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ABSTRACT 24	

The role of nitrogen cycling in submarine hydrothermal systems is far less studied than 25	

that of other biologically reactive elements such as sulfur and iron.   In order to address 26	

this knowledge gap, we investigated nitrogen redox processes at Loihi Seamount, 27	

Hawaii, using a combination of biogeochemical and isotopic measurements, 28	

bioenergetic calculations and analysis of the prokaryotic community composition in 29	

venting fluids sampled during four cruises in 2006, 2008, 2009 and 2013.  30	

Concentrations of NH4
+ were positively correlated to dissolved Si and negatively 31	

correlated to NO3
-+NO2

-, while NO2
- was not correlated to NO3

-+NO2
-, dissolved Si or 32	

NH4
+.  This is indicative of hydrothermal input of NH4

+ and biological mediation 33	

influencing NO2
- concentrations.  The stable isotope ratios of NO3

- (d15N and d18O) was 34	

elevated with respect to background seawater, with d18O values exhibiting larger 35	

changes than corresponding d15N values, reflecting the occurrence of both production 36	

and reduction of NO3
- by an active microbial community.  d15N-NH4

+ values ranged from 37	

0‰ to +16.7‰, suggesting fractionation during consumption and potentially N-fixation 38	

as well.  Bioenergetic calculations reveal that several catabolic strategies involving the 39	

reduction of NO3
- and NO2

- coupled to sulfide and iron oxidation could provide energy to 40	

microbes in Loihi fluids, while 16S rRNA gene sequencing of Archaea and Bacteria in 41	

the fluids reveals groups known to participate in denitrification and N-fixation.  Taken 42	

together, our data support the hypothesis that microbes are mediating N-based redox 43	

processes in venting hydrothermal fluids at Loihi Seamount. 44	

 45	

 46	
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1. INTRODUCTION 47	

  Loihi is a model system for mid-plate hotspot magmatism.  Hydrothermal activity 48	

at Loihi seamount is dominated by low-temperature vents emitting fluids up to ~70˚C 49	

with elevated concentrations of dissolved Fe(II), CO2, CH4 and NH4
+ (Gamo et al., 1987; 50	

Karl et al., 1989; Sedwick et al., 1992).  In contrast to mid-ocean ridge hydrothermal 51	

vents, hydrothermal fluids at Loihi are depleted in H2S, making Loihi an excellent 52	

location to study microbial Fe-cycling (Edwards et al., 2011; Emerson & Moyer, 2002; 53	

Glazer & Rouxel, 2009). 54	

 Hydrothermal activity at Loihi is characterized by two modes of venting.  At the 55	

summit, hydrothermal activity is currently present mostly in the Pele's Pit crater, which is 56	

home to the Hiolo North area of venting around 1300 meters (m) below sea level, the 57	

Pohaku area around 1178 m depth and the Hiolo South area around 1274 m (Glazer & 58	

Rouxel, 2009; Jesser et al., 2015; Karl et al., 1989; Sedwick et al., 1992).  These three 59	

areas are characterized by diffuse flow venting of warm hydrothermal fluids ~20-50˚C 60	

with iron-rich microbial mats found near the vent sites.  The microbial mats at Lohi's 61	

summit are generally dominated by members of the Zetaproteobacteria at sites with 62	

venting temperatures <40˚C, while increasing proportions of Epsilonproteobacteria are 63	

detected at sites with venting temperatures warmer than that (Emerson & Moyer, 2002; 64	

Moyer et al., 1994; Moyer et al., 1995; Moyer et al., 1998; Rassa et al., 2009). 65	

 Recently, a new type of hydrothermal activity was detected at the base of Loihi 66	

Seamount, at the site referred to as Ula Nui, located 5000 m deep at the base of the 67	

volcano.  Venting at Ula Nui is characterized by ultra-diffuse venting, with a temperature 68	

anomaly only 0.2˚C above the ambient temperature of 1.7˚C (Edwards et al., 2011).  69	
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This low temperature venting supports massive microbial mats that grow to >1 m tall 70	

and are largely dominated by Zetaproteobacteria.  71	

 In comparison to studies of sulfur redox processes in marine hydrothermal 72	

systems, there are far fewer studies of nitrogen redox processes.  Recently, however, 73	

several studies have shown that genes involved in microbial nitrogen redox reactions 74	

are abundant in hydrothermal settings, including the presence of anaerobic ammonia 75	

oxidation (anammox) across a variety of hydrothermal settings (Byrne et al., 2009), 76	

nitrogen fixation genes (Mehta et al., 2003) and the presence of genes indicating 77	

multiple nitrogen redox pathways (Wang et al., 2009).  In addition, the evident 78	

importance of denitrification in marine hydrothermal vent environments has become 79	

increasingly apparent (Bourbonnais et al., 2012a; Bourbonnais et al., 2012b; 80	

Bourbonnais et al., 2014; Pérez-Rodríguez et al., 2013; Vetriani et al., 2014; Wang et 81	

al., 2009; Xie et al., 2010).  At Loihi, microbial mats that form adjacent to venting sites 82	

were consistently found to contain the copper containing nitrite reductase gene (nirK), 83	

which is indicative of the ability to perform denitrification (Jesser et al., 2015).  The 84	

ubiquity of nitrogen redox transformations and the microbial communities catalyzing 85	

them, however, remains poorly understood in marine hydrothermal settings. 86	

  Following initial sampling and chemical characterization of end-member 87	

hydrothermal fluids at Loihi in the late 1980's, which revealed elevated NH4
+ 88	

concentrations of 0.28-5.56 µM and an inverse relationship between NH4
+ and NO3

-89	

+NO2
- (Karl et al., 1989; Sedwick et al., 1992), there have been no studies focusing on 90	

nitrogen (N) cycling.  Here, we investigate nitrogen cycling processes at Loihi Seamount 91	

using a combination of biogeochemical and isotopic measurements, bioenergetic 92	
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calculations and analysis of the prokaryotic community composition. While the microbial 93	

mats at Loihi have been well characterized	(Edwards et al., 2011; Emerson & Moyer, 94	

2002; Jesser et al., 2015; Moyer et al., 1994; Moyer et al., 1995; Moyer et al., 1998; 95	

Rassa et al., 2009), the microbiology of the venting fluids has not been previously 96	

described. Our analysis reveals the occurrence of several nitrogen redox 97	

transformations in Loihi subsurface fluids and sheds light on the putative microbial 98	

lineages associated with them. 99	

   100	

2. SAMPLING AND ANALYTICAL METHODS 101	

2.1 Sampling 102	

 Four cruises were conducted to Loihi Seamount: 22 September - 10 October 103	

2008 and 16 March - 01 April 2013 aboard R/V Thomas G. Thompson and 11-27 104	

October 2006 and 01-17 October 2009 aboard R/V Kilo Moana.  We sampled 105	

hydrothermal fluid samples, labeled "Vent Fluids" in Table 1, from sites at Hiolo North 106	

(M31, M36, M39), Hiolo South (M34 and M38; previously named Loihau, renamed Hiolo 107	

South by Jesser et al., 2015;), Pohaku (M57), Pit of Death (M56) and Ula Nui.  Areas 108	

and sites sampled are labeled in Figure 1.  Background seawater samples were 109	

collected away from venting in Pele's Pit, Pit of Death, and at Ula Nui (Table 1).  Non-110	

buouyant hydrothermal plumes samples, labeled "Water Column Profiles" in Table 1, 111	

were collected in Pele's Pit and Pit of Death and during a Tow-Yo CTD cast southwest 112	

of Loihi's summit (Bennett et al., 2011).  In addition to these sites, which have been 113	

visited in previous studies of Loihi (Edwards et al., 2011; Glazer & Rouxel, 2009; Jesser 114	

et al., 2015), two new sites were discovered and sampled in the Hiolo South area (near 115	
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Markers 34 and 38) during the 2009 expedition (Table 1).  One new area of venting 116	

chimlets (small iron-oxide chimneys) was discovered between Markers 34 and 38 117	

(labeled M34®M38).  The other new site was an approximately meter tall Fe-118	

oxyhydroxide chimney dubbed “Red Smoker”.   119	

 Hydrothermal vent samples destined for chemical analysis were collected from 120	

venting fissures in basalt rocks, ferruginous chimneys and a microbial mat (sample 477-121	

MS-blue) using a titanium Major sampler deployed from ROV Jason II.  The operation of 122	

the Major samplers for hydrothermal vent research has been described previously (Von 123	

Damm et al., 1985), as well as specifically for Loihi (Glazer & Rouxel, 2009).  The Major 124	

sampler was placed directly in the venting orifice for rocky fissures and into the mouth of 125	

ferruginous chimneys.  The ferruginous chimney structures are very delicate, therefore 126	

care was taken to place the snorkel of the Major sampler inside of the chimneys without 127	

causing the structure to collapse.  For the mat sample collected with a Major sampler at 128	

Ula Nui, the sampling snorkel was pressed approximately 15 cm below the surface of 129	

the 1 m tall mat and triggered.  130	

 During the 2013 cruise, a newly designed microbial mat sampler (Breier et al., 131	

2012) was used to specifically sample depth profiles within microbial mats.  Briefly, the 132	

samplers consist of six 60-ml syringes arranged on a cassette for which the syringe 133	

being sampled and speed of sampling is driven by a motor to allow for precise sampling 134	

of mats at specific depths.  For samples destined for chemical analysis, a 0.2 µm 135	

syringe tip filter was placed inline so that the sample was filtered in situ as it was drawn 136	

into the syringe. 137	
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  Background seawater samples were collected away from venting sites using 138	

Niskin bottles attached to the side of ROV Jason II.  In one case, a Major sampler was 139	

fired away from venting to collect a background sample, and in another case, a single 140	

syringe of the mat sampler was used for background seawater.  Water column profiles 141	

were conducted and hydrothermal plume samples were targeted and collected using 142	

niskin bottles on a CTD rosette.  The plume emanating from Loihi's summit was 143	

detected using transmissometry, as detailed in Bennett et al. (2011).    144	

 All samples for chemical analysis were either filtered and then frozen (all 145	

samples from 2008 and 2013, CTD samples in 2009) or frozen immediately and filtered 146	

upon thawing before analysis (2009).  For those filtered prior to freezing, samples from 147	

Major samplers were filtered through a 0.20 µm pore size syringe tip filter placed inline 148	

with the outlet of the Major sampler.  Water column profile samples were filtered as they 149	

exited the niskin bottles with 0.20 µm pore size, 47 mm diameter Supor filters (Pall) in 150	

