiation-repressed genes. Hierarchical cluster analysis was conducted using 

Cluster 3.0 (21) and results were visualized in Java TreeView (22).

To identify genes that were differentially expressed after irradiation across the cell lines, we 

used a multi-class SAM analysis to identify genes that changed in all time points after 

irradiation, but that were different between the cell lines (each cell line as its own class) 

relative to mock-irradiated cells. Using an FDR of 0%, SAM identified 1,289 genes 

differentially expressed after irradiation across the cell lines. Hierarchical cluster analysis 

was conducted using Cluster 3.0 (21) and results were visualized in Java TreeView (22).

Analysis of Human Primary Breast Tumor Microarray Data Using the Radiation-Induced 
Gene Set

The human primary breast tumor samples used as the training dataset are described in Prat et 
al. (23); this training dataset comprised a total of 337 tumor samples represented by 

microarray experiments from breast cancer patients (consisting of 320 breast tumor samples 

and 17 normal breast samples) heterogeneously treated in accordance with standard of care. 

To analyze this human training dataset with the radiation-induced murine gene set identified 

by the above described SAM, the list of 4,278 radiation-induced murine genes identified 

from the cell lines were converted to their human gene orthologs using the UCSC genome 

website (http://genome.ucsc.edu/). A total of 1,964 unique human genes present on our 

human microarrays were identified. These genes were then used to hierarchically cluster the 

Prat et al. 337 human breast sample dataset using Cluster 3.0 to identify gene sets/clusters 

composed of genes that are highly coordinately expressed across these patient samples. We 

hypothesized that the mean expression of one or more of these gene sets/clusters may be 

useful in predicting an individual tumor’s response to neoadjuvant chemotherapy. To avoid 

spurious results that may occur with small gene clusters or poorly correlated gene clusters, 

we limited the analysis to the most correlated gene clusters (node correlation >=0.45) and 

that were greater than 20 genes in size. This identified 23 non-overlapping gene clusters, 

where we next calculated a mean gene expression value of each gene cluster, for each of the 

337 samples from the Prat et al. dataset (23).

By matching Entrez gene identifiers (www.ncbi.nlm.nih.gov/gene), microarray data for as 

many genes as possible for each of the 23 gene clusters identified above was obtained on 

two independent test microarray datasets (24, 25). Briefly, the Hatzis et al. (24) dataset 

consisted of microarray data from 473 HER2-negative breast cancer tumors taken prior to 

sequential taxane and anthracycline-based neoadjuvant chemotherapy. This dataset had 

associated pCR and distant relapse free survival (DRFS) data. The Gluck et al. (25) dataset 

consisted of microarray data from 95 HER2-negative breast cancer tumors taken prior to 

neoadjuvant capecitabine and docetaxel chemotherapy; this dataset had associated pCR data 
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and TP53 mutation status data using the AmpliChip TP53 assay. As done for the Prat et al. 
dataset, a mean gene expression value of each gene cluster was calculated for each patient in 

the Hatzis et al. dataset, and we validated the most significant gene cluster on the Gluck et 
al. dataset.

Statistical and Survival Analysis

Kaplan-Meier survival plots were compared using the Cox-Mantel log-rank test in 

WinSTAT® (R. Fitch Software, Staufen, Germany) for Excel (Microsoft Corp., Redmond, 

WA). Univariable and multivariable logistic regression analysis were used to assess the 

significance of gene cluster mean values to pCR. All statistical tests were two-tailed and P < 

0.05 were declared significant. Analyses were performed using JMP Pro 9.0 (SAS Institute, 

Cary, NC) and R version 2.13.1 (R Development Core Team, Vienna, Austria).

