127 research outputs found

    Confirmatory factor analysis of the Test of Performance Strategies (TOPS) among adolescent athletes

    Get PDF
    The aim of the present study was to examine the factorial validity of the Test of Performance Strategies (TOPS; Thomas et al., 1999) among adolescent athletes using confirmatory factor analysis. The TOPS was designed to assess eight psychological strategies used in competition (i.e. activation, automaticity, emotional control, goal-setting, imagery, negative thinking, relaxation and self-talk,) and eight used in practice (the same strategies except negative thinking is replaced by attentional control). National-level athletes (n = 584) completed the 64-item TOPS during training camps. Fit indices provided partial support for the overall measurement model for the competition items (robust comparative fit index = 0.92, Tucker-Lewis index = 0.88, root mean square error of approximation = 0.05) but minimal support for the training items (robust comparative fit index = 0.86, Tucker-Lewis index = 0.81, root mean square error of approximation = 0.06). For the competition items, the automaticity, goal-setting, relaxation and self-talk scales showed good fit, whereas the activation, emotional control, imagery and negative thinking scales did not. For the practice items, the attentional control, emotional control, goal-setting, imagery and self-talk scales showed good fit, whereas the activation, automaticity and relaxation scales did not. Overall, it appears that the factorial validity of the TOPS for use with adolescents is questionable at present and further development is required

    Motor contagion: the contribution of trajectory and end-points

    Get PDF
    Increased involuntary arm movement deviation when observing an incongruent human arm movement has been interpreted as a strong indicator of motor contagion. Here, we examined the contribution of trajectory and end-point information on motor contagion by altering congruence between the stimulus and arm movement. Participants performed cyclical horizontal arm movements whilst simultaneously observing a stimulus representing human arm movement. The stimuli comprised congruent horizontal movements or vertical movements featuring incongruent trajectory and end-points. A novel, third, stimulus comprised curvilinear movements featuring congruent end-points, but an incongruent trajectory. In Experiment 1, our dependent variables indicated increased motor contagion when observing the vertical compared to horizontal movement stimulus. There was even greater motor contagion in the curvilinear stimulus condition indicating an additive effect of an incongruent trajectory comprising congruent end-points. In Experiment 2, this additive effect was also present when facing perpendicular to the display, and thus with end-points represented as a product of the movement rather than an external spatial reference. Together, these findings support the theory of event coding (Hommel et al., Behav Brain Sci 24:849–878, 2001), and the prediction that increased motor contagion takes place when observed and executed actions share common features (i.e., movement end-points)

    Sensitivity to differences in the motor origin of drawings:from human to robot

    Get PDF
    This study explores the idea that an observer is sensitive to differences in the static traces of drawings that are due to differences in motor origin. In particular, our aim was to test if an observer is able to discriminate between drawings made by a robot and by a human in the case where the drawings contain salient kinematic cues for discrimination and in the case where the drawings only contain more subtle kinematic cues. We hypothesized that participants would be able to correctly attribute the drawing to a human or a robot origin when salient kinematic cues are present. In addition, our study shows that observers are also able to detect the producer behind the drawings in the absence of these salient kinematic cues. The design was such that in the absence of salient kinematic cues, the drawings are visually very similar, i.e. only differing in subtle kinematic differences. Observers thus had to rely on these subtle kinematic differences in the line trajectories between drawings. However, not only motor origin (human versus robot) but also motor style (natural versus mechanic) plays a role in attributing a drawing to the correct producer, because participants scored less high when the human hand draws in a relatively mechanical way. Overall, this study suggests that observers are sensitive to subtle kinematic differences between visually similar marks in drawings that have a different motor origin. We offer some possible interpretations inspired by the idea of "motor resonance''

    Mimicry of Food Intake: The Dynamic Interplay between Eating Companions

    Get PDF
    Numerous studies have shown that people adjust their intake directly to that of their eating companions; they eat more when others eat more, and less when others inhibit intake. A potential explanation for this modeling effect is that both eating companions' food intake becomes synchronized through processes of behavioral mimicry. No study, however, has tested whether behavioral mimicry can partially account for this modeling effect. To capture behavioral mimicry, real-time observations of dyads of young females having an evening meal were conducted. It was assessed whether mimicry depended on the time of the interaction and on the person who took the bite. A total of 70 young female dyads took part in the study, from which the total number of bites (N = 3,888) was used as unit of analyses. For each dyad, the total number of bites and the exact time at which each person took a bite were coded. Behavioral mimicry was operationalized as a bite taken within a fixed 5-second interval after the other person had taken a bite, whereas non-mimicked bites were defined as bites taken outside the 5-second interval. It was found that both women mimicked each other's eating behavior. They were more likely to take a bite of their meal in congruence with their eating companion rather than eating at their own pace. This behavioral mimicry was found to be more prominent at the beginning than at the end of the interaction. This study suggests that behavioral mimicry may partially account for social modeling of food intake

    Talk to the Virtual Hands: Self-Animated Avatars Improve Communication in Head-Mounted Display Virtual Environments