PFA filter holders (Cole-Parmer).  All other samples were filtered using syringe tip filters 151	

on 60 ml syringes.  Samples were stored in sterile polypropylene containers until 152	

analysis.  An aliquot of sample was used to rinse the containers and discarded prior to 153	

filling the containers with sample. 154	

 Four diffuse flow hydrothermal fluid samples and two background seawater 155	

samples were sampled for microbial community analysis during the 2006 cruise (Table 156	

2).  LoihiPP1, 2, 4, 5 and 6 were sampled using the pelagic pump on the ROV Jason II 157	

during dives J2-241, J2-242, J2-243, J2-245 and J2-246, respectively.  A hose with a 158	

course mesh filter at the sampling point was placed in venting diffuse fluids (LoihiPP1, 159	

2, 5 and 6), and ~50 L was then filtered through a Steripak-GP 0.22 µm pore size filter.  160	
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The filter was frozen at -80˚C upon retrieval of the vehicle.  One background seawater 161	

sample (LoihiPP4) was collected in the same manner (~125 L filtered through a 162	

Steripak-GP) while the ROV was in the water column in Pele's Pit.  Another background 163	

seawater sample, LoihiCTD03, was collected with a CTD rosette in Pele’s Pit and then 164	

10 L filtered through a Sterivex GP 0.22 µm pore size filter. 165	

 166	

2.2 Chemistry analytical methods. 167	

 Fluid temperatures were measured by placing the temperature probe on ROV 168	

Jason II into the venting orifice or chimney.  NO3
-+NO2

- (hereafter referred to as 169	

NO3+NO2) and NO2
- were measured using the chemiluminescent method after 170	

reduction to NO by hot, acidic vanadium (NO2+NO3) or potassium iodide (NO2
-) 171	

(Garside; 1982) with a detection limit of <0.010 µM.  NH4
+ was measured 172	

colorimetrically via the phenol-hypochlorite method (Grasshoff et al., 1999) with a 5 cm 173	

cell in a Shimadzu UV-1601 spectrophotometer onboard the R/V Thompson (2008) or 174	

using the fluorescence method (Holmes et al., 1999) post-cruise (2009 and 2013).  The 175	

detection limit for NH4
+ by both methods is 0.030 µM.  Spiked samples were within 5% 176	

of expected values or better for both methods.  Dissolved inorganic phosphorus (Pi) and 177	

dissolved silica (dSi) were measured using colorimetric methods, with detection limits of 178	

0.030 µM for Pi
 and 0.30 µM for dSi (Grasshoff et al., 1999; Gieskes et al., 1991).   179	

 To determine if vent fluid chemistry differed between Hiolo North, Hiolo South 180	

and Pohaku, one-way analysis of variance (ANOVA) was calculated with Tukey's 181	

posthoc pairwise comparison for hydrothermal vent fluid temperature and all chemical 182	

variables measured using JMP Pro 10 (SAS Institute, Inc.).  Correlations between the 183	
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same chemical variables across all samples were determined using Kendall's τ 184	

correlation. 185	

 186	

2.3 Isotopic measurements 187	

Nitrate N and O stable isotope ratios (15N/14N and 18O/16O, respectively) were measured 188	

using the denitrifier method (Casciotti et al., 2002; Sigman et al., 2001), in which sample 189	

NO3
- is quantitatively converted to N2O using a lab-grown denitrifying bacterium before 190	

being extracted and purified on a purge and trap system similar to that previously 191	

described in McIlvin and Casciotti (2010).  Isotope ratios are expressed using standard 192	

delta notation where d15N = ((15Rsample/15Rref)-1)*1000 and 15R refers to the 15N/14N ratio 193	

(or 18O/16O for d18O)).  Nitrogen isotope ratios are reported relative to N2 in air as 194	

reference, while oxygen isotope ratios are reported relative to Vienna Standard Mean 195	

Ocean Water (VSMOW).  Where detected, NO2
- was removed by sulfamic acid addition 196	

(Granger & Sigman, 2009) prior to isotopic analysis of NO3
-.  Isotope ratios were 197	

measured on an IsoPrime100 (Elementar, Inc.) and corrections for drift, size and 198	

fractionation of O isotopes during bacterial conversion were carried out as previously 199	

described using NO3
- standards USGS 32, USGS 34 and USGS 35 (Casciotti et al., 200	

2002; McIlvin & Casciotti, 2010), with a typical reproducibility of 0.2‰ and 0.4‰ for d15N 201	

and d18O, respectively. 202	

Analysis of ammonium nitrogen isotope ratios (d15N-NH4
+) was carried out by 203	

persulfate oxidation to NO3
- as described previously (Knapp et al., 2005) followed by the 204	

denitrifier method to produce N2O for purification and isotopic analysis.  Samples were 205	

passed through a solid phase extraction (SPE) cartridge (Agilent Bond Elut PPL) to 206	
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remove most of any dissolved organic nitrogen (Dittmar et al., 2008), as confirmed by 207	

the difference in the concentrations of total dissolved nitrogen taken after persulfate 208	

oxidation in the samples that passed and did not pass through the SPE cartridges.  The 209	

resulting persulfate-converted sample provides δ15N of (NO3
- + NO2

- + NH4
+) while a 210	

parallel sample without persulfate oxidation step yields δ15N of (NO3
- + NO2

-).  Isotopic 211	

composition of the NH4
+ pool was calculated by mass balance to report d15N-NH4

+ 212	

values, which were normalized to international isotopic reference standards: IAEA-N1 213	

(d15N=0.5‰), USGS-25 (d15N=-29.4‰) and USGS-26 (d15N=52.9‰). 214	

 215	

2.4 Bioenergetic calculations 216	

Values of the energy densities of the rth reaction per kg of water, Er, are 217	

calculated using (LaRowe et al., 2014): 218	

	 	 	 	 Er =
ΔGr

ν i
 [i] 	 	 	 																																						(1)	219	

	220	
where	 ni and [i] stand for the stoichiometric coefficient and molal concentration, 221	

respectively, of the ith limiting electron donor or acceptor.  Because either the electron 222	

donor or acceptor will be a limiting reactant per volume of fluid, the concentration and 223	

stoichiometric coefficient of this limiting nutrient were used for values of vi and [i] in Eq. 224	

(1).  In order to carry out these calculations, the activities of all reactants and products 225	

were held constant.  In effect, this is an instantaneous snapshot of the total amount of 226	

Gibbs energy contained in a kg of water for a particular reaction. Because the prevailing 227	

physiochemical conditions at the sample sites vary with time, Gibbs energy densities 228	

were calculated for high and low energy scenarios in order to capture the natural 229	
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variability of hydrothermal vents at Loihi.  The high energy scenario was generated 230	

using the highest concentrations of reactants and lowest concentrations of product 231	

species at each sample site. Conversely, the low energy scenario used the lowest 232	

concentrations of reactants and highest concentrations of product species at each 233	

sample site.  234	

	 Values of ΔGr are calculated using 235	

  236	
	 	 	 	 	 	

r

r
r Q

KRTG ln-=D ,	 	 	 	 													(2)	237	

 238	

where Kr and Qr refer to the equilibrium constant and reaction quotient of the reaction, 239	

respectively, R represents the gas constant, and T denotes temperature in Kelvin. 240	

Values of Kr were calculated using the revised-HKF equations of state (Helgeson et al., 241	

1981; Shock et al., 1992; Tanger & Helgeson, 1988), the SUPCRT92 software package 242	

(Johnson et al., 1992), and thermodynamic data taken from a number of sources 243	

(Schulte et al., 2001; Shock & Helgeson, 1988; Shock & Helgeson, 1990; Shock et al., 244	

1989; Sverjensky et al., 1997).  Values of Qr were calculated using 245	

       Õ=
i

ir
iaQ u  ,    (3) 246	

where ai stands for the activity of the ith species and vi corresponds to the stoichiometric 247	

coefficient of the ith species in the reaction of interest. Values of ai are related to the 248	

concentration of the ith species, Ci, through 249	

	 ÷÷
ø

ö
çç
è

æ
= 0

i

i
ii C
Ca g 	 (4)	250	

	251	
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where gi stands for the activity coefficient of the ith species and 0
iC  refers to the 252	

concentration of the ith species under standard state conditions, which is taken to be 253	

equal to one molal referenced to infinite dilution. Values of gi were in turn computed as a 254	

function of temperature and ionic strength using an extended version of the Debye-255	

Hückel equation (Helgeson; 1969). 256	

	 The reactions chosen to represent the catabolic potential of nitrogen-processing 257	

microbial communities at Loihi are comprised of electron donors (EDs) and electron 258	

acceptors (EAs) that are known to be present at this site (Table 3).  Concentrations of 259	

NO3
-, NO2

-, NH4
+ used in these calculations are reported in the current study, and the 260	

concentrations of other species, such as Fe2+ and HS-, have been taken from other 261	

studies that have focused on the same sample sites (Edwards et al., 2011; Glazer & 262	

Rouxel, 2009); the data used is presented in Table 4. 263	

 264	

2.5 DNA extraction, sequencing and data processing. 265	

 Environmental DNA from diffuse flow fluids and background seawater was 266	

extracted using previously described methods (Sogin et al., 2006).  Polymerase chain 267	

reaction of the V6 hypervariable region of the small subunit (SSU) rRNA gene for 268	

bacteria and archaea, followed by 454 pyrosequencing of the amplicons, was carried 269	

out as described previously for all diffuse flow and background seawater samples 270	

(Huber et al., 2007).  Basic metadata for the samples used for pyrosequencing is given 271	

in Table 2. 272	

 Obtained sequences were run through the VAMPS pipeline 273	

(http://vamps.mbl.edu), which removed sequences with any N's and trimmed primers, 274	
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requiring an absolute match to the sequencing primers.  Phylogenetic affiliations of the 275	

tag sequences (hereafter referred to as pyrotags) were identified using the Global 276	

Alignment for Sequence Taxonomy (GAST) method (Huse et al., 2008) for all samples.  277	

For pyrotags designated “unknown” by GAST, each individual sequence was submitted 278	

to the RDP classifier with the bootstrap parameter set to 80% (Cole et al., 2009).  If the 279	

sequence was not assigned to the domain Bacteria for sequences obtained using 280	

bacterial primers, or Archaea for sequences obtained using archaeal primers, it was 281	

removed from further analysis.  Operational taxonomic units, defined at the 97% 282	

similarity cutoff, were determined using the software package Mothur (Schloss et al., 283	

2009) with the pre.cluster command, which preclusters at a 1% difference level (one bp 284	

difference for the V6 tags used here) using modified single-linkage (Huse et al., 2010) 285	

and the average neighbor method.  To concentrate on operational taxonomic units 286	

(OTUs) present only in diffuse fluids, we removed from our samples any OTUs (defined 287	

at the 97% similarity cutoff) that were present in the two Loihi seawater samples 288	