RESULTS

Identification of Radiation-Responsive Genes

To identify radiation-responsive genes, we used cell lines derived from three different mouse 

p53-deficient tumors, including the T11 (claudin-low), 2225L (basal-like) and 2250L 

(luminal) tumors described by Herschkowitz et al. (19). A one-class SAM with a false 

discovery rate (FDR) of 0% identified 4,278 radiation-induced and 2,689 radiation-repressed 

genes in microarray experiments on the combined T11, 2225L and 2250L cell lines at 4, 8, 

12, 24 and 48 h after a single radiation dose of 8 Gy. Hierarchical clustering of the radiation-

induced genes is shown in Fig. 1 and that of the radiation-repressed genes is shown in Fig. 2.

Many genes identified as radiation induced in our analysis were previously known to be 

radiation responsive in humans including CREM, BNIP3, FAS, TNFRSF11B, IFITM1, 

LGALS3PB, COX7B and SESN1 (26–29), indicating the conservation of the radiation 

responsiveness of many genes in this p53-deficient mouse model. Using the program 

DAVID [Database for Annotation, Visualization and Integrated Discovery (30, 31); http://

david.abcc.ncifcrf.gov], the gene ontology categories that were significantly over-

represented relative to chance in the set of all radiation-induced genes included: “protein 

catabolic process” (P = 3.40 × 10−9); “apoptosis” (P = 3.45 × 10−5); “cell death” (P = 1.17 × 

10−4) and “macromolecule catabolic process” (P = 8.24 × 10−8). Kyoto Encyclopedia of 

Genes and Genomes [KEGG (32); http://www.genome.jp/kegg/] pathways (which are 

graphical diagrams representing knowledge on molecular interaction and reaction networks 

for a wide variety of cellular processes) that were significantly over-represented relative to 

chance included: “pyruvate metabolism” (P = 3.65 × 10−5); “ubiquitin mediated proteolysis” 

(P = 0.003); “VEGF signaling pathway” (P = 0.003), “mTOR signaling pathway” (P = 

0.004); and interestingly, “p53 signaling pathway” (P = 0.02). Since the cell lines used in our 

experiments were p53 null, the enrichment for members of the KEGG pathway “p53 

signaling pathway” in the radiation-induced gene set suggested that these members known to 

be activated by p53 [such as Scotin (33) and the sestrins SESN1 and SESN2 (34, 35)] can 

also be activated independent of p53; Scotin has been confirmed independently by Terrinoni 

et al. to be able to be activated independent of p53 (36).
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Subclusters of radiation-induced genes, as opposed to the complete list, showed enrichment 

of many distinct ontologies in the various gene clusters. For example, cluster A in Fig. 1, 

which consisted of genes whose expression was induced at a relatively constant level with 

respect to time across all cell lines, was significantly enriched for members of the gene 

ontology categories “mitochondrion” (P = 6.24 × 10−9) and “cellular protein catabolic 

process” (P = 0.02). In addition, cluster C in Fig. 1, which consisted of genes whose 

expression increased with time across all cell lines, was enriched for members of gene 

ontology categories “positive regulation of programmed cell death” (P = 0.002), “antigen 

processing and presentation” (P = 6.40 × 10−7), “lysosome” (P = 3.71 × 10−5) and “immune 

response” (P = 2.44 × 10−4). Other clusters of radiation induced genes and the respective 

gene ontologies enriched in those clusters are shown in Fig. 1.

Gene ontology categories significantly over-represented relative to chance in the set of all 

radiation-repressed genes included “spliceosome” (P = 3.19 × 10−14), “cell cycle” (P = 2.03 

× 10−11), “cell division” (P = 3.33 × 10−7) and “mitosis” (P = 3.98 × 10−5). KEGG pathways 

significantly over-represented relative to chance in the set of radiation-repressed genes 

included “ribosome” (P = 5.45 × 10−22), “cell cycle” (P = 5.24 × 10−4) and “spliceosome” (P 
= 3.78 × 10−19). The enrichment of genes involved in apoptosis in the radiation-induced 

gene set, and enrichment of genes involved in mitosis in the radiation-repressed gene set, is 

consistent with prior studies examining radiation-responsive genes in humans (26–29) 

indicating conservation of the radiation responsiveness of these gene ontology categories/

pathways in our mouse model. As for the radiation-induced genes, clusters of radiation-

repressed genes showing highly correlated expression were observed (Fig. 2) and gene 

ontology analysis of these gene clusters showed enrichment. For example, cluster A in Fig. 

