178 research outputs found

    Comparative effectiveness of standard vs. AI-assisted PET/CT reading workflow for pre-treatment lymphoma staging: a multi-institutional reader study evaluation

    Get PDF
    2024 Frood, Willaime, Miles, Chambers, Al-Chalabi, Ali, Hougham, Brooks, Petrides, Naylor, Ward, Sulkin, Chaytor, Strouhal, Patel and Scarsbrook.Background: Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) is widely used for staging high-grade lymphoma, with the time to evaluate such studies varying depending on the complexity of the case. Integrating artificial intelligence (AI) within the reporting workflow has the potential to improve quality and efficiency. The aims of the present study were to evaluate the influence of an integrated research prototype segmentation tool implemented within diagnostic PET/CT reading software on the speed and quality of reporting with variable levels of experience, and to assess the effect of the AI-assisted workflow on reader confidence and whether this tool influenced reporting behaviour. Methods: Nine blinded reporters (three trainees, three junior consultants and three senior consultants) from three UK centres participated in a two-part reader study. A total of 15 lymphoma staging PET/CT scans were evaluated twice: first, using a standard PET/CT reporting workflow; then, after a 6-week gap, with AI assistance incorporating pre-segmentation of disease sites within the reading software. An even split of PET/CT segmentations with gold standard (GS), false-positive (FP) over-contour or false-negative (FN) under-contour were provided. The read duration was calculated using file logs, while the report quality was independently assessed by two radiologists with >15 years of experience. Confidence in AI assistance and identification of disease was assessed via online questionnaires for each case. Results: There was a significant decrease in time between non-AI and AI-assisted reads (median 15.0 vs. 13.3 min, p < 0.001). Sub-analysis confirmed this was true for both junior (14.5 vs. 12.7 min, p = 0.03) and senior consultants (15.1 vs. 12.2 min, p = 0.03) but not for trainees (18.1 vs. 18.0 min, p = 0.2). There was no significant difference between report quality between reads. AI assistance provided a significant increase in confidence of disease identification (p < 0.001). This held true when splitting the data into FN, GS and FP. In 19/88 cases, participants did not identify either FP (31.8%) or FN (11.4%) segmentations. This was significantly greater for trainees (13/30, 43.3%) than for junior (3/28, 10.7%, p = 0.05) and senior consultants (3/30, 10.0%, p = 0.05). Conclusions: The study findings indicate that an AI-assisted workflow achieves comparable performance to humans, demonstrating a marginal enhancement in reporting speed. Less experienced readers were more influenced by segmentation errors. An AI-assisted PET/CT reading workflow has the potential to increase reporting efficiency without adversely affecting quality, which could reduce costs and report turnaround times. These preliminary findings need to be confirmed in larger studies

    Videotaping Experiments in an Analytical Chemistry Laboratory Course at Pace University

    Get PDF
    Instructional videos for laboratory experiments performed in an analytical chemistry course were developed to show undergraduate students enrolled in the course how to conduct experiments. Students watched the videos before coming to the laboratory class. The effectiveness of using these videos was evaluated via a postlaboratory survey. The overall response to these videos was positive, with students reporting that the videos helped them to prepare beforehand and to understand the concepts covered in the experiment. The shortened discussion time at the beginning of class resulted in more laboratory time for the students to focus on performing the experiment and for the instructors to supervise, answer questions, make corrections to laboratory techniques, and ensure that the experiment is conducted in a safe manner

