157 research outputs found

    Status report on GANIL-SPIRAL1

    Get PDF
    International audienceThe GANIL facility (Caen, France) (Figure 1) is dedicated to the acceleration of heavy ion beams for nuclear physics, atomic physics, radiobiology and material irradiation. The production of radioactive ion beams for nuclear physics studies represents the main part of the activity. Two complementary methods are used: the Isotope Separation On-Line (ISOL, the SPIRAL1 facility) and the In-Flight Separation techniques (IFS). SPIRAL1, the ISOL facilty, is running since 2001, producing and post-accelerating radioactive ion beams. The energy range available goes from 1.2 MeV/A to 25 MeV/A with a compact cyclotron (CIME, K=265). The running mode of this machine will be recalled as well as a review of the operation from 2001 to 2006. A point will be done on the past, present and future projects which allow to continue to develop the capacities of this equipment and to answer the new demands from the physicists, such as new beamlines for low or high energy experiments, new diagnotics of control or the adaptation of an identification system using Silicon, Germanium or plastic detectors in the requirements of the operation evironnement

    A new access control unit for GANIL and SPIRAL 2

    Get PDF
    International audienceFor the GANIL safety revaluation and the new project of accelerator SPIRAL 2, it was decided to replace theexisting access control system for radiological controlled areas. These areas are all cyclotron rooms and experimental areas. The existing system is centralized around VME cards. Updating is becoming very problematic. The new UGA (access control unit) will becomposed of a pair of PLC to ensure the safety of each room. It will be supplemented by a system UGB (radiological control unit) that will assure the radiological monitoring of the area concerned

    Evidence-based medicine et étudiants en médecine français : état des lieux

    Get PDF
    IntroductionL’Evidence-Based Medicine (EBM) est indispensable à l’exercice de la médecine. Notre objectif était de connaître quel en était son niveau de connaissance par les étudiants français. Matériel et Méthodes Entre avril et mai 2008, un questionnaire a été envoyé par courriel à 900 étudiants en dernière année du deuxième cycle des études médicales participant à des conférences publiques ou privées d’internat. Résultats Sur les 327 réponses, 297 (91 %), 94 (29 %) et 85 (26 %) étudiants déclaraient savoir lire, écrire et parler l’anglais médical. Quatre-vingt-dix étudiants (28 %) lisaient un article d’une revue médicale française, une fois par mois et 43 (13 %) lisaient un article d’une revue médicale internationale une fois par mois. Trois cent onze (95 %) connaissaient les bases de recherche médicale sur Internet et 219 (67 %) les utilisaient. Vingt-quatre (7 %) avaient déjà participé à la rédaction d’un article médical, sept (2 %) avait été co-auteurs. Deux cent soixante-douze (83 %) avait réalisé une présentation orale lors d’un staff médical et trois (1 %) lors d’un congrès. Enfin, 237 (73 %) comprenaient l’intérêt de l’épreuve d’analyse critique d’article à l’examen national classant (ECN) et 70 (21 %) pensaient y être préparés. Conclusion L’insuffisance de l’apprentissage de l’EBM est une des limites du système de formation français. L’introduction de la lecture critique d’article (LCA) à l’ECN est un début de réponse concret à ce problème

    Demonstration of two-beam acceleration in CTF II

    Get PDF
    The second phase of the Compact LInear Collider (CLIC) Test Facility (CTF II) at CERN has demon-strated the feasibility of two-beam acceleration at 30 GHz using a high-charge drive beam, running paral lel to the main beam, as the RF power source. To date accelerating gradients of 59 MV/m at 30 GHz have been achieved. In CTF II, the two beams are generated by 3 GHz RF photo-injectors and are acceler ated in 3 GHz linacs, before injection into the 30 GHz modules. The drive beam linac has to accelerate a 16 ns long train of 48 bunches, each with a nominal charge of 13.4 nC. To cope with the very su bstantial beam-loading special accelerating structures are used (running slightly off the bunch repetition frequency). A magnetic chicane compresses the bunches to less than 5 ps fwhm, this is needed for efficient 30 GHz power generation. The 30 GHz modules are fully-engineered representative sections of CLIC, they include a 30 GHz decelerator for the drive beam, a 30 GHz accelerator for the main beam, high resolution BPM's and a wire-based active align-ment system. The performance achieved so far, as well as the operational experience with the first accelerator of this type, are reported