2, which consisted of genes whose expression was more repressed in the 2250L cell line 

than in the other cell lines, was enriched for the gene ontology category “Zinc ion binding” 

(P = 0.01), while cluster G in Fig. 2 that consisted of genes whose repression increased with 

time across all cell lines, was enriched for the gene ontology categories “cell cycle” (P = 

2.93 × 10−5), “RNA processing” (P = 1.20 × 10−21), “cell division” (P = 0.003), “mitosis” (P 
= 0.02) and “nuclear division” (P = 0.02); the repression of these gene clusters likely reflect 

reduced cell proliferation, which is a known cellular response to radiation. Other clusters of 

radiation-repressed genes and the respective gene ontologies enriched in those clusters are 

shown in Fig. 2.

Differential Response to Radiation among the Cell Lines

To identify genes that were differentially expressed after irradiation between the T11, 2225L 

and 2250L cell lines, we used a multi-class SAM analysis with each cell line as its own 

class. Using an FDR of 0%, SAM identified 1,289 genes differentially expressed after 

irradiation between the cell lines (hierarchical clustering of these genes is shown in Fig. 3), 

indicating that while the cell lines do share common genes that respond similarly to 

radiation (as discussed above and shown in Figs. 1 and 2), there are also clear differences in 

the cell lines’ radiation response. These data suggest that the different intrinsic subtypes of 

breast cancer may have differences in their response to radiation.
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Figure 3 shows that the genes found by SAM to be differentially expressed after irradiation 

between the cell lines fall into distinct gene clusters that differ in terms of how they respond 

across the three cell lines. For example, cluster A in Fig. 3 (Supplementary Fig. S1; http://

dx.doi.org/10.1667/RR13485.1.S1) consists of genes that are repressed in the 2225L basal-

like cell line, but that are induced in the other 2 cell lines in response to radiation. Gene 

ontology categories significantly enriched in this cluster according to DAVID include 

“response to wounding” (P = 0.005) and “inflammatory response” (P = 0.02). This gene 

cluster was also significantly enriched for members of the KEGG pathway “MAPK 

signaling” (P = 0.01). Cluster B in Fig. 3 (Supplementary Fig. 2; http://dx.doi.org/10.1667/

RR13485.1.S1) consists of genes observed to be repressed in the T11 claudin-low and 

2225L basal-like cell lines, while less repressed in the 2250L luminal cell line in response to 

radiation. Gene ontology categories significantly enriched in this cluster include “M phase” 

(P = 0.006), “mitotic cell cycle” (P = 0.01) and “ribosome” (P = 1.25 × 10−4). Cluster C in 

Fig. 3 (Supplementary Fig. 3; http://dx.doi.org/10.1667/RR13485.1.S1) consists of genes 

repressed in the 2250L and 2225L cell lines while less repressed or slightly induced in the 

T11 cell line in response to radiation; gene ontology categories significantly enriched in this 

cluster include “myofibril assembly” (P = 0.002), “muscle contraction” (P = 0.02) and 

“muscle cell development” (P = 0.02). Cluster E in Fig. 3 (Supplementary Fig. 5; http://

dx.doi.org/10.1667/RR13485.1.S1) consists of genes induced in the 2250L and 2225L cell 

lines while repressed or less induced in the T11 cell line in response to radiation; gene 

ontology categories significantly enriched in this cluster include “zinc ion binding” (P = 5.76 

× 10−4) and “DNA binding” (P = 0.006).