(LoihiCTD03 and LoihiPP4) using the remove.otus command in mothur. 289	

 Raw sequence data is deposited in the NCBI SRA under Bioproject 290	

PRJNA109379.  Quality-controlled trimmed reads can be found at vamps.mbl.edu under 291	

projects KCK_SMT_Av6 and KCK_SMT_Bv6. 292	

 293	

 294	

3. RESULTS 295	

3.1 Bulk chemistry 296	
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  Hydrothermal venting at Loihi is most active near the Pele's Pit crater.  The mean 297	

temperature of the venting fluids in the Hiolo South area was ~47˚C, ~7˚C higher than 298	

the Hiolo North vents (Table 1).  NH4
+ concentrations were always elevated in 299	

comparison to background seawater (<0.03 µM), ranging from 1.1 µM to 3.0 µM in the 300	

Hiolo North area, ~0.7 µM lower, on average, than those measured in the Hiolo South 301	

area (range 0.7-7.5 µM).  Pohaku/M57, located on the outside rim of Pele's Pit (Fig. 1), 302	

emits end-member fluids with a mean temperature of 26˚C and NH4
+ concentrations 303	

from 2.4-4.2 µM.  The diffuse venting and background seawater samples in the Pit of 304	

Death contained elevated NH4
+ (0.2 µM) compared to typical deep ocean waters (<0.03 305	

µM, samples 0801-21 and 0901-21, Table 1) in 2008, but this site was found to be 306	

inactive in 2009 and not sampled again.  NO3+NO2 concentrations ranged widely at 307	

both Hiolo North and the Hiolo South area, but were higher, on average, in the Hiolo 308	

South area, and all samples were generally much lower than background seawater 309	

(~41uM).  NO2
- ranged from below detection up to 0.5 µM at various sites in the Hiolo 310	

South, Hiolo North and Pohaku.  Pi was variable, ranging from 0.3 µM, approximately an 311	

order of magnitude less than background seawater, to 6.6 µM, approximately twice 312	

background seawater.  313	

 Loihi seamount is home to abundant ferriginous microbial mats (Emerson & 314	

Moyer, 2002; Karl et al., 1988).  Concentrations of Fe2+ and oxygen are known to be 315	

variable from the surface to the deeper parts of these mats; oxygen decreases from 316	

saturation to below detection by 10 cm below the mat surface and dissolved Fe2+ 317	

increases continuously from 40 µM at the surface of the mat to >120 µM at 70 cm below 318	

mat surface (Edwards et al., 2011).  The interstitial space in these mats is comprised of 319	
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a mix of background seawater and hydrothermal fluids from either the nearest orifice, as 320	

is the case with samples collected from the caldera, or from the bottom of the mat, as is 321	

the case with the mounds sampled at Ula Nui (Fig. 1).  Samples obtained from a few cm 322	

below the surface of mats located at M34 all had elevated NH4
+, NO2

- and dSi 323	

compared to background seawater concurrent with reduced concentrations NO3+NO2 324	

(Table 1).  Sampling at the surface of four microbial mats at the ultra-diffuse venting Ula 325	

Nui site, known for meter tall nontronite laden mats (Edwards et al., 2011), revealed 326	

similar patterns.  Additional information was gained from vertical profiling of two of these 327	

mats, which revealed increasing NH4
+ and dSi and decreasing NO3

- with depth (Fig. 2).  328	

Mat C5 also had increasing NO2
- with depth while NO2

- was below detection in mat D6, 329	

which was located only 20 cm away.  The gradients in the top 5 cm were steeper in mat 330	

C5 than mat D6. 331	

 In hydrothermal vent fluids from Loihi, Mg remains close to background 332	

seawater, unlike high temperature hydrothermal venting (Glazer & Rouxel, 2009; Karl et 333	

al., 1989; Sedwick et al., 1992).  Therefore, concentrations of dSi are used as a 334	

conservative tracer of Loihi hydrothermal vent fluids because they are elevated 335	

compared to background and mix conservatively with deep ocean water.  NO2
- does not 336	

show a relationship to dSi (Fig. 3C), while NH4
+ is positively correlated to dSi (Fig. 3A).  337	

Two samples from M57 collected in 2013 had anomalously high dSi and are outliers to 338	

the trendline although believed to be accurate.  NO3+NO2 and NH4
+ are negatively 339	

correlated (Fig. 3B), as has been noted before (Karl et al., 1989; Sedwick et al., 1992).  340	

The linear relationships between both NH4
+ vs dSi and NO3+NO2 vs NH4

+ are variable 341	
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dependent on the year of sampling, including data from previous studies (Karl et al., 342	

1989; Sedwick et al., 1992) (Fig. 3A & B). 343	

 One-way ANOVA was used to statistically compare the end-member fluid data 344	

(Table 5) from Hiolo North, Hiolo South and Pohaku.  Hydrothermal fluid temperatures 345	

at the three areas in and around Pele's Pit are significantly different at each area 346	

(p<0.001), while NO3+NO2 concentrations are significantly different between Pohaku 347	

and Hiolo North (p=0.0114), and Pi concentrations are significantly different between 348	

Hiolo South and Pohaku (p=0.0283).  NH4
+ and dSi concentrations were not significantly 349	

variable between any of the three Pele's Pit sites.  350	

 While linear regressions are stronger when each year is considered 351	

independently (Fig. 3), significant correlations remain even when pooling all data points 352	

from both this work and earlier studies (Karl et al., 1989; Sedwick et al., 1992), as 353	

shown in Table 5.  Significant positive correlations exist between dSi and NH4
+, while 354	

significant negative correlations exist between dSi and NO3+NO2, between NO3+NO2 355	

and temperature, between NH4
+ and NO3+NO2, between NO2

- and temperature and 356	

between Pi and NO3+NO2. 357	

 358	

3.2 Stable isotope measurements 359	

 Background seawater from depths of ~1100m (near Pele’s Pit) had d15NNO3 of 360	

+6.3‰ and d18ONO3 of +3.2‰ (Table 6). Low-temperature vent fluid samples (up to 361	

~45˚C) collected from Pele’s Pit generally exhibited increasing isotope ratios with 362	

decreasing concentrations of NO3
- (Fig. 4a), with d15N ranging from +5.8 up to +11.5‰ 363	

and d18O from +4.0 up to +18.0‰. The changes in d18ONO3 values were notably larger 364	
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than the corresponding changes in d15NNO3 values with respect to seawater (Fig 4b), 365	

consistent with active cycling of N (see below). Vent plume samples collected from 366	

Pele’s Pit in 2009 showed NO3
- isotopic compositions that were largely indistinguishable 367	

from background seawater, with d15NNO3 values ranging from +5.7 to +6.4‰ (mean = 368	

+6.0 ± 0.2‰) and d18ONO3 values ranging from +2.6 to +3.6‰ (mean = +3.1 ±0.3‰). 369	

The two samples collected at Ula Nui (4984m) were distinctly different from those 370	

collected from Pele’s Pit, having lower d15NNO3 and d18ONO3 values of +5.0‰ and 2.4‰, 371	

respectively. 372	

 Nitrogen isotopes of ammonium were measured on a subset of hydrothermal 373	

fluid samples (Table 6).  Because NH4
+ isotopic composition is calculated by mass 374	

balance, we only report samples in which the fraction of NH4
+ to the total inorganic N 375	

pool was at least 20% to minimize error propagation. d15NNH4 values range from 0.0‰ to 376	

+16.7‰, with no observed correlation to NH4
+ concentration or temperature across the 377	

sampling sites (not shown). Notably, the majority of d15NNH4 values were near seawater 378	

NO3
- values or higher, with only two values exhibiting lower values of 0.0‰ and +3.3‰.  379	

 380	

3.3 Energy availability 381	

 The amount of energy available from the 17 reactions listed in Table 3 were 382	

calculated for hydrothermal fluids that are characteristic of three locations in Pele's Pit, 383	

Hiolo South, Pohaku and Hiolo North, and for three depths in a microbial mat sampled 384	

at the Ula Nui site (see Table 4 for compositions).  Because most of the reactions 385	

shown in Table 3 yield a very small amount of energy, only the six most exergonic 386	

reactions are shown in Fig. 5.  The amount of energy available from each of the 387	
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reactions varies at each site (note that the scales in panels A and B in Fig. 5 are not the 388	

same).  Under low energy conditions, Fig. 5A, iron oxidation coupled to nitrate reduction 389	

are among the most energy-dense reactions at Pohaku and in the top two parts of the 390	

Ula Nui mat. For the other sites under low-energy conditions, sulfide oxidation coupled 391	

to nitrate reduction reaction has the highest potential for microbial catabolism. For the 392	

high energy scenario, sulfide oxidation by nitrate has more potential than Fe oxidation at 393	

the Hiolo sites, while iron oxidation coupled to nitrate reduction has more potential to 394	

fuel microorganisms at the remaining sites. 395	

 Fe2+, H2S and NH4
+ are the most significant electron donors in this environment, 396	

and NO3
- is the oxidant that yields the most energy.  Reactions in which CH4 is the 397	

electron donor and nitrite the electron acceptor yield so little energy that they would not 398	

be visible in Fig. 5.  Fluids sampled at Pohaku have the greatest potential for nitrogen-399	

based catabolic activities under the low energy scenario, but rank third behind the Hiolo 400	

sites under the high energy scenario. The broad concentration ranges of electron 401	

donors and acceptors at the Hiolo sites result in these two sites having the highest and 402	

lowest energy densities in the high and low energy scenarios, respectively. 403	

  Of the six reactions presented in Fig. 5, three are described as Fe2+ oxidation by 404	

NO3
- (reactions 1-3 in Table 3). These reactions only differ with respect to the oxidation 405	

state of the product nitrogen species: NO2
-, N2 and NH4

+.  At all six sample sites, the 406	

Fe2+ + NO3
- reaction to N2(aq) (Reaction 2) is the most energy yielding of these reactions. 407	

Similarly, for the H2S + NO3
- reactions (Reactions 11-14 in Table 3), the reaction in 408	

which N2(aq) is the product species (Reaction 11) is the most energy yielding of the 409	

sulfide oxidation reactions.  N2 was not measured during this work, but is inferred to be 410	
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created in the subsurface as the deficit between the concentrations of NO3+NO2 + NH4
+ 411	

in the background seawater and that in the vent fluids, which is likely tens of µM.  412	

 413	

3.4 Microbial diversity 414	

 Background seawater samples collected at 1100 m and 1700 m are comprised 415	

largely of Alpha-, Delta- and Gammaproteobacteria (Fig. 6).  The Alphaproteobacterial 416	

orders Rhodobacterales, Rhodospirillales and the SAR11 group within the order 417	

