968 research outputs found

    Discovery of Serotransferrin Glycoforms: Novel Markers for Diagnosis of Liver Periductal Fibrosis and Prediction of Cholangiocarcinoma.

    Get PDF
    Cholangiocarcinoma (CCA) caused by chronic liver fluke infection is a major public health problem in Northeast Thailand. Identification of CCA risk groups is urgently needed for the control of CCA in this region. Periductal fibrosis (PDF) induced by chronic inflammation of bile ducts is known as a pre-neoplastic lesion of CCA. We aimed to identify the serum CCA and PDF biomarkers using mass spectrometry (UPLC-ESI-QqQ) with multiple reaction mode (MRM) analysis. Here, serum levels of serotransferrin glycoforms at the glycopeptide level were measured in the sera of CCA (n = 100), PDF (n = 50), and healthy control (n = 100) subjects. The results indicated that serotransferrin peptide levels were generally the same between the control and PDF groups, whereas CCA patients had reduced levels. Moreover, 56 serotransferrin glycoforms were detected, with nine increased in CCA compared to control subjects. Among them, the serum levels of four glycoforms were increased in PDF and CCA patients compared to control subjects. In particular, highly sialylated multi-branched glycans of serotransferrin serum were significantly correlated with poor prognosis and tumor stage in CCA patients. Taken together, these glycoforms could be used as risk biomarkers and prognosis and diagnosis markers of CCA

    N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment

    Get PDF
    Mesoscale eddies in Oxygen Minimum Zones (OMZ's) have been identified as important fixed nitrogen (N) loss hotspots that may significantly impact both the global rate of N-loss as well as the ocean's N isotope budget. They also represent ‘natural tracer experiments’ with intensified biogeochemical signals that can be exploited to understand the large-scale processes that control N-loss and associated isotope effects (ε; the ‰ deviation from 1 in the ratio of reaction rate constants for the light versus the heavy isotopologues). We observed large ranges in the concentrations and N and O isotopic compositions of nitrate (NO3−), nitrite (NO2−) and biogenic N2 associated with an anticyclonic eddy in the Peru OMZ during two cruises in November and December 2012. In the eddy's center where NO3− was nearly exhausted, we measured the highest δ15N values for both NO3− and NO2− (up to ~70‰ and 50‰) ever reported for an OMZ. Correspondingly, N deficit and biogenic N2-N concentrations were also the highest near the eddy's center (up to ~40 µmol L−1). δ15N-N2 also varied with biogenic N2 production, following kinetic isotopic fractionation during NO2− reduction to N2 and, for the first time, provided an independent assessment of N isotope fractionation during OMZ N-loss. We found apparent variable ε for NO3− reduction (up to ~30‰ in the presence of NO2−). However, the overall ε for N-loss was calculated to be only ~13-14‰ (as compared to canonical values of ~20-30‰) assuming a closed system and only slightly higher assuming an open system (16-19‰). Our results were similar whether calculated from the disappearance of DIN (NO3− + NO2−) or from the appearance of N2 and changes in isotopic composition. Further, we calculated the separate ε for NO3− reduction to NO2− and NO2− reduction to N2 of ~16-21‰ and ~12‰, respectively, when the effect of NO2− oxidation could be removed. These results, together with the relationship between N and O of NO3− isotopes and the difference in δ15N between NO3− and NO2-, confirm a role for NO2− oxidation in increasing the apparent ε associated with NO3− reduction. The lower ε for NO3− and NO2− reduction as well as N-loss calculated in this study could help reconcile the current imbalance in the global N budget if they are representative of OMZ N-loss

    Evidence for microbial mediation of subseafloor nitrogen redox processes at Loihi Seamount, Hawaii