Cluster D in Fig. 3 (Supplementary Fig. 4; http://dx.doi.org/10.1667/RR13485.1.S1) consists 

of genes induced in the 2225L basal-like cell line while repressed or less induced in the 

other 2 cell lines in response to radiation. Gene ontology categories significantly enriched in 

this cluster include “blood vessel development” (P = 0.003), “positive regulation of 

mesenchymal cell proliferation” (P = 0.008) and “cell motion” (P = 0.02). Interestingly this 

gene cluster contained the genes SESN3 and TCF4 found to be regulated by the 

transcription factor YBX1 by Evdokimova et al. (37). In the experiments done by 

Evdokimova et al. the enforced expression of YBX1 in noninvasive breast epithelial cells 

was found to directly activate translation of mRNAs encoding Snail1 and other transcription 

factors such as SESN3 and TCF4 that are implicated in activation of mesenchymal genes, 

resulting in induction of an epithelial-mesenchymal transition (EMT) accompanied by 

enhanced metastatic potential. Other genes in cluster D in Fig. 3 such as DDR1, FLT1, 

NOTCH3 and PDZRN3 have been identified as candidate YBX1-regulated genes through 

chromatin immunoprecipitation (ChiP)-on-chip analysis performed by Finkbeiner et al. (38). 

Also included in cluster D is the gene STAT3, the prosurvival pathway of which has been 

shown to be engaged by YBX1 to protect cells from apoptosis (39). Another study has 

suggested that STAT3 may indirectly activate transcription of YBX1 by activating 

transcription of TWIST, which in turn activates transcription of YBX1 (40). In summary, our 

multiclass SAM analysis has identified genes differentially expressed after irradiation 

between the cell lines, suggesting that differences in radiation response exist within the 

various breast cancer intrinsic subtypes and further, suggests possible biological bases for 

these differences in radiation response.
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Analysis of Human Breast Tumors Using the Radiation-Induced Gene Set

We hypothesized that due to similarities between the cellular response mechanisms to 

radiation and chemotherapy, expression differences of radiation-induced genes may be 

useful in predicting response to neoadjuvant chemotherapy. To test this hypothesis, first we 

hierarchically clustered a training set of 337 human primary breast samples (consisting of 

320 breast tumor samples and 17 normal breast samples) published by Prat et al. (23), using 

the murine radiation-induced gene set of 4,278 genes (shown in Fig. 1) converted into their 

human orthologs (complete cluster diagram shown in Fig. 4A); this was done to identify 

gene sets/clusters composed of genes that are highly concordantly expressed within human 

breast samples.

We hypothesized that the mean expression of one or more of these gene sets/clusters may be 

useful in predicting an individual tumor’s response to neoadjuvant chemotherapy. To avoid 

spurious results that may occur with small gene clusters, or poorly correlated gene clusters, 

we limited analysis to the most correlated gene clusters (node correlation >=0.45) and those 

nodes that were greater than 20 genes in size. This identified 23 non-overlapping gene 

clusters. We then tested the ability of the mean expression of each of these 23 gene sets to 

predict response to neoadjuvant chemotherapy by using a dataset published by Hatzis et al. 
(24), which consisted of microarray data from 473 HER2-negative breast cancer tumors 

taken prior to sequential taxane and anthracycline-based neoadjuvant chemotherapy; this 

dataset had associated pCR and distant relapse-free survival (DRFS) data. Using univariate 

logistic regression modeling, only 4/23 of the tested gene clusters had a significant 

Bonferroni-corrected P value in predicting pCR. To determine which of these 4 gene clusters 

could be useful in predicting pCR, we then performed multivariate logistic regression 

modeling with each of these 4 gene sets in a model that included the standard clinical 

variables and other gene expression based predictors including those used by Hatzis et al. 
(24, 41). Only 1 gene cluster (consisting of 30 genes, Fig. 4B and Table 1) was significant in 

multivariate analysis (Table 3). As seen in Tables 2 and 3, a higher mean expression of this 

30 gene set was associated with a higher likelihood of pCR. As shown in Table 2B, this 30 

gene set was not only able to significantly predict pCR in univariate logistic regression 

modeling on the entire Hatzis et al. patient dataset, but was also able to significantly predict 

pCR within individual clinical subsets of patients, including the clinically relevant triple-

negative subset and the more biologically relevant basal-like patient subset.