Rickettsiales are abundant in these seawater samples, as are the SAR324 clade of 418	

Deltaproteobacteria and the Gammaproteobacterial orders Alteromonadales and 419	

Oceanospiralles.  Archaeal communities in the background samples are comprised 420	

largely of Thaumarchaeota and Thermoplasmata. 421	

Bacterial OTUs detected in Loihi fluids derive from 13 phyla and all 6 classes of 422	

Proteobacteria.  OTUs classified as Deltaproteobacteria in the order 423	

Syntrophobacterales are found in all three vent fluid samples from Pele’s Pit, but not the 424	

sample LoihiPP6, collected at the Ula Nui site in 5000 m water depth.  OTUs belonging 425	

to the order Thiotrichales within the g-proteobacteria are abundant in LoihiPP2 (8.9%) 426	

and LoihiPP5 (5.4%), as are the OTUs within the Epsilon- (10.2% and 4.4%, 427	

respectively) and Zetaproteobacteria (13.1 and 10.1%, respectively) classes and the 428	

family Nitrospiraceae (18.9 and 19.2%, respectively).  The genus Thiohalophilus is 429	

found in all three samples from Pele’s Pit at relative abundances of 1.7-6.6% but 430	

represents only 0.11% of the pyrotags from Ula Nui.  Finally, sequences belonging to 431	

the SAR406 clade within the Deferribacteres are common to all four diffuse flow 432	
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samples (0.83- 12.8%), and the thermophilic, anaerobic genus Caldithrix is common to 433	

the three samples from Pele’s Pit (1.0-7.3%). 434	

Archaeal OTUs common to Loihi subsurface fluids include the family 435	

Archaeoglobaeceae (12.4-62.6% of all archaeal pyrotags), abundant in all three 436	

samples from Pele's Pit, and Marine Benthic Group E in the Thermoplasmata, which 437	

was common in all four samples (8.3-36.1%).  The Halobacteria present in the Pele's Pit 438	

samples all derive from the order Halobacterales and either could not be classified 439	

further or belong to the Deep Sea Euryarcheotic Group.  In LoihiPP1, Methanococci and 440	

Menthanomicrobia are present (3.4 and 12.3%, respectively), but these are absent from 441	

the other samples. 442	

Among the prokaryotic OTUs detected in venting fluids, a portion of them belong 443	

to groups known to participate in nitrogen redox cycling.  These are largely grouped into 444	

NO3
- reduction/denitrification, N-fixation and NO2

- oxidation (Fig. 6).  Among these, the 445	

most abundant putative N-reducing microbes include Caldithrix, from which some 446	

members perform dissimilatory nitrate reduction to ammonium, or DNRA 447	

(Miroshnichenko et al., 2003), Epsilonproteobacteria, Thiohalophilus and members of 448	

the SAR324 clade.  Putative N-fixers detected include members of the bacterial order 449	

Chlorobiales and archaeal methanogens in the genera Methanococcus and 450	

Methanothermococcus.  Members of the phylum Nitrospirae are present in all four 451	

samples, and are abundant in LoihiPP2 and LoihiPP5.  Approximately 4 and 10% of the 452	

sequences were assigned to the genus Thermodesulfovibrio in LoihiPP2 and LoihiPP5, 453	

respectively, while only a few sequences, <1% in LoihiPP2 and none in LoihiPP5, were 454	

assigned to the genus Nitrospira.  The majority of sequences classified as Nitrospirae 455	
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could not be classified beyond Nitrospiraceae, therefore it is impossible to guess their 456	

role in N-cycling given that some members of this family are nitrite oxidizers (Nitrospira) 457	

while others are not (Thermodesulfovibrio and others).   458	

It should be noted that OTUs from the genera Marinobacter and Halomonas and 459	

the NO2
- oxidizing genus Nitrospina were abundant in fluid samples, but the same 460	

OTUs were detected in abundance in the background samples as well, and therefore do 461	

not appear in the background subtracted libraries reported (although different OTUs of 462	

Marinobacter not detected in the background samples are present).  Both Marinobacter 463	

and Halomonas are cosmopolitan genera common to both water column and 464	

subsurface hydrothermal environments (Kaye et al., 2011) and therefore these OTUs 465	

are likely also present in the subsurface.  Genes for nitrate reductase belonging to both 466	

genera have been detected in low temperature vent fluids and on active hydrothermal 467	

vent sulfides (Pérez-Rodríguez et al., 2013), and many isolates of Marinobacter (Takai 468	

et al., 2005) and hydrothermal vent derived isolates of Halomonas (Kaye et al., 2004) 469	

are NO3
- reducers, lending further evidence to the likelihood that they are present and 470	

participating in NO3
- reduction in both the water column and subsurface. 471	

 472	

 473	

4. DISCUSSION  474	

4.1 Biogeochemistry and isotope systematics at Loihi 475	

 While hydrothermally sourced Fe and CH4 have been recognized as important 476	

energy sources for microbial metabolism at Loihi (Emerson & Moyer, 2002; Gamo et al., 477	

1987), the role of N-redox transformations in supporting subsurface microbially 478	
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mediated N-cycling is much less understood, in part due to the lack of measurements of 479	

inorganic N species at Loihi since the first studies that took place two decades ago (Karl 480	

et al., 1989; Sedwick et al., 1992).  Those earliy studies of Loihi revealed elevated NH4
+ 481	

in Loihi hydrothermal fluids in samples collected from Pele's vents prior to the July-482	

August 1996 seismic events that resulted in the collapse of Pele's vents and the 483	

creation of the pit crater Pele's Pit (Hilton et al., 1998).  Immediately following the 484	

creation of Pele's Pit, venting hydrothermal fluid temperatures reached 200˚C (Wheat et 485	

al., 2000), followed by a slow decrease in temperatures during 1997-1999 (Malahoff et 486	

al., 2006).  Sampling of Loihi vents during 2006-2008 revealed that end-member fluid 487	

temperatures were 21-55˚C, similar to pre-1996 values (Glazer & Rouxel, 2009), and 488	

that Fe/Mn ratios returned to ~30, the same as pre-1996 values (Glazer & Rouxel, 489	

2009), indicative of a return to a steady state resembling pre-eruption conditions.  Our 490	

hydrothermal fluid NH4
+ data is similar in range to that of the earlier work (Fig. 3) and is 491	

in agreement with a return to steady state at Loihi.  We also measured NO2
- 492	

concentrations at Loihi for the first time.  Concentrations were below detection for half of 493	

the samples collected and ~0.10-0.50 µM for the rest. Although low, these levels of NO2
- 494	

are consistent with active redox cycling involving NO2
- as a product of NH4

+ oxidation 495	

and/or NO3
- reduction, both reactions that are favorable under in situ conditions (Fig. 5). 496	

 Concentrations of NO3+NO2 and NH4
+ in Loihi fluids are strongly negatively 497	

correlated (Fig. 3, Table 5), suggesting linkages between the redox cycling of these 498	

inorganic nitrogen species.  These linkages may be the result of simultaneous abiotic 499	

and biotic mechanisms in Loihi's subsurface, with neither possibility being mutually 500	

exclusive.  NO3
- can be reduced abiotically to NH4

+ with Fe2+ as a catalyst between 501	
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22˚C and 200˚C (Holm & Neubeck, 2009; Ottley et al., 1997; Smirnov et al., 2008; 502	

Summers & Chang, 1993) and therefore could be favorable in Loihi's subsurface 503	

environment.  In addition to biologically mediated dissimilatory N-redox cycling, 504	

discussed below, biological assimilation can also have an effect on N-isotope 505	

composition in hydrothermal environments (Lee & Childress, 1994).   506	

 Unlike NH4
+, NO2

- shows no correlation to NO3+NO2 or dSi.  The lack of 507	

correlation with dSi suggests that it is of low-temperature origin, likely released as a 508	

reactive intermediate of a biological process (i.e., not an endmember product of high 509	

temperature reactions).  As NO2
- is an intermediate of both denitrification and 510	

nitrification, the lack of correlation with conservative and non-conserved tracers is not 511	

surprising.  Given the abundance of Fe2+ in these fluids, the mixing zone where 512	

subsurface fluids meet the seafloor likely represents a kinetic battleground between Fe-513	

oxide precipitation and microbial utilization of oxygen for oxidation of compounds 514	

including NH4
+ and NO2

-.   In order to shed more light on the nature of N-cycling 515	

reactions occurring, we also examined the N and O stable isotopic composition of N-516	

bearing species.  To our knowledge, only one study has reported on coupled N and O 517	

stable isotope measurements in the context of biogeochemical cycling of nitrogen 518	

species in a deep-sea hydrothermal system (Bourbonnais et al., 2012a).  Using 519	

samples from the Endeavour Segment and Axial Volcano on the Juan de Fuca Ridge, 520	

these authors found evidence for removal of NO3
- from fluids primarily by dissimilatory 521	

processes when NH4
+ concentrations were ≤10 µM, conditions representative of their 522	

diffuse flow sites as well as at those sampled at Loihi.  Indeed, in a related study using 523	
15N isotope labeling, Bourbonnais and colleagues (2012a) observed the highest rates of 524	
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nitrogen removal from these same sites, confirming the importance of reductive nitrate 525	

consumption.  In addition to evidence for cycling involving NO3
-, Bourbonnais and 526	

colleagues (2012a) also found evidence for both consumption and production of NH4
+ 527	

by microbial activity. This important initial work indicated that microbial denitrification is 528	

a primary route of inorganic nitrogen loss in diffuse fluids, but also noted possible spatial 529	

and temporal heterogeneity in N redox processes.  However, the sites on the Juan de 530	

Fuca Ridge and Axial Seamount exhibit high concentrations of sulfide, which strongly 531	

influence the composition of the resident microbial communities.  In contrast, fluids from 532	

Loihi Seamount, with low sulfide and high iron, represent a starkly different geochemical 533	

context for low-temperature venting. 534	

 Hydrothermal fluids having NO3
- concentrations lower than background seawater 535	

can stem from either abiotic or biological consumption of NO3
-, as mentioned above, or 536	

from dilution of fluids containing little or no NO3
-.  While dilution would have no influence 537	

on isotopic composition, isotope fractionation by biological reduction of nitrate leads to 538	

increases in both d15N and d18O of the remaining nitrate pool (Granger et al., 2008), 539	

allowing one to discern between biological consumption and physical mixing processes.  540	

Indeed, nitrate reduction, whether by dissimilatory or assimilatory processes, has been 541	

shown to impart distinctly parallel (e.g. equal) isotope effects for both N and O, leading 542	

to a characteristic 1:1 dual isotopic evolution (e.g., slope of 1 in Figure 4).  The elevated 543	