    Get PDF
    Background When we talk to one another face-to-face, body gestures accompany our speech. Motion tracking technology enables us to include body gestures in avatar-mediated communication, by mapping one's movements onto one's own 3D avatar in real time, so the avatar is self-animated. We conducted two experiments to investigate (a) whether head-mounted display virtual reality is useful for researching the influence of body gestures in communication; and (b) whether body gestures are used to help in communicating the meaning of a word. Participants worked in pairs and played a communication game, where one person had to describe the meanings of words to the other. Principal Findings In experiment 1, participants used significantly more hand gestures and successfully described significantly more words when nonverbal communication was available to both participants (i.e. both describing and guessing avatars were self-animated, compared with both avatars in a static neutral pose). Participants ‘passed’ (gave up describing) significantly more words when they were talking to a static avatar (no nonverbal feedback available). In experiment 2, participants' performance was significantly worse when they were talking to an avatar with a prerecorded listening animation, compared with an avatar animated by their partners' real movements. In both experiments participants used significantly more hand gestures when they played the game in the real world. Conclusions Taken together, the studies show how (a) virtual reality can be used to systematically study the influence of body gestures; (b) it is important that nonverbal communication is bidirectional (real nonverbal feedback in addition to nonverbal communication from the describing participant); and (c) there are differences in the amount of body gestures that participants use with and without the head-mounted display, and we discuss possible explanations for this and ideas for future investigation

    Top-down social modulation of interpersonal observation-execution.

    Get PDF
    Cyclical upper limb movement can involuntarily deviate from its primary movement axis when the performer concurrently observes incongruent biological motion (i.e. interpersonal observation-execution). The current study examined the social modulation of such involuntary motor interference using a protocol that reflected everyday social interactions encountered in a naturalistic social setting. Eighteen participants executed cyclical horizontal arm movements during the observation of horizontal (congruent) or curvilinear (incongruent) biological motion. Both prior to, and during the interpersonal observation-execution task, participants also received a series of social words designed to prime a pro-social or anti-social attitude. The results showed greater orthogonal movement deviation, and thus interference, for the curvilinear compared to horizontal stimuli. Importantly, and opposite to most of the previous findings from work on automatic imitation and mimicry, there was a greater interference effect for the anti-social compared to pro-social prime condition. These findings demonstrate the importance of interpreting the context of social primes, and strongly support predictions of a comparison between the prime construct and the self-concept/-schema and the top-down response modulation of social incentives

    Does Observation of Postural Imbalance Induce a Postural Reaction?

    Get PDF
    Import JabRef | WosArea Life Sciences and Biomedicine - Other TopicsInternational audienceBackground: Several studies bring evidence that action observation elicits contagious responses during social interactions. However automatic imitative tendencies are generally inhibited and it remains unclear in which conditions mere action observation triggers motor behaviours. In this study, we addressed the question of contagious postural responses when observing human imbalance. Methodology/Principal Findings: We recorded participants' body sway while they observed a fixation cross (control condition), an upright point-light display of a gymnast balancing on a rope, and the same point-light display presented upside down. Our results showed that, when the upright stimulus was displayed prior to the inverted one, centre of pressure area and antero-posterior path length were significantly greater in the upright condition compared to the control and upside down conditions. Conclusions/Significance: These results demonstrate a contagious postural reaction suggesting a partial inefficiency of inhibitory processes. Further, kinematic information was sufficient to trigger this reaction. The difference recorded between the upright and upside down conditions indicates that the contagion effect was dependent on the integration of gravity constraints by body kinematics. Interestingly, the postural response was sensitive to habituation, and seemed to disappear when the observer was previously shown an inverted display. The motor contagion recorded here is consistent with previous work showing vegetative output during observation of an effortful movement and could indicate that lower level control facilitates contagion effects

    The development of spontaneous facial responses to others’ emotions in infancy. An EMG study

    Get PDF
    Viewing facial expressions often evokes facial responses in the observer. These spontaneous facial reactions (SFRs) are believed to play an important role for social interactions. However, their developmental trajectory and the underlying neurocognitive mechanisms are still little understood. In the current study, 4- and 7-month old infants were presented with facial expressions of happiness, anger, and fear. Electromyography (EMG) was used to measure activation in muscles relevant for forming these expressions: zygomaticus major (smiling), corrugator supercilii (frowning), and frontalis (forehead raising). The results indicated no selective activation of the facial muscles for the expressions in 4-month-old infants. For 7-month-old infants, evidence for selective facial reactions was found especially for happy faces (leading to increased zygomaticus major activation) and fearful faces (leading to increased frontalis activation), while angry faces did not show a clear differential response. This suggests that emotional SFRs may be the result of complex neurocognitive mechanisms which lead to partial mimicry but are also likely to be influenced by evaluative processes. Such mechanisms seem to undergo important developments at least until the second half of the first year of life

    Principles of mRNA transport in yeast

    Get PDF
    mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons
    corecore