We next tested the ability of the 30 gene cluster to predict pCR on a second and completely 

independent test dataset published by Gluck et al. (25), which consisted of microarray data 

from 95 HER2-negative breast cancer tumors taken prior to neoadjuvant capecitabine and 

docetaxel chemotherapy. This dataset had associated pCR data and TP53 mutation status 

data using the AmpliChip TP53 assay. As shown in Table 4, the 30 gene set significantly 

predicted pCR in univariate logistic regression modeling on the entire dataset as well as on 

the biologically relevant basal-like patient subset. In multivariable logistic regression 

modeling (Table 5) that included the standard clinical parameters, intrinsic subtype and 

TP53 mutation status, the 30 gene set again remained a statistically significant predictor of 

pCR.
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As both the Prat et al. and Hatzis et al. datasets had associated survival data, we also tested 

the prognostic value of the 30 gene set to predict survival. To achieve this goal, we grouped 

patients from each dataset into halves or tertiles based on rank order mean expression value 

of the 30 gene set. Kaplan-Meier analysis showed significant differences among patients 

when divided into halves or tertiles for distant relapse-free survival (DRFS) in the Hatzis et 
al. dataset (P = 2.48 × 10−7 and 0.0002, respectively), and for overall survival (OS; P = 1.45 

× 10−6 and 1.18 × 10−7, respectively) and relapse-free survival (RFS; P = 2.08 × 10−5 and 

7.95 × 10−5, respectively) in the Prat et al. dataset. In the Hatzis et al. dataset, patients with 

tumors of the basal-like subtype, when grouped into halves or tertiles based on rank order 

mean expression value of the 30 gene set, showed significant differences in DRFS (Fig. 5), 

with patients having higher expression of the 30 gene set having better DRFS.

Gene ontology analysis of the 30 gene set using DAVID revealed significant enrichment for 

the following categories: “pyruvate metabolic process” (genes LDHB, PPARGC1A, 

PDHA1; P = 0.002); “response to extracellular stimulus” (genes ADORA2B, PPARGC1A, 

PLA2G4A, VLDLR; P = 0.007); and “generation of precursor metabolites and energy” 

(genes LDHB, PPARGC1A, PDHA1, SLC25A27; P = 0.017). Interestingly, our 30 gene set 

was also significantly enriched for members of the KEGG pathway “vascular smooth muscle 

contraction” (genes PLA2G4A, PRKX, ADORA2B; P = 0.027). When it was compared 

with other gene expression-based predictors, only one common gene (NFIB) was found 

between our 30 gene predictor and the predictors published by Hatzis et al. (24). There was 

no overlap with either the 11-gene proliferation signature developed by Parker et al. (42), the 

PAM50 gene signature used by Gluck et al. or Prat et al. (23, 25, 43) or the 21 gene 

recurrence score assay developed by Paik et al. (44), which is known as Oncotype DX.

DISCUSSION

The search for biomarkers that predict pCR to neoadjuvant chemotherapy for breast cancer 

has been an area of intense research in recent years. pCR is an important clinical end point, 

as patients who achieve pCR to neoadjuvant chemotherapy are more likely to have improved 

overall and disease-free survival (3). Gene expression-based analyses have contributed to 

this research, with the development of several predictive gene sets and assays based on 

selection of genes that directly correlate with patient/tumor outcomes (24, 45, 46). We took a 

different approach and selected genes using no knowledge of survival outcomes or response 

to therapy; these were instead selected on the basis of radiation induction and their natural 

patterns of expression in primary breast tumors. We objectively identified gene sets/clusters 

composed of radiation-induced genes that were highly concordantly expressed in human 

breast tumor samples. We then systematically tested the ability of each of these gene sets to 

predict pCR on an independent test dataset (24). Only one gene cluster consisting of 30 

genes was able to significantly predict pCR in both univariate analysis and multivariate 

analysis that included standard clinical variables and breast intrinsic subtype. In addition, 

this 30 gene signature was able to predict pCR in both univariate and multivariate analysis 

on a second independent test dataset (25), and thus it has shown utility on two different 

validation data sets.
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As determined by gene ontology analysis, our radiation-induced 30 gene signature was 

significantly enriched for genes involved in pyruvate metabolism, generation of precursor 

metabolites and energy, suggesting that tumors most sensitive to chemotherapy are those 

with highest metabolic activity, consistent with the known mechanisms of action of several 

chemotherapeutics used in the datasets we analyzed, including doxorubicin and capecitabine 