N and O isotope ratios of NO3
- in the hydrothermal fluids of Pele’s Pit clearly reflect the 544	

influence of biological NO3
- consumption.  However, in contrast to the parallel 1:1 545	

increases in d15NNO3 and d18ONO3 (relative to the composition of background seawater) 546	

expected from isotopic fractionation due to NO3
- consumption alone, changes in the 547	
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d18ONO3 values are much larger than changes in d15N values, suggesting that processes 548	

other than NO3
- reduction are also occurring.  Indeed, such deviations from a 1:1 549	

covariation in dual isotope space for NO3
- have been observed in other marine systems 550	

including oxygen minimum zones (Bourbonnais et al., 2012a; Sigman et al., 2005; 551	

Casciotti & McIlvin, 2007), shallow surface water environments (e.g., Wankel et al., 552	

2007) and even other deep biosphere environments	(Wankel et al., 2015), and have 553	

been interpreted as reflecting the combined effects of NO3
- consumption (via reduction) 554	

and NO3
- regeneration (via nitrification).  Results of a recent modeling study suggest 555	

that isotopic signatures of nitrification evident in denitrifying systems might be a 556	

universal characteristic of nitrogen cycling in aquatic systems (Granger & Wankel, 557	

2016). 558	

 Given the prevalence of NH4
+ in the hydrothermal fluids at Loihi, we suggest that 559	

the contribution of (1) partial NH4
+ oxidation and (2) possibly rapid NO2

- reoxidation 560	

leads to the observed deviation of NO3
- dual isotopic composition from the 1:1 line (Fig 561	

4).  This dynamic arises because N and O isotope enrichments in NO3
- are tightly 562	

coupled during consumption (e.g. Granger et al 2008), while the production of NO3
- by 563	

nitrification (both ammonia oxidation to nitrite, as well as nitrite oxidation to nitrate) 564	

represents a unique decoupling of these two isotope systems as discussed further 565	

below (Casciotti & McIlvin, 2007; Sigman et al., 2009; Wankel et al., 2007).  Foremost, 566	

under the mesophilic conditions at the Loihi vents, the partial oxidation of the NH4
+ pool 567	

by ammonia oxidizing microbes, which is known to have a large N isotope effect (14 to 568	

38‰; (Casciotti et al., 2003; Santoro & Casciotti, 2011)), would result in production of 569	

low d15NNO3.  Indeed, the occurrence of elevated d15NNH4 values in Loihi fluids (up to 570	
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+16‰), strongly supports that oxidative processes have partially consumed the vent 571	

derived NH4
+ pool.  While it is impossible to accurately estimate the d15NNO3 of newly 572	

produced NO3
- from a partially oxidized NH4

+ pool using the existing data (i.e., it is 573	

difficult to estimate the fraction of NH4
+ consumed at these low concentrations and the 574	

isotope effects for NH4
+ oxidation range quite widely (Casciotti et al., 2003)), it is clear 575	

that the contribution of this newly produced NO3
- having a very low d15N value would act 576	

to shift the bulk NO3
- dual isotopic composition to the left of the 1:1 line evolving from a 577	

background seawater source (Fig. 4).  578	

The oxygen isotope composition of newly produced NO3
- may also play a role in 579	

the observed deviation from the 1:1 line, specifically implicating nitrite oxidation (and 580	

nitrite oxidizing bacteria).  The source O atoms of new NO3
- originate from both H2O and 581	

O2 (Buchwald & Casciotti, 2010; Casciotti et al., 2010) with kinetic isotope effects at 582	

each step of O atom incorporation as well as the potential for oxygen isotope 583	

equilibration between the NO2
- intermediate pool and water (Buchwald & Casciotti, 584	

2013; Casciotti & McIlvin, 2007).  In general, it is believed that the combination of these 585	

influences results in the d18O of newly produced NO3
- to be near +1.9±3‰ in seawater 586	

(Buchwald et al., 2012).  Given the low pH of the Loihi fluids, ~5.7-6.5 (Glazer & Rouxel, 587	

2009), it is safe to assume that the d18O of the intermediate nitrite pool (whether derived 588	

from NH4
+ oxidation or NO3

- reduction) is in isotopic equilibrium with the ambient water – 589	

which would yield a value of ~14‰ (Casciotti & McIlvin, 2007).  During partial oxidation 590	

of this NO2
- pool, the kinetic isotope effects associated with both NO2

- oxidation 591	

(18enxr,NO2) as well as incorporation of an O atom from H2O (18enxr,H2O), would culminate in 592	

production of new NO3
- with a d18O value of between +4 to +12‰ (see Buchwald and 593	
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Casciotti, 2010), higher than that of background seawater.  In support of this 594	

mechanism, our data reveal the presence of known nitrite-oxidizing genera in the family 595	

Nitrospinaceae.  As indicated in Figure 6, the combination of NO3
- reduction by 596	

denitrifying microbes together with nitrification (both the partial oxidation of the NH4
+ 597	

pool as well as the reoxidation of NO2
-) act in opposing directions, modulating the 598	

evolving NO3
- dual isotopic composition to fall above the 1:1 line predicted by 599	

denitrification alone.  Co-occurring denitrification and nitrification was found to occur in 600	

Beggiatoa mats in Guaymas Basin (Winkel et al., 2014), indicating this may be a 601	

widespread feature in hydrothermal systems hosting sharp gradients of oxygen and 602	

nitrogen species.  In summary, our data clearly suggest that both microbially mediated 603	

reductive and oxidative processes play a joint role in regulating fluxes of dissolved 604	

inorganic nitrogen from the Loihi subsurface.  Although hydrothermal vent N isotope 605	

data is sparse, such NO3
- dual isotope dynamics have also been recently observed in 606	

other hydrothermal systems (Bourbonnais et al., 2012a), reflecting the simultaneous 607	

influence of a range of redox reactions at a sharp fluid-mixing zone.  Importantly, the 608	

data from Loihi reveals that this range of redox reactions also occurs in a hydrothermal 609	

system with low concentrations of dissolved H2S and high concentrations of dissolved 610	

Fe2+.  This indicates that the presence or absence of H2S and metabolisms coupling 611	

H2S and N-redox transformations do not greatly alter the N-isotope systematics in 612	

diffuse flow hydrothermal vent environments.  The precise cause requires more study, 613	

but may reflect substitution of N-redox processes coupled with H2S oxidation with other 614	

oxidative processes (Fe2+ oxidation, for example), that H2S is more important in the 615	
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subsurface biosphere at Loihi but not abundant as measured in samples collected at the 616	

seafloor, or that H2S is not a strong influence on N-redox processes. 617	

 We note also that the NO3
- dual isotope values from Ula Nui are slightly lower in 618	

d15N and d18O than background waters near the Pele crater and look more similar to 619	

background seawater than vent fluids.  A likely scenario explaining these data is that the 620	

water in the matrix of the mats at the Ula Nui site is derived more from deep seawater 621	

than the ultra diffuse fluids emanating from the seafloor at that site (Edwards et al., 622	

2011). 623	

 624	

4.2 Energetics from N-redox reactions in the Loihi subsurface 625	

Microorganisms are known to catalyze nitrogen redox reactions in order to gain 626	

energy (see Amend & Shock (2001) for a review).  The amount of energy available from 627	

these reactions depends on the temperature, pressure and concentrations of all of the 628	

chemical species in the reactions describing a particular catabolic pathway.  Because 629	

the temperatures and composition of the hydrothermal fluids at Loihi change with time, 630	

the calculations presented here were carried out under high and low energy conditions 631	

in order to capture this variability and to reflect the reality that fluid flow rates, the paths 632	

that hydrothermal fluids take in the subsurface, and the extent to which they mix with 633	

seawater is variable.  However, we can only carry out our analyses/calculations based 634	

on the samples that we obtained, which are snapshots in time that reflect at least a few 635	

realities for this system.   The total amount of energy available from the individual 636	

nitrogen redox reactions shown in Fig. 5 for low energy conditions is less than ~ 7 J (kg 637	

H2O)-1.  Energy densities under more favorable conditions total 4 - 46 J (kg H2O)-1. The 638	
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magnitude of this potential can be understood by comparing it to other studies that have 639	

presented the energetic potential of redox reactions in units of energy densities and by 640	

considering how much energy microorganisms demand.  Most studies that present 641	

energetic analyses of potential microbial metabolisms in units of energy densities do so 642	

because they are quantifying the disequilibrium resulting from the mixing of seawater 643	

with hydrothermal fluids (Amend et al., 2011; McCollom & Shock, 1997).  Because the 644	

composition of hydrothermal fluids can vary dramatically depending upon the types of 645	

rocks that the hydrothermal fluids circulate through, the resulting amount of redox 646	

energy that can be available for microbial processes varies considerably.  For instance, 647	

fluids from ultramafic hydrothermal systems that mix with seawater can provide up to 648	

3700 J (kg H2O)-1 for H2 oxidation with O2 as the electron acceptor (McCollom; 2007), 649	

while seawater mixing with basalt-derived fluids at a mid-ocean ridge system (East 650	

Pacific Rise, EPR, 21o N OBS vent) only makes about ~35 J (kg H2O)-1 available for the 651	

same reaction (Shock & Holland, 2004).  On the other end of the spectrum, potential 652	

energy yields for some reactions due to fluid mixing can be less than 10-4 J (kg H2O)-1 653	

(Price et al., 2015).  The larger values noted above are likely outliers for most natural 654	

systems since they are capturing the mixing of two radically distinct fluids 655	

instantaneously.  In environmental settings that are not subjected to such dramatic 656	

gradients, the energy densities are on par or smaller than those shown in Fig. 5. 657	

(LaRowe et al., 2014; Osburn et al., 2014; Price et al., 2015; Teske et al., 2014).    658	

 All of the reactions whose energy densities are shown in Fig. 5 supply more than 659	

0.1 J (kg H2O)-1. Although this may not seem like a large amount of energy, it is worth 660	

noting that maintenance energies for microorganisms range from 0.019 to 4700 x 10-15 J 661	
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(s cell)-1  (LaRowe & Amend, 2015).  This means that a community of 106 cells could be 662	

supported on a typical maintenance level (e.g., 10-14 J (s cell)-1) by any of the reactions 663	

considered at Loihi for almost 4 months using only the constituents of 1 liter of 664	

hydrothermal fluid.  If 0.1 J (kg H2O)-1 were channeled into biomass synthesis, then 665	

between ~107 – 109 cells could be produced, depending on the sources of C, N, S, the 666	

overall redox state and other physiochemical variables (LaRowe & Amend, 2016). 667	