    Nuclear structure and reaction studies at SPIRAL

    Get PDF
    The SPIRAL facility at GANIL, operational since 2001, is described briefly. The diverse physics program using the re-accelerated (1.2 to 25 MeV/u) beams ranging from He to Kr and the instrumentation specially developed for their exploitation are presented. Results of these studies, using both direct and compound processes, addressing various questions related to the existence of exotic states of nuclear matter, evolution of new "magic numbers", tunnelling of exotic nuclei, neutron correlations, exotic pathways in astrophysical sites and characterization of the continuum are discussed. The future prospects for the facility and the path towards SPIRAL2, a next generation ISOL facility, are also briefly presented.Comment: 48 pages, 27 figures. Accepted for publication in Journal of Physics

    Results from the CLIC Test Facility

    Get PDF
    In order to study the principle of the Compact Linear Collider (CLIC) based on the Two Beam Acceleration (TBA) scheme at high frequency, a CLIC Test Facility (CTF) has been set-up at CERN. After four years of successful running, the experimental programme is now fully completed and all its objectives reached, particularly the generation of a high intensity drive beam with short bunches by a photo-injector, the production of 30 GHz RF power and the acceleration of a probe beam by 30 GHz structures. A summary of the CTF results and their impact on linear collider design is given. This covers 30 GHz high power testing, study of intense, short single bunches; as well as RF-Gun, photocathode and beam diagnostic developments. A second phase of the test facility (CTF2) is presently being installed to demonstrate the feasibility of the TBA scheme by constructing a fully engineered, 10 m long, test section very similar to the CLIC drive and main linacs, producing up to 480 MW of peak RF power at 30 GHz and accelerating the beam up to 320 MeV. The present status of CTF2 is reported

    WNT6 is a novel oncogenic prognostic biomarker in human glioblastoma

    Get PDF
    Glioblastoma (GBM) is a universally fatal brain cancer, for which novel therapies targeting specific underlying oncogenic events are urgently needed. While the WNT pathway has been shown to be frequently activated in GBM, constituting a potential therapeutic target, the relevance of WNT6, an activator of this pathway, remains unknown. Methods: WNT6 protein and mRNA levels were evaluated in GBM. WNT6 levels were silenced or overexpressed in GBM cells to assess functional effects in vitro and in vivo. Phospho-kinase arrays and TCF/LEF reporter assays were used to identify WNT6-signaling pathways, and significant associations with stem cell features and cancer-related pathways were validated in patients. Survival analyses were performed with Cox regression and Log-rank tests. Meta-analyses were used to calculate the estimated pooled effect. Results: We show that WNT6 is significantly overexpressed in GBMs, as compared to lower-grade gliomas and normal brain, at mRNA and protein levels. Functionally, WNT6 increases typical oncogenic activities in GBM cells, including viability, proliferation, glioma stem cell capacity, invasion, migration, and resistance to temozolomide chemotherapy. Concordantly, in in vivo orthotopic GBM mice models, using both overexpressing and silencing models, WNT6 expression was associated with shorter overall survival, and increased features of tumor aggressiveness. Mechanistically, WNT6 contributes to activate typical oncogenic pathways, including Src and STAT, which intertwined with the WNT pathway may be critical effectors of WNT6-associated aggressiveness in GBM. Clinically, we establish WNT6 as an independent prognostic biomarker of shorter survival in GBM patients from several independent cohorts. Conclusion: Our findings establish WNT6 as a novel oncogene in GBM, opening opportunities to develop more rational therapies to treat this highly aggressive tumor.FCT - Foundation for Science and Technology (PTDC/SAU-GMG/113795/2009 and IF/00601/2012 to B.M.C.; SFRH/BD/92786/2013 to C.S.G.; SFRH/BD/88121/2012 to J.V.C.; SFRH/BD/81042/2011 to M.P.; SFRH/BD/93443/2013 to S.Q.) and Fundação Calouste Gulbenkian (B.M.C.), by FEDER funds through the Operational Programme Competitiveness Factors - COMPETE and National Funds through FCT under the project POCI-01-0145-FEDER-007038; by the project NORTE-01-0145-FEDER-000013 and NORTE-01-0246-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); and by the project NORTE-01-0145-FEDER-000023, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)info:eu-repo/semantics/publishedVersio
    • …
    corecore