(47–53). Genes composing our 30 gene signature include lactate dehydrogenase B (LDHB), 

which is a subunit of the lactate dehydrogenase enzyme, the key glycolytic enzyme 

catalyzing formation of lactic acid from pyruvate. LDHB has recently been shown to be a 

downstream target of mTOR critical for oncogenic mTOR-mediated tumorigenesis (54). It 

was also recently shown to be an essential gene in basal-like/triple-negative breast cancer 

metabolism (55). Proteomic analysis done by Cortesi et al. (56) showed that high expression 

of the LDHB protein in tumor interstitial fluid was associated with response to 

chemotherapy in breast cancer patients, consistent with our results. Interestingly, the 

downregulation of DAB2 interacting protein (DAB2IP), another member of our 30 gene set 

and a novel member of the Ras GTPase-activating protein family, was recently reported by 

Kong et al. (57) to result in resistance to ionizing radiation in prostate cancer cells. Our 

results suggest that the low expression of DAB2IP is also associated with resistance to 

chemotherapy in breast cancer.

Not only has our analysis of radiation-responsive genes yielded a useful tool for predicting 

pCR, it has also yielded information indicating that the different intrinsic subtypes of breast 

cancer may have distinct biological differences in their response to radiation. As shown in 

Fig. 3, the genes found to be differentially expressed after irradiation between the murine 

cell lines representative of the different intrinsic subtypes (claudin-low, basal-like and 

luminal) fall into distinct clusters. These clusters differ not only in how they respond in the 

cell lines to radiation but also their biological function, possibly reflecting differential 

activation or repression of various pathways in the different subtypes in response to 

radiation. To support this hypothesis, genome wide sequencing of the 2225L basal-like 

tumor has shown a possible YBX1 activating mutation in this tumor, but not in the T11 or 

2250L tumors (unpublished results). Consistent with the possibility of an YBX1 activating 

mutation in the 2225L tumor, we observed induction of multiple YBX1 known and putative 

targets in the 2225L basal-like cell line (Fig. 3, gene cluster D; Supplementary Fig. S4: 

http://dx.doi.org/10.1667/RR13485.1.S1) in response to radiation, which was not seen in the 

other cell lines. Active/expressed YBX1 appears to be an important feature of the basal-like 

subtype (58–61). With our observations, this suggests an important role of this gene not only 

in defining the basal-like subtype but also in the radiation response of this subtype. 

Experiments are ongoing in our lab to test this hypothesis.

In conclusion, our radiation-induced 30 gene signature shows significant promise as a 

clinically relevant predictor of pCR in breast cancer patients. We have shown its efficacy in 

predicting pCR in two independent test datasets. Furthermore we have shown by 

multivariate analysis that it adds significant information in predicting pCR beyond what is 

provided by the standard clinical parameters, breast tumor intrinsic subtypes, p53 mutation 

status and other gene expression-based predictors including those published by Hatzis et al. 
(24). Our results are hypothesis generating, but based on the analysis presented here, we feel 
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that our predictor warrants further investigation, including validation in prospectively 

designed clinical trials, to confirm the clinical validity and utility of our 30 gene signature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Hierarchical clustering analysis of genes determined by one-class significance analysis of 

microarrays (SAM) to be radiation-induced (4,278 genes) when testing three different mouse 

mammary tumor cell lines. Colored bars and/or letters indicate various gene clusters as 

discussed in this article. To the left of the diagram are the gene ontology categories 

significantly enriched in the corresponding gene clusters indicated by the colored bars and/or 

letters.