 668	

4.3 Microbial diversity in the Loihi subsurface 669	

 The temperatures of hydrothermal fluids at Loihi make it comparable to diffuse-670	

flow hydrothermal sites at spreading centers and seamounts.  However, unlike the 671	

majority of these systems, sulfide concentrations are only moderately elevated relative 672	

to background seawater at Loihi (Sedwick et al., 1992).  Thus, perhaps not surprisingly, 673	

sulfur oxidizing Epsilonproteobacteria represent only 0.15-10.3% of the bacterial 674	

communities in the four subsurface fluid samples analyzed here (Fig. 6).  In contrast, 675	

previous studies of diffuse hydrothermal fluids with high concentrations of H2S found 676	

that Epsilonproteobacteria represented a large proportion of the total bacterial 677	

community  (Bourbonnais et al., 2012b; Huber et al., 2007; Huber et al., 2010).  For 678	

example, in fourteen samples of diffuse fluids venting at five different seamounts along 679	

the Mariana Arc, with one exception, Epsilonproteobacteria comprised 15-87% of the 680	

total bacterial community, with a mean value of 37.4% (Huber et al., 2010).  At Axial 681	

volcano, on the Juan de Fuca Ridge, Epsilonproteobacteria comprise up to 80% of the 682	

total bacterial community (Bourbonnais et al., 2012b; Huber et al., 2007).  In those 683	

studies, the major genera of Epsilonproteobacteria detected at each vent site were 684	
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variable, but members of Sulfurimonas, Sulfurovum and Hydrogenomonas were 685	

predominant.  Sulfurimonas, Sulfurovum, Hydrogenomonas and Nitratiruptor combined 686	

comprised >99% of the Epsilonproteobacteria sequences detected in the Loihi samples.  687	

Fluids from the area where LoihiPP2 and LoihiPP5 were collected were ~50˚C, and 688	

contained little to no O2 (below detection, or <3 µM) and ~2-4 µM HS- during the time of 689	

sampling (Glazer & Rouxel, 2009).  These conditions are ideal for the 690	

Epsilonproteobacteria detected, while reduced sulfur compounds were below detection 691	

at the sites where they were not detected, Marker 34 and Ula Nui (Edwards et al., 2011; 692	

Glazer & Rouxel, 2009).  Cultured representatives from all the Epsilonproteobacterial 693	

genera detected here are NO3
- reducers with the conserved periplasmic nitrate 694	

reductase (nap) gene pathway for this process (Vetriani et al., 2014), suggesting their 695	

importance in NO3
- reduction at Loihi.  Despite their lower abundance than at other vent 696	

sites, Epsilonproteobacteria still represent the most abundant putative  NO3
- reducers.  697	

In addition to the Epsilonproteobacteria detected, other detected NO3
- reducers or 698	

denitrifiers include Gammaproteobacteria in the genera Thiohalophilius, Marinobacter 699	

and Halomonas as well as the genus Caldithrix.  While Gammaproteobacteria from the 700	

SUP05 clade were noted as abundant denitrifiers at Axial Volcano (Bourbonnais et al., 701	

2012b), they were not detected at Loihi, likely due to the low abundance of H2S.  A 702	

related study detected heme-containing nitrite reductase (nirS) genes related to 703	

Pseudomonas spp. in diffuse flow hydrothermal vent fluids along the Endeavour 704	

Segment (Bourbonnais et al., 2014), but Pseudomonas were also not detected at 705	

abundances >0.3% in our hydrothermal fluids samples.  Pseudomonas was detected in 706	

the background samples at abundances of 0.71 and 0.090% (samples LoihiPP4 and 707	
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CTD03, respectively), and it is possible that overlap between these OTUs and those in 708	

hydrothermal fluids caused underrepresentation of Pseudomonas in the vent samples.  709	

Prior to OTU removal, pyrotags classified as Pseudomonas comprise 1.0, 0.70, 0.22 710	

and 2.667% of all pyrotags in samples PP1, PP2, PP5 and PP6, respectively.  Like 711	

Marinobacter and Halomonas, members of the genus Pseudomonas are cosmopolitan 712	

and likely to be found in both background seawater and hydrothermal fluid samples.  713	

Among the few known archaeal denitrifiers are members of the genera 714	

Halobacteria and Ferroglobus, both in the Euryarchaeota (Offre et al., 2013).  While the 715	

classes Halobacteria and Archaeoglobi were both abundant in Loihi fluids, there is not 716	

enough phylogenetic resolution in the V6 region of SSU rRNA to confidently assign the 717	

sequences recovered to one of the denitrifying genera.  Iit is possible that members of 718	

the Thermoproteales are participating in denitrification at Loihi, although they were 719	

present in low abundances here.  Recent metagenomic analysis revealed that members 720	

of the Thermoproteales possess genes in the nir and nar pathways, indicative of NO3
- 721	

and NO2
- reduction (Swingley et al., 2012).  This group was present at 0.05, 0.22 and 722	

0.20% relative abundance in the archaeal pyrotag libraries from Loihi PP1, PP2 and 723	

PP5, respectively, indicating a potential additional role for archaeal denitrification at 724	

Loihi by these organisms. . 725	

 Putative N-fixing Bacteria and Archaea were detected in the Hiolo North area, 726	

although representing only a minor percentage of the entire population (Fig. 6).  While 727	

some Archaea are known to participate in denitrification (Haroon et al., 2013; Offre et 728	

al., 2013), this is still a relatively underexplored metabolic pathway in Archaea.  N2 is 729	

likely abundant as indicated by the deficit between seawater NO3+NO2 and the sum of 730	
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measured N species in end-member fluids presented here, suggesting that N-fixation in 731	

low-temperature diffuse fluids at Loihi may be occurring.  N-fixation in the warm Loihi 732	

subsurface environment is also suggested from two samples with d15N values lower 733	

than background seawater NO3
- (0.0‰ and +3.3‰); remineralization of biomass 734	

supported by N-fixing microbes would generate NH4
+ having d15N values near 0‰ 735	

(Delwiche & Steyn, 1970; Meador et al., 2007).  It is also possible, however, that these 736	

values are indicative of low d15N produced NH4
+ from DNRA, which has been shown to 737	

have an isotope effect of -6 to -8‰ in hydrothermal vent isolates (Perez-Rodriguez et al, 738	

2014)	and which would therefore generate NH4
+ with a d15N of between -2 and 0‰ from 739	

bottom seawater NO3
- (d15N ~+6‰). 740	

 741	

4.4 Conclusions 742	

 The combined data presented here on biogeochemical measurements, isotope 743	

systematics, energetic calculations and microbial diversity present strong 744	

multidisciplinary data that N-cycling processes are occurring and likely biologically 745	

mediated in Loihi subsurface fluids, and that both oxidative and reductive processes are 746	

likely occurring simultaneously.  A similar conclusion was drawn from the work of 747	

Bourbonnais and colleagues on the Juan de Fuca Ridge (Bourbonnais et al., 2012a; 748	

Bourbonnais et al., 2012b), and cryptic N-cycling was explicitly demonstrated in 749	

Beggiatoa mats in Guaymas Basin, where Beggiatoa perform denitrification in concert 750	

with attached nitrifiers (Winkel et al., 2014).  Thus, there is a growing consensus that 751	

subsurface N-cycling processes are linked and complicated, but the role of N-cycling in 752	

driving subsurface biogeochemistry and microbiology is still underexplored.    753	
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 Like Loihi, there are many hydrothermal systems with elevated concentrations of 754	

Fe2+ and low concentrations of sulfide around the globe, including the Marianas back-755	

arc (Davis & Moyer, 2008) and diffuse vents along the Mid-Atlantic Ridge (Scott et al., 756	

2014).  Therefore, the work presented here can be interpreted to potentially represent 757	

high Fe, low sulfide systems elsewhere.  Additionally, our results are in agreement with 758	

those derived from the Juan de Fuca Ridge and Axial Volcano, where sulfide is 759	

abundant (Bourbonnais et al., 2012a; Bourbonnais et al., 2012b), indicating that trends 760	

presented here are potentially representative of low-temperature venting systems in 761	

general, which represent up to 90% of venting worldwide (Elderfield & Schultz, 1996). 762	

 763	
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FIGURE CAPTIONS 1115	

Figure 1.  Map of Loihi Seamount, with sampling sites indicated.  Inset at the bottom of 1116	
the left panel indicates the location of Loihi in the Pacific Ocean.  Rectangle at the top of 1117	
the left panel highlights the location of the area in the right panel.  Sites marked by a 1118	
yellow circle in the right panel are in Hiolo North and sites marked by a yellow star are 1119	
Hiolo south, as indicated by the key at right. 1120	
 1121	

Figure 2.  Depth profiles of dSi, NO3, NO2
- and NH4

+ within two microbial mats at Ula 1122	
Nui.  (A) Mat sampler collecting fluids from the surface of mat C5.  Mat D6 can be seen 1123	
to the left of the photograph.  (B) Mat sampler collecting fluids at a depth of 15 cm in 1124	
mat C5.  (C) Depth profile in mat C5.  (D) Depth profile in mat D6. 1125	
 1126	

Figure 3.  Relationships between NH4
+ and dSi (A), NO3+NO2 and NH4

+ (B) and NO2
- 1127	

and dSi (C).  Regression lines and R2 values for lines presented in A and B are given in 1128	
(D).  Pre-2008 data comes from Karl et al., 1989 (1987-88 data) and Sedwick et al., 1129	
1992 (1990 data).  Data points from Karl et al. (1989) were limited to samples collected 1130	
with Major samplers because samples collected with Niskin bottles opened over vents 1131	
yielded significantly lower NH4

+ and significantly higher NO3+NO2 values by t-test. 1132	
 1133	

Figure 4.  d15N and d18O isotopic ratios in NO3
- in Loihi fluids.  Plot of d15N-NO3

- and 1134	
d18O-NO3

- versus concentrations of NO3
- (A) and d15N-NO3

- versus d18O-NO3
- (B). 1135	

 1136	

Figure 5.  Energy densities of microbially-mediated nitrogen redox reactions calculated 1137	
using a low energy scenario (A) and a high energy scenario (B) for available substrates 1138	
concentrations in Loihi fluids, as listed in Table 4.  Only the six most exergonic reactions 1139	
(those for which the energy density is >0.1 J (kg H2O)-1) are shown. 1140	
 1141	

