214 research outputs found

    Hidden heterochromatin: Characterization in the Rodentia species Cricetus cricetus, Peromyscus eremicus (Cricetidae) and Praomys tullbergi (Muridae)

    Get PDF
    The use of in situ restriction endonuclease (RE) (which cleaves DNA at specific sequences) digestion has proven to be a useful technique in improving the dissection of constitutive heterochromatin (CH), and in the understanding of the CH evolution in different genomes. In the present work we describe in detail the CH of the three Rodentia species, Cricetus cricetus, Peromyscus eremicus (family Cricetidae) and Praomys tullbergi (family Muridae) using a panel of seven REs followed by C-banding. Comparison of the amount, distribution and molecular nature of C-positive heterochromatin revealed molecular heterogeneity in the heterochromatin of the three species. The large number of subclasses of CH identified in Praomys tullbergi chromosomes indicated that the karyotype of this species is the more derived when compared with the other two genomes analyzed, probably originated by a great number of complex chromosomal rearrangements. The high level of sequence heterogeneity identified in the CH of the three genomes suggests the coexistence of different satellite DNA families, or variants of these families in these genomes

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    Microbiological quality of drinking rainwater in the inland region of Pajeú, Pernambuco, Northeast Brazil

    Get PDF
    Despite all efforts to store and reduce its consumption, water is becoming less inexhaustible and its quality is falling faster. Considering that water is essential to animal life, it is necessary to adopt measures to ensure its sanitary conditions in order to be fit for consumption. The aim of this study was to analyze the microbiological quality of drinking rainwater used by rural communities of Tuparetama, a small town located in Northeast Brazil. The study covered seven rural communities, totaling 66 households. In each household two samples were collected, one from a tank and the other from a clay pot located inside the home, resulting in 132 samples (tank plus clay pot). Approximately 90% of samples were below the standard recommended by the current legislation, being considered unfit for human consumption. Part of this high microbiological contamination of drinking rainwater could be related to the lack of sanitary education and of an adequate sewerage sanitation system

    Complex temporal climate signals drive the emergence of human water-borne disease

    Get PDF
    Predominantly occurring in developing parts of the world, Buruli ulcer is a severely disabling mycobacterium infection which often leads to extensive necrosis of the skin. While the exact route of transmission remains uncertain, like many tropical diseases, associations with climate have been previously observed and could help identify the causative agent's ecological niche. In this paper, links between changes in rainfall and outbreaks of Buruli ulcer in French Guiana, an ultraperipheral European territory in the northeast of South America, were identified using a combination of statistical tests based on singular spectrum analysis, empirical mode decomposition and cross-wavelet coherence analysis. From this, it was possible to postulate for the first time that outbreaks of Buruli ulcer can be triggered by combinations of rainfall patterns occurring on a long (i.e., several years) and short (i.e., seasonal) temporal scale, in addition to stochastic events driven by the El Nino-Southern Oscillation that may disrupt or interact with these patterns. Long-term forecasting of rainfall trends further suggests the possibility of an upcoming outbreak of Buruli ulcer in French Guiana

    Modeling the Impact of Tuberculosis Control Strategies in Highly Endemic Overcrowded Prisons

    Get PDF
    International audienceBACKGROUND: Tuberculosis (TB) in prisons is a major health problem in countries of high and intermediate TB endemicity such as Brazil. For operational reasons, TB control strategies in prisons cannot be compared through population based intervention studies. METHODOLOGY/PRINCIPAL FINDINGS: A mathematical model is proposed to simulate the TB dynamics in prison and evaluate the potential impact on active TB prevalence of several intervention strategies. The TB dynamics with the ongoing program was simulated over a 10 year period in a Rio de Janeiro prison (TB prevalence 4.6 %). Then, a simulation of the DOTS strategy reaching the objective of 70 % of bacteriologically-positive cases detected and 85 % of detected cases cured was performed; this strategy reduced only to 2.8% the average predicted TB prevalence after 5 years. Adding TB detection at entry point to DOTS strategy had no major effect on the predicted active TB prevalence. But, adding further a yearly X-ray mass screening of inmates reduced the predicted active TB prevalence below 1%. Furthermore, according to this model, after applying this strategy during 2 years (three annual screenings), the TB burden would be reduced and the active TB prevalence could be kept at a low level by associating X-ray screening at entry point and DOTS. CONCLUSIONS/SIGNIFICANCE: We have shown that X-ray mass screenings should be considered to control TB in highly endemic prison. Prisons with different levels of TB prevalence could be examined thanks to this model which provides a rational tool for public health deciders

    Spatial Geographic Mosaic in an Aquatic Predator-Prey Network

    Get PDF
    The geographic mosaic theory of coevolution predicts 1) spatial variation in predatory structures as well as prey defensive traits, and 2) trait matching in some areas and trait mismatching in others mediated by gene flow. We examined gene flow and documented spatial variation in crushing resistance in the freshwater snails Mexipyrgus churinceanus, Mexithauma quadripaludium, Nymphophilus minckleyi, and its relationship to the relative frequency of the crushing morphotype in the trophically polymorphic fish Herichthys minckleyi. Crushing resistance and the frequency of the crushing morphotype did show spatial variation among 11 naturally replicated communities in the Cuatro Ciénegas valley in Mexico where these species are all endemic. The variation in crushing resistance among populations was not explained by geographic proximity or by genetic similarity in any species. We detected clear phylogeographic patterns and limited gene flow for the snails but not for the fish. Gene flow among snail populations in Cuatro Ciénegas could explain the mosaic of local divergence in shell strength and be preventing the fixation of the crushing morphotype in Herichthys minckleyi. Finally, consistent with trait matching across the mosaic, the frequency of the fish morphotype was negatively correlated with shell crushing resistance likely reflecting the relative disadvantage of the crushing morphotype in communities where the snails exhibit relatively high crushing resistance
    corecore