Oh et al. Page 15

Radiat Res. Author manuscript; available in PMC 2016 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 2. 
Hierarchical clustering analysis of genes determined by one-class significance analysis of 

microarrays (SAM) to be radiation-repressed (2,689 genes) when testing three different 

mouse mammary tumor cell lines. Colored bars and/or letters indicate various gene clusters 

as discussed in the text. To the left of the diagram are the gene ontology categories 

significantly enriched in the corresponding gene clusters indicated by the colored bars and/or 

letters.
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FIG. 3. 
Hierarchical clustering analysis of genes determined by multi-class significance analysis of 

microarrays (SAM) to be differentially expressed across the three murine-derived mammary 

tumor cell lines T11, 2225L and 2250L in response to radiation (1,289 genes). Colored bars 

and/or letters indicate various gene clusters as discussed in this article. To the left of the 

diagram are the gene ontology categories significantly enriched in the corresponding gene 

clusters indicated by the colored bars and/or letters.
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FIG. 4. 
Hierarchical cluster analysis of the Prat et al. (49) 337 primary human breast sample dataset 

(consisting of 320 breast tumor samples and 17 normal breast samples) using the radiation-

induced murine gene list converted into human orthologous genes. Panel A: Scaled down 

representation of the complete cluster diagram. Panel B: 30 gene set found to be significant 

in predicting pCR and survival.
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FIG. 5. 
Kaplan-Meier survival curves of patients with basal-like tumors from the Hatzis et al. dataset 

(24) divided into (panel A) halves or (panel B) tertiles according to rank order mean 

expression value of the radiation-induced 30 gene set. P values were calculated using the 

log-rank test.
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TABLE 1

Radiation-Induced 30 Gene Signature List, Which Was Predictive of Pathologic Complete Response (pCR) to 

Neoadjuvant Chemotherapy in Breast Cancer Patients

Gene symbol Gene name Entrez gene ID

ADORA2B adenosine A2b receptor 136

AQP5 aquaporin 5 362

ARHGEF4 Rho guanine nucleotide exchange factor (GEF) 4 50649

ARHGEF9 Cdc42 guanine nucleotide exchange factor (GEF) 9 23229

ASS1 argininosuccinate synthase 1 445

C1orf198 chromosome 1 open reading frame 198 84886

CCDC93 coiled-coil domain containing 93 54520

COL4A4 collagen, type IV, alpha 4 1286

CPNE2 copine II 221184

DAB2IP DAB2 interacting protein 153090

DUSP22 dual specificity phosphatase 22 56940

GFOD1 glucose-fructose oxidoreductase domain containing 1 54438

LDHB lactate dehydrogenase B 3945

MCCC1 methylcrotonoyl-Coenzyme A carboxylase 1 (alpha) 56922

NFIB nuclear factor I/B 4781

PDE9A phosphodiesterase 9A 5152

PDHA1 pyruvate dehydrogenase (lipoamide) alpha 1 5160

PLA2G4A phospholipase A2, group IVA (cytosolic, calcium-dependent) 5321

PNRC1 proline-rich nuclear receptor coactivator 1 10957

PPARGC1A peroxisome proliferator-activated receptor gamma, coactivator 1 alpha 10891

PRKX protein kinase, X-linked 5613

SCPEP1 serine carboxypeptidase 1 59342

SEC14L1 SEC14-like 1 (S. cerevisiae) 6397

SLC25A27 solute carrier family 25, member 27 9481

SLC25A37 solute carrier family 25, member 37 51312

SOX9 SRY (sex determining region Y)-box 9 6662

TANK TRAF family member-associated NFKB activator 10010

VASN vasorin 114990

VLDLR very low density lipoprotein receptor 7436

WNT6 wingless-type MMTV integration site family, member 6 7475
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TABLE 3

Multivariate Logistic Regression Analysis to Predict Pathologic Complete Response for the Hatzis et al. (24) 

Dataset Using Multiple Possible Predictive Factors Including the Radiation-Induced 30 Gene Signature, the 