Figure 6.  Microbial communities in subsurface Loihi fluids.  (A) Bacterial distributions.  1142	
Data for LoihiPP1, LoihiPP2, LoihiPP5 and LohiPP6 are displayed with background 1143	
OTUs detected in LoihiPP4 and LoihiCTD03 subtracted from them.  (B) Archaeal 1144	
distributions.  Data for LoihiPP1, LoihiPP2, LoihiPP5 and LohiPP6 are displayed with 1145	
background OTUs detected in LoihiPP4 and LoihiCTD03 subtracted from them.  (C) 1146	
Groups of putative N-redox cycling microbes detected in Loihi subsurface fluids.  Bar 1147	
heights represent percentage of total library from each of the four subsurface samples. 1148	



Table 1 - Composition of hydrothermal vent fluids, microbial mat samples ("-BM1-"), background seawater, and water 1149	
column profiles collected from Loihi Seamount during 2008 (sample name begins with 3xx or 08xx-xx), 2009 (sample 1150	
name begins with 4xx or 09xx-xx) and 2013 (sample name begins with 6xx).  Units of measurement for biogeochemical 1151	
measurements are µM, depth is in meters, bd = below detection, -- = not measured.   1152	
 1153	
site sample depth temp (°C) NH4

+ NO2
- NO3

-+NO2
- dSi PO4

3- 
Vent Fluids	

 Hiolo North Area               		
M36 476-MS-blue 1303 35.6 2.615 -- 0.82 -- 3.00 
M39 479-MS-black 1300 45.8 2.074 -- 14.09 -- 2.00 
M39 482-MS-blue 1301 42.7 2.724 -- 8.17 -- 3.00 
M39 482-MS-red 1301 42.7 2.291 -- 3.19 -- 3.20 
M31 482-MS-black 1297 40.6 2.357 -- 1.52 -- 3.20 
M31 476-MS-red 1301 43 2.815 -- 1.27 --  
M31 675-MS-black2 1300 41.3 2.278 0.095 1.55 500.6 4.44 
M31 672-MS-yellow 1300 40.7 2.096 0.093 1.86 218.6 3.70 
M31 675-MS-red2 1300 41.3 2.122 0.142 1.51 464.6 3.82 
M39 674-MS-black 1302 25.7 1.122 0.259 16.34 268.6 0.69 

Upper M31 674-MS-yellow 1300 --	 1.584 0.493 6.86 310.6 1.06 
47 deg site 672-MS-black 1298 47.1 2.721 bd 1.05 270.6 2.35 

directly above M31, 
near M39,  

~25 cm above orifice 

676-MS-white 1300 --	 1.322 bd 22.30 286.6 0.26 

directly above M31, 
near M39, same 

site as 676-MS-white, in 
orifice 

676-MS-yellow 1300 41.2 2.096 bd 4.02 456.6 3.76 

Texture Garden 
(between M31 & M39) 

676-MS-black 1298 30.8 3.032 0.236 11.82 352.6 2.72 

 Hiolo South Area  
             

M38 675-MS-white 1274 43.3 2.408 bd 2.91 432.6 6.64 
M38 675-MS-yellow 1274 42.4 2.647 bd 2.67 522.6 6.40 
M34 675-MS-black 1272 47.4 1.925 0.215 4.53 700.6 6.22 
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M34 675-MS-yellow2 1270 48.2 2.660 bd 1.38 488.6 3.82 
M34 675-MS-red 1272 47.4 0.705 bd 25.21 256.6 3.33 
M34 675-MS-white2 1270 48.1 2.508 bd 1.164 450.6 6.09 
M34 479-MS-blue 1273 50.1 4.249 -- 7.22 -- 4.50 
M34 483-MS-white 1273 50.7 2.398 -- 24.39 -- 2.90 
M34 476-MS-black 1272 41.8 3.655 -- 1.37 -- -- 
M34 373-MS-red 1271 51.5 7.506 -- -- -- 2.39 
M34 373-MS-black 1271 51.5 3.606 --	 -- -- 1.26 

M34, few cm into mat 675-BM1-C2 1271 -- 2.128 0.166 31.73 426.6 1.12 
M34, few cm into mat 675-BM1-C4 1271 -- 2.536 0.149 22.68 448.6 1.47 

M34, ~1-2 cm into 
diffuse flow orifice with 
mat surrounding orifice, 

same area as C4 

675-BM1-C6 1271 -- 3.088 0.347 26.37 432.6 2.73 

M34-->M38 483-MS-black 1276 47.4 0.754 -- 30.82 -- 0.90 
M38 479-MS-white 1274 42 3.114 -- 8.87 -- 3.00 

Red Smoker 483-MS-blue 1254 47.4 2.951 -- 13.17 -- 2.90 

 Pohaku Area               
M57 368-MS-red 1178 26.7 4.090 -- 9.03 689.6 2.31 
M57 368-MS-black 1178 28.3 2.808 -- 20.70 605.6 0.73 
M57 476 MS-white 1178 24 2.431 -- 21.13 --  
M57 671-MS-white 1177 25.9 4.211 0.333 17.70 160.6 3.21 
M57 671-MS-red 1177 25.9 4.235 0.124 30.01 210.6 0.45 

Ula Nui Area         
Ula Nui Mat 477-MS-blue 4984 2.8 1.555 -- 25.27 -- 4.10 

Ula Nui 'orange mat 1' 
surface 

673-BM1-A2 4983 -- 0.608 0.185 21.67 303 3.07 

Ula Nui 'black mat 1' 
surface 

673-BM1-A3 4983 -- 0.511 bd 30.25 231 2.92 

Ula Nui 'orange mat 2' 
surface 

673-BM1-C5 4988 --	 0.515 bd 31.95 183 2.43 

5 cm in mat C5 673-BM1-B2 4988 -- 1.845 0.280 5.91 447 3.12 
15 cm in mat C5 673-BM1-B4 4988 --	 2.094 0.178 3.28 451 2.70 
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Ula Nui 'black mat 2' 
surface 

673-BM1-D6 4988 1.8 0.554 bd 35.35 139 2.28 

5 cm in mat D6 673-BM1-D4 4988 1.8 1.197 bd 18.68 301 0.89 
15 cm in of mat D6 673-BM1-D2 4988 1.8 2.131 bd 5.71 435 0.55 

Pit of Death         
M56 365-MS-black 1199 4.5 0.201 -- 36.67  1.36 

Background Seawater 
M31 SW 482-port-niskin 1297 3.8 1.130 -- 43.19 -- 2.76 
M31 SW 482-strbrd-niskin 1297 3.8 0.617 -- 36.77 -- 2.65 
M57 SW 476-niskin 1179 5 0.015 -- 42.61 -- 2.84 
M57 SW 676-BM2-D6 1185 4 0.073 bd 40.12 126.6 1.43 

M57 Elevator 676-MS-red 1311 4 0.440 bd 41.04 108.6 2.35 
Ula Nui SW 477-niskin 4984 2.6 0.560 -- 36.31 -- 2.57 

M56 SW 365-niskin 1297 3.9 0.201 -- 40.60 -- 3.07 

Water Column Profiles 
Pele's Pit CTD casts        

Pele's Pit, 2008 0801-21 900 4.7 bd -- 38.10 79.6 3.00 
Pele's Pit, 2009 0901-21 801 4.9 bd -- 42.81 86.8 3.37 
Pele's Pit, 2009 0901-16 1051 4.0 1.200 -- 36.45 74.8 3.35 
Pele's Pit, 2009 0901-14 1150 3.7 0.690 -- 42.76 116.8 3.26 

Tow-yo west of summit      
SW of Loihi 0904-02 1139 3.7 0.286 -- 41.79 108.8 2.69 
SW of Loihi 0904-11 1207 3.6 0.324 -- 28.44 85.8 2.80 
SW of Loihi 0904-15 1166  3.7 0.167 -- 41.41 95.8 3.40 
SW of Loihi 0904-22 1177 3.4 0.213 -- 41.60 120.8 3.35 

Pit of Death CTD cast      
Pit of Death, 2009 0905-19 1076 3.9 0.076 -- 47.22 101.8 3.24 
Pit of Death, 2009 0905-01 1286 3.7 1.500 -- 45.28 105.8 3.37 

 1154	

 1155	



Table 2 - Basic data for samples from which DNA sequences were obtained. 1156	

 
 
Sample 

 
Date  
Collected 

 
 
Site 

 
 
Depth (m) 

 
 
# V6 Tags 

#V6 Tags After 
Removing  
Background OTUs 

Vent Fluids 
LoihiPP1-bac 27 Oct 2006 Marker 34 1272 11,707 1855 
LoihiPP1-arc    21,806 3901 
LoihiPP2-bac 31 Oct 2006 Hiolo North 

Area 
1302 14,035 6947 

LoihiPP2-arc    13,616 4540 
LoihiPP5-bac 05 Nov 2006 Marker 31 1301 20,105 3812 
LoihiPP5-arc    19,045 1969 
LoihiPP6-bac 07 Nov 2006 Ula Nui 4987 16,200 1887 
LoihiPP6-arc    13,961 336 

Background Seawater 
LoihiCTD03-bac 31 Oct 2006 Pele’s Pit 1100 19,108 --- 
LoihiCTD03-arc    14,790 --- 
LoihiPP4-bac 02 Nov 2006 Pele’s Pit 1717 18,682 --- 
LoihiPP4-arc    15,336 --- 
 1157	

 1158	

 1159	

 1160	

 1161	

 1162	

 1163	

 1164	

 1165	

 1166	

 1167	

 1168	

 1169	

 1170	
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Table 3 - Reactions considered in this study 1171	
 1172	
Iron oxidation with nitrate reduction 1173	
01. 2Fe2+ + NO3

- + 3H2O ® 2FeOOH + NO2
- + 4H+ 1174	

02. 5Fe2+ + NO3
- + 7H2O ® 5FeOOH + 0.5N2 + 9H+ 1175	

03. 8Fe2+ + NO3
- + 13H2O ® 8FeOOH + NH4

+ + 14H+ 1176	
04. 3Fe2+ + NO2

- + 4H2O ® 3FeOOH + 0.5N2 + 10H+ 1177	
05. 6Fe2+ + NO2

- + 10H2O ® 6FeOOH + NH4
+ + 10H+ 1178	

 1179	
Methane oxidation with nitrate or nitrite reduction 1180	
06. CH4 +4NO3

- ® CO2 + 4NO2
- + 2H2O 1181	

07. 5CH4
+ + 8NO3

- + 8H+ ® 5CO2 + 4N2 + 14H2O 1182	
08. CH4

+ + NO3
- + 2H+ ® CO2 + NH4

+ + H2O 1183	
09. 3CH4 + 4NO2

- + 8H+ ® 3CO2 + 4N2 + 10H2O 1184	
10. 3CH4 + 4NO2

- + 8H+ ® 3CO2 + 4NH4
+ + 2H2O 1185	

 1186	
Sulfide oxidation with nitrate or nitrite reduction 1187	
11. 5H2S + 8NO3

- ® 5SO4
2- + 4N2 + 2H+ + 4H2O 1188	

12. H2S + NO3
- + H2O ® SO4

2- + NH4
+ 1189	

13. 3H2S + 8NO2
- + 2H+ ® 3SO4

2- + 4N2 + 4H2O 1190	
14. 3H2S + 4NO2

- + 4H2O + 2H+ ® 3SO4
2- + 4NH4

+ 1191	
 1192	
Anammox 1193	
15. NH4

+ + NO2
- ® N2 + 2H2O 1194	

 1195	
Ammonium or nitrite oxidation 1196	
16. NH4

+ + 1.5O2 ® NO2
- + H2O + 2H+ 1197	

17. NO2
- + 0.5O2 ® NO3

- 1198	



Table 4 - Temperatures and concentrations (µM) of select species used in the 1199	
thermodynamic calculations at the indicated samples sites.  The concentrations of 1200	
species used in calculations but not measured here or specifically at the sites sampled 1201	
here are as follows: CH4 (aq) = 177 nM, average of values from (Karl 1989); pH = 6.2 1202	
average of values taken from (Glazer and Rouxel 2009); SO4