    Get PDF
    © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 198 (2017): 131-150, doi:10.1016/j.gca.2016.10.029.The role of nitrogen cycling in submarine hydrothermal systems is far less studied than that of other biologically reactive elements such as sulfur and iron. In order to address this knowledge gap, we investigated nitrogen redox processes at Loihi Seamount, Hawaii, using a combination of biogeochemical and isotopic measurements, bioenergetic calculations and analysis of the prokaryotic community composition in venting fluids sampled during four cruises in 2006, 2008, 2009 and 2013. Concentrations of NH4+ were positively correlated to dissolved Si and negatively correlated to NO3-+NO2-, while NO2- was not correlated to NO3-+NO2-, dissolved Si or NH4+. This is indicative of hydrothermal input of NH4+ and biological mediation influencing NO2- concentrations. The stable isotope ratios of NO3- (d15N and d18O) was elevated with respect to background seawater, with d18O values exhibiting larger changes than corresponding d15N values, reflecting the occurrence of both production and reduction of NO3- by an active microbial community. d15N-NH4+ values ranged from 0‰ to +16.7‰, suggesting fractionation during consumption and potentially N-fixation as well. Bioenergetic calculations reveal that several catabolic strategies involving the reduction of NO3- and NO2- coupled to sulfide and iron oxidation could provide energy to microbes in Loihi fluids, while 16S rRNA gene sequencing of Archaea and Bacteria in the fluids reveals groups known to participate in denitrification and N-fixation. Taken together, our data support the hypothesis that microbes are mediating N-based redox processes in venting hydrothermal fluids at Loihi Seamount.This work was supported by the NSF Microbial Observatories program (MCB 0653265), the Gordon and Betty Moore Foundation (GBMF1609), NSF-OCE 0648287, the Center for Dark Energy Biosphere Investigations (C-DEBI) and the NASA Astrobiology Institute — Life Underground (NAI-LU). Sequence data was generated as part of the Alfred P. Sloan Foundation's ICoMM field project and the W. M. Keck Foundation

    The Impact of Wage Bargaining Regime on Firm-Level Competitiveness and Wage Inequality: The Case of Ireland. ESRI WP266. December 2008

    Get PDF
    This paper uses a linked employer-employee dataset to analyse the impact of institutional wage bargaining regimes on levels of average labour costs and within firm wage dispersion in private sector companies in Ireland. The results show that while centralised bargaining reduced labour costs within both the indigenous and foreign-owned sectors, the relative advantage was greater among foreign-owned firms. The analysis suggests that there are potentially large competitiveness gains to multinational companies that choose to locate in countries implementing a centralised bargaining system. Furthermore, the results provide additional support to the view that collective bargaining reduces within firm wage inequality

    Urea Transformations in Flooded Soil.

    Get PDF
    Laboratory incubation studies were conducted to measure adsorption, movement, and transformations of urea and hydrolyzed ammoniacal N in flooded soil columns. Urea was added to the floodwater (750 mg N L\sp{-1}, equivalent to 150 kg N ha\sp{-1}) of Crowley silt loam soil columns and urea diffusion and urea hydrolysis were measured. Subsequent NH\sb4\sp+-N and NO\sb3\sp--N distribution after urea application and hydrolysis were measured over a 30 d period under aerobic and anaerobic conditions. Effects of percolation rates (0, 1, and 2 cm d\sp{-1}), and the use of urease inhibitor, N-(n-butyl) thiophosphoric triamide (NBPT), on movement and transformations of urea in flooded soil columns were also investigated over a period of 0.5, 1, and 2 d. Urea adsorption by the soil increased with increasing concentration of added urea-N and adsorption coefficients ranged from 0.037 to 0.064 but modeling found adsorption to be too small to be an important factor in urea movement and hydrolysis. Urea hydrolysis rates in the flooded soil columns increased with time and followed first-order reaction kinetics. Rate constants measured in the soil varied from 0.036 to 0.288 h\sp{-1}. The diffusion coefficient for both N forms (urea and NH\sb4\sp+) was estimated to be 3.5 ×\times 10\sp{-10} m\sp2 s\sp{-1} in the flooded soil columns. The distribution of NH\sb4\sp+-N in soil columns under aerobic and anaerobic conditions did not show distinct or different patterns. Percolation rates affected the movement of urea into deeper soil layers and had little effect on the movement of NH\sb4\sp+-N (hydrolyzed from urea) in the soil except at the highest rate of percolation 2 d after urea application. Addition of NBPT with urea in the floodwater drastically retarded urea hydrolysis and enhanced the effect of percolation on the transportation of urea into soil layers. The average percentage inhibition of NBPT on urea hydrolysis was 81.5 and 56.7% at 1 d and 2 d after urea application, respectively