Standard Clinical Parameters and Additional Genomic Biomarkers

Variable Odds ratio (95% CI) of pCR vs. no pCR P

Radiation-induced 30 gene seta 4.52 (1.46–14.68) 0.0087

SET index: High vs. Low [Symmans et al. (41)] 0.67 (0.07–4.47) 0.69

SET index: Int vs. Low [Symmans et al. (41)] 1.14 (0.21–4.84) 0.86

Chemosensitivity predictor (Hatzis et al. (24)]: 2.45 (1.23–5.01) 0.010

Rx sensitive vs. insensitive

Excellent pathologic response predictor
[(Hatzis et al. (24)]: RCB–0/I vs. RCB-II/III

6.85 (3.26–15.27) <0.0001

ER pos vs. neg 0.83 (0.33–2.03) 0.67

PR pos vs. neg 1.13 (0.5–2.61) 0.76

HER2 pos vs. neg 2.21 (0.40–12.59) 0.36

Histologic grade 2 vs. 1 0.80 (0.12–16.0) 0.85

Histologic grade 3 vs. 1 1.61 (0.23–32.7) 0.66

Clinical T stage 2 vs. 1 1.20 (0.10–27.9) 0.89

Clinical T stage 3 vs. 1 1.04 (0.08–24.3) 0.97

Clinical T stage 4 vs. 1 0.62 (0.05–14.9) 0.72

Basal-like vs. LumA intrinsic subtypeb 4.61 (1.01–23.7) 0.049

LumB vs. LumA intrinsic subtype 5.04 (1.35–22.1) 0.015

Normal vs. LumA intrinsic subtype 3.16 (0.59–16.8) 0.17

Claudin vs. LumA intrinsic subtype 4.07 (0.88–20.8) 0.073

Her2 vs. LumA intrinsic subtype 2.80 (0.50–15.8) 0.23

Notes. Bold numbers indicate variables found to be significant (P < 0.05) in the logistic regression model.

pCR = pathological complete response, CI = confidence interval, RCB–0/I = pCR or minimal residual cancer burden, defining excellent response. 
RCB–II/III = moderate or extensive residual cancer burden, defining lesser response.

a
Odds ratio defined for per unit increase in regressor variable (i.e., mean expression value of radiation-induced 30 gene set, defined as a continuous 

variable).

b
Intrinsic subtype defined using PAM50 predictor (43).
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TABLE 5

Multivariate Logistic Regression Analysis to Predict Pathologic Complete Response for the Gluck et al. (22) 

Dataset Using Multiple Possible Predictive Factors Including the Radiation-Induced 30 Gene Signature, the 

Standard Clinical Parameters and Other Possible Biomarkers

Variable Odds ratio (95% CI) of pCR vs. no pCR P

Radiation-induced 30 gene seta 2167 (2.41–4.4 × 107) 0.02

ER pos vs. neg 0.07 0.33

PR pos vs. neg 4.4 × 10−9 0.02

Histologic grade 2 vs. 1 0.83 0.93

Histologic grade 3 vs. 1 1.27 0.90

Clinical T stage 2 vs. 1 0.10 0.26

Clinical T stage 3 vs. 1 9 × 10−11 0.004

Basal-like vs. LumA intrinsic subtypeb 0.0006 0.11

LumB vs. LumA intrinsic subtype 6.4 × 10−8 0.99

Normal vs. LumA intrinsic subtype 1.4 × 10−11 0.01

Her2 vs. LumA intrinsic subtype 0.01 0.25

TP53 mutation by AmpliChip assay: Mutant vs. wild-type 0.28 0.44

Notes. Bold numbers indicate variables found to be significant (P < 0.05) in the logistic regression model.

a
Odds ratio defined for per unit increase in regressor variable (i.e., mean expression value of radiation-induced 30 gene set, defined as a continuous 

variable).

b
Intrinsic subtype defined using PAM50 predictor (43).

Abbreviations: pCR = pathological complete response; CI = confidence interval.
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