2- = 28 mM (seawater); N2 1203	
(aq) = 0.51 mM (equilibrium with N2(g) in atmosphere); CO2 (aq) 18 mM (Karl 1989);  1204	
O2 (aq) = 4 µM (this is a nominal microaero number).	1205	
	1206	
Site T, ºC NO2

- a NO3
- b  NH4

+ a Fe2+ HS- 
Hiolo South 41.8-51.5a 0.1439-0.347 1.164-31.7 0.754-7.506 346-6484d 11.6-25.2d 
Pohaku 24.0-28.3a 0.124-0.333 9.03-41.04 2.43-4.235 507-773d 1e  
Hiolo North 25.7-27.1a 0.093-0.493 0.816-22.296 1.32-3.03 117-799d 18.5d 
Ula Nui 
  Mat surface 2f 0-0.185 21.67-35.35 0.515-1.555 38-40g 1e  
  Mat 5 cm 2f 0-0.280 5.91-18.68 1.197-1.845 50-53g 1e  
  Mat 15 2f 0-0.178 3.28-5.71 2.094-2.131 85-86g 1e  
 
afrom values reported in Table 1;  1207	
bcalculated from [NO3

-] = [NO3+NO2] - [NO2
-] where values of [NO3+NO2] - [NO2

-] are 1208	
taken from Table 1; 1209	
dGlazer and Rouxel 2009;  1210	
enominal value;  1211	
fassumed to be the same as bottom water 1212	
gEdwards et al. (2011); 1213	

 1214	

 1215	

 1216	

 1217	

 1218	

 1219	

 1220	

 1221	

 1222	
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Table 5 - Kendall τ correlation values and significance for significantly correlated 1223	

measured parameters, including data from 1987-88 (Karl et al., 1989), 1990 (Sedwick et 1224	

al., 1992), 2008, 2009 and 2013. 1225	

 1226	

Variable by Variable Kendall τ Prob>|τ| 
dSi NH4

+ 0.3608 0.0003 
dSi NO3+NO2 -0.2602 0.0083 
NO3+NO2 Temperature -0.2529 0.0160 
NO3+NO2 NH4

+ -0.3734    <0.0001 
NO2

- Temperature -0.551 0.0073 
Pi Temperature 0.2857 0.0091 
Pi NO3+NO2 -0.1986 0.0266 



Table 6 - Isotopic composition for vent fluids, background seawater and water column profiles from Loihi Seamount.  1227	
Temperature and nutrient data are as reported in Table 1.  For some samples, d15N-NH4

+ could not be calculated because 1228	
the mass balance based calculations yielded errors too large to report; these are labeled *.  Isotopic composition for 1229	
samples with no error reported were calculated a single time due to low sample volume. 1230	
 1231	

site sample temp (°C) NH4
+ d15N-NH4

+ NO2
- NO3+NO2 d15N-NO3

- d18O-NO3
- dSi 

Vent Fluids 

M31 675-MS-black2 41.3 2.278 7.5 0.095 1.55 9.6 12.9 500.6 

M31 672-MS-yellow 40.7 2.096 14.0±1.3 0.093 1.86 8.7 16.1 218.6 

M31 675-MS-red2 41.3 2.122 5.5±1.1 0.142 1.51 11.5 15.2 464.6 

M39 674-MS-black 25.7 1.122 * 0.259 16.34 6.4±0.5 3.1±1.1 268.6 

Upper M31 674-MS-yellow --	 1.584 * 0.493 6.86 6.5±0.3 6.2±0.7 310.6 

47 deg site 672-MS-black 47.1 2.721 4.8±0.7 bd 1.05 9.4 15.2 270.6 

directly above M31, 
near M39, same 
site as 676-MS-
white, in orifice 

676-MS-yellow 41.2 2.096 0.0±1.5 bd 4.02 6.4±0.0 4.5±0.4 456.6 

Texture Garden 
(between M31 & 

M39) 

676-MS-black 30.8 3.032 3.3±2.5 0.236 11.82 6.2±0.4 4.8±0.8 352.6 

 Hiolo South Area               
M38 675-MS-white 43.3 2.408 9.2±1.2 bd 2.91 5.2±0.1 4.3±0.2 432.6 

M38 675-MS-yellow 42.4 2.647 9.6±1.1 bd 2.67 5.9±0.6 8.7±1.8 522.6 

M34 675-MS-black 47.4 1.925 12.0±1.9 0.215 4.53 --- --- 700.6 

M34 675-MS-yellow2 48.2 2.660 --- bd 1.38 9.8 18.0 488.6 

M34 675-MS-red 47.4 0.705 * bd 25.21 6.0±0.3 2.7±0.7 256.6 

M34 675-MS-white2 48.1 2.508 4.8±1.0 bd 1.16 11.4 20.2 450.6 

 Pohaku Area               
M57 671-MS-white 25.9 4.211 * 0.333 17.70 6.1±0.6 3.2±1.2 160.6 

Ula Nui Area          

Ula Nui Mat 477-MS-blue 2.8 1.555 --- --- 25.27 5.0±0.3 2.1±0.4 --- 

Background Seawater 

M57 SW 476-niskin 5 0.015 --- --- 42.61 6.2±0.5 3.5±0.5 --- 
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Ula Nui SW 477-niskin 2.6 0.560 --- --- 36.31 5.0±0.1 2.9±0.4 --- 

Water Column Profiles 

Pele's Pit CTD cast          

Pele's Pit, 2009 0901-16 4.0 1.200 --- --- 36.45 7.3±0.3 5.3±0.3 36.45 

Pele's Pit, 2009 0901-14 3.7 0.690 --- --- 42.76 6.9±0.2 3.8±0.1 42.76 

Tow-yo west of summit 
SW of Loihi 0904-02 3.7 0.286 --- --- 41.79 6.2±0.7 2.8±0.2 108.8 

SW of Loihi 0904-11 3.6 0.324 --- --- 28.44 6.5±0.7 3.6±0.1 85.8 

SW of Loihi 0904-15 3.7 0.167 --- --- 41.41 6.5±0.5 3.9±0.7 95.8 

SW of Loihi 0904-22 3.4 0.213 --- --- 41.60 8.0±0.2 6.0±0.3 120.8 

Pit of Death CTD cast         

Pit of Death, 2009 0905-19 3.9 0.076 --- --- 47.22 7.8±0.4 4.9±0.3 101.8 

Pit of Death, 2009 0905-01 3.7 1.500 --- --- 45.28 6.3±0.5 4.1±0.1 105.8 
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 1251	

 1252	
Figure 1.  Map of Loihi Seamount, with sampling sites indicated.  Inset at the bottom of 1253	
the left panel indicates the location of Loihi in the Pacific Ocean.  Rectangle at the top of 1254	
the left panel highlights the location of the area in the right panel.  Sites marked by a 1255	
yellow circle in the right panel are in Hiolo North and sites marked by a yellow star are 1256	
Hiolo south, as indicated by the key at right. 1257	
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 1265	

 1266	
Figure 2.  Depth profiles of dSi, NO3, NO2

- and NH4
+ within two microbial mats at Ula 1267	

Nui.  (A) Mat sampler collecting fluids from the surface of mat C5.  Mat D6 can be seen 1268	
to the left of the photograph.  (B) Mat sampler collecting fluids at a depth of 15 cm in 1269	
mat C5.  (C) Depth profile in mat C5.  (D) Depth profile in mat D6. 1270	
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 1279	

 1280	
 1281	
Figure 3.  Relationships between NH4

+ and dSi (A), NO3+NO2 and NH4
+ (B) and NO2

- 1282	
and dSi (C).  Regression lines and R2 values for lines presented in A and B are given in 1283	
(D).  Pre-2008 data comes from Karl et al., 1989 (1987-88 data) and Sedwick et al., 1284	
1992 (1990 data).  Data points from Karl et al. (1989) were limited to samples collected 1285	
with Major samplers because samples collected with Niskin bottles opened over vents 1286	
yielded significantly lower NH4

+ and significantly higher NO3+NO2 values by t-test. 1287	
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 1292	

Figure 4.  d15N and d18O isotopic ratios in NO3
- in Loihi fluids.  Plot of d15N-NO3

- and 1293	
d18O-NO3

- versus concentrations of NO3
- (A) and d15N-NO3

- versus d18O-NO3
- (B). 1294	
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Figure 5.  Energy densities of 1339	
microbially-mediated nitrogen redox 1340	
reactions calculated using a low 1341	
energy scenario (A) and a high energy 1342	
scenario (B) for available substrates 1343	
concentrations in Loihi fluids, as listed 1344	
in Table 4.  Only the six most 1345	
exergonic reactions (those for which 1346	
the energy density is >0.1 J (kg  1347	
H2O)-1) are shown. 1348	
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 1349	
Figure 6.  Microbial communities in subsurface Loihi fluids.  (A) Bacterial distributions.  1350	
Data for LoihiPP1, LoihiPP2, LoihiPP5 and LohiPP6 are displayed with background 1351	
OTUs detected in LoihiPP4 and LoihiCTD03 subtracted from them.  (B) Archaeal 1352	
distributions.  Data for LoihiPP1, LoihiPP2, LoihiPP5 and LohiPP6 are displayed with 1353	
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background OTUs detected in LoihiPP4 and LoihiCTD03 subtracted from them.  (C) 1354	
Groups of putative N-redox cycling microbes detected in Loihi subsurface fluids.  Bar 1355	
heights represent percentage of total library from each of the four subsurface samples. 1356	
 1357	