    Underground support for Xe-Pian Xe-Namnoy hydropower project, Lao PDR

    Get PDF
    1. INTRODUCTION Xe-Pian Xe-Namnoy Hydropower Project is situated in Lao PDR overlapping between Champasak Province and Attapeu Province. Parties involved are the Developer, Xe-Pian Xe-Namnoy Hydroelectric Power Co., Ltd. (PNPC); the EPC Contractor, SK Engineering & Construction Co., Ltd. (SK) from South Korea; the Subcontractor for rock excavation by drilling and blasting method and concrete works, Right Tunnelling Co., Ltd. (RT) from Thailand. Rock excavation by drilling and blasting comprises two types of circular shaped concrete lined tunnel, one is Low Pressure with Tunnel length of 2,000 m., diameter of 5.0 m. and the other is High Pressure Tunnel with diameter of 4.6 – 3.6 m., length of 1,660 m. Geological condition of tunnel site are mainly siltstone interbedded with sandstone and mudstone. By RMR rock mass classification, the rock is classified as fair to good rock except for the tunnel portal and fault zone as poor rocks. Please click Additional Files below to see the full abstract

    A microRNA profile associated with Opisthorchis viverrini-induced cholangiocarcinoma in tissue and plasma

    Get PDF
    Background: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive tumor of the bile duct, and a significant public health problem in East Asia, where it is associated with infection by the parasite Opisthorchis viverrini. ICC is often detected at an advanced stage and with a poor prognosis, making a biomarker for early detection a priority. Methods: We have comprehensively profiled miRNA expression levels in ICC tumor tissue using small RNA-Seq and validated these profiles using quantitative PCR on matched plasma samples. Results: Distinct miRNA profiles were associated with increasing histological differentiation of ICC tumor tissue. We also observed that histologically normal tissue adjacent to ICC tumor displayed miRNA expression profiles more similar to tumor than liver tissue from healthy donors. In plasma samples, an eight-miRNA signature associated with ICC, regardless of the degree of histological differentiation of its matched tissue, forming the basis of a circulating miRNA-based biomarker for ICC. Conclusions: The association of unique miRNA profiles with different ICC subtypes suggests the involvement of specific miRNAs during ICC tumor progression. In plasma, an eight-miRNA signature associated with ICC could form the foundation of an accessible (plasma-based) miRNA-based biomarker for the early detection of ICC

    Distinct miRNA signatures associate with subtypes of cholangiocarcinoma from infection with the tumourigenic liver fluke Opisthorchis viverrini

    Get PDF
    Background & Aims: Intrahepatic cholangiocarcinoma (ICC) is a significant public health problem in East Asia, where it is strongly associated with chronic infection by the food-borne parasite Opisthorchis viverrini (OV). We report the first comprehensive miRNA expression profiling by microarray of the most common histologic grades and subtypes of ICC: well differentiated, moderately differentiated, and papillary ICC. Methods: MicroRNA expression profiles from FFPE were compared among the following: ICC tumour tissue (n = 16), nontumour tissue distally macrodissected from the same ICC tumour block (n = 15), and normal tissue (n = 13) from individuals undergoing gastric bypass surgery. A panel of deregulated miRNAs was validated by qPCR. Results: Each histologic grade and subtype of ICC displayed a distinct miRNA profile, with no cohort of miRNAs emerging as commonly deregulated. Moderately differentiated ICC showed the greatest miRNA deregulation in quantity and magnitude, followed by the papillary subtype, and then well differentiated ICC. Moreover, when ICC tumour tissues were compared to adjacent non-tumour tissue, similar miRNA dysregulation profiles were observed. Conclusions: We show that common histologic grades and subtypes of ICC have distinct miRNA profiles. As histological grade and subtypes are associated with ICC aggressiveness, these profiles could be used to enhance the early detection and improve the personalised treatment for ICC. These findings also suggest the involvement of specific miRNAs during ICC tumour progression and differentiation. We plan to use these insights to (a) detect these profiles in circulation and (b) conduct functional analyses to decipher the roles of miRNAs in ICC tumour differentiation
    corecore