    Connexin-mimetic peptide Gap 27 decreases osteoclastic activity

    Get PDF
    BACKGROUND: Bone remodelling is dependent on the balance between bone resorbing osteoclasts and bone forming osteoblasts. We have shown previously that osteoclasts contain gap-junctional protein connexin-43 and that a commonly used gap-junctional inhibitor, heptanol, can inhibit osteoclastic bone resorption. Since heptanol may also have some unspecific effect unrelated to gap-junctional inhibition we wanted to test the importance of gap-junctional communication to osteoclasts using a more specific inhibitor. METHODS: A synthetic connexin-mimetic peptide, Gap 27, was used to evaluate the contribution of gap-junctional communication to osteoclastic bone resorption. We utilised the well-characterised pit-formation assay to study the effects of the specific gap-junctional inhibitor to the survival and activity of osteoclasts. RESULTS: Gap 27 caused a remarked decrease in the number of both TRAP-positive mononuclear and multinucleated rat osteoclasts cultured on bovine bone slices. The decrease in the cell survival seemed to be restricted to TRAP-positive cells, whereas the other cells of the culture model seemed unaffected. The activity of the remaining osteoclasts was found to be diminished by measuring the percentage of osteoclasts with actin rings of all TRAP-positive cells. In addition, the resorbed area in the treated cultures was greatly diminished. CONCLUSIONS: On the basis of these results we conclude that gap-junctional communication is essential for the action of bone resorbing osteoclasts and for proper remodelling for bone

    Faulting and hydration of the Juan de Fuca plate system

    Get PDF
    Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 284 (2009): 94-102, doi:10.1016/j.epsl.2009.04.013.Multichannel seismic observations provide the first direct images of crustal scale normal faults within the Juan de Fuca plate system and indicate that brittle deformation extends up to ~200 km seaward of the Cascadia trench. Within the sedimentary layering steeply dipping faults are identified by stratigraphic offsets, with maximum throws of 110±10 m found near the trench. Fault throws diminish both upsection and seaward from the trench. Long-term throw rates are estimated to be 13±2 mm/kyr. Faulted offsets within the sedimentary layering are typically linked to larger offset scarps in the basement topography, suggesting reactivation of the normal fault systems formed at the spreading center. Imaged reflections within the gabbroic igneous crust indicate swallowing fault dips at depth. These reflections require local alteration to produce an impedance contrast, indicating that the imaged fault structures provide pathways for fluid transport and hydration. As the depth extent of imaged faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho depths, fault- controlled hydration appears to be largely restricted to crustal levels. If dehydration embrittlement is an important mechanism for triggering intermediate-depth earthquakes within the subducting slab, then the limited occurrence rate and magnitude of intraslab seismicity at the Cascadia margin may in part be explained by the limited amount of water imbedded into the uppermost oceanic mantle prior to subduction. The distribution of submarine earthquakes within the Juan de Fuca plate system indicates that propagator wake areas are likely to be more faulted and therefore more hydrated than other parts of his plate system. However, being largely restricted to crustal levels, this localized increase in hydration generally does not appear to have a measurable effect on the intraslab seismicity along most of the subducted propagator wakes at the Cascadia margin.Supported by the Doherty Foundation and the National Science 449 Foundation under grants OCE002488 and OCE0648303 to SMC and MR

    A consistent global approach for morphometric characterisation of subaqueous landslides

    Get PDF
    Landslides are common in aquatic settings worldwide, from lakes and coastal environments to the deep sea. Fast-moving, large-volume landslides can potentially trigger destructive tsunamis. Landslides damage and disrupt global communication links and other critical marine infrastructure. Landslide deposits act as foci for localized, but important, deep-seafloor biological communities. Under burial, landslide deposits play an important role in a successful petroleum system. While the broad importance of understanding subaqueous landslide processes is evident, a number of important scientific questions have yet to receive the needed attention. Collecting quantitative data is a critical step to addressing questions surrounding subaqueous landslides. Quantitative metrics of subaqueous landslides are routinely recorded, but which ones, and how they are defined, depends on the end-user focus. Differences in focus can inhibit communication of knowledge between communities, and complicate comparative analysis. This study outlines an approach specifically for consistent measurement of subaqueous landslide morphometrics to be used in the design of a broader, global open-source, peer-curated database. Examples from different settings illustrate how the approach can be applied, as well as the difficulties encountered when analysing different landslides and data types. Standardizing data collection for subaqueous landslides should result in more accurate geohazard predictions and resource estimation
    • 

    corecore