19 research outputs found
A global workspace framework for combined reasoning
Artificial Intelligence research has produced
many effective techniques for solving a wide range
of problems. Practitioners tend to concentrate their efforts in one particular problem solving
paradigm and, in the main, AI research describes new methods for solving particular types of
problems or improvements in existing approaches. By contrast, much less research has considered
how to fruitfully combine different problem solving techniques. Numerous studies have
demonstrated how a combination of reasoning approaches can improve the effectiveness of one of
those methods. Others have demonstrated how, by using several different reasoning techniques,
a system or method can be developed to accomplish a novel task, that none of the individual
techniques could perform. Combined reasoning systems, i.e., systems which apply disparate
reasoning techniques in concert, can be more than the sum of their parts. In addition, they
gain leverage from advances in the individual methods they encompass. However, the benefits
of combined reasoning systems are not easily accessible, and systems have been hand-crafted
to very specific tasks in certain domains. This approach means those systems often suffer from
a lack of clarity of design and are inflexible to extension. In order for the field of combined reasoning
to advance, we need to determine best practice and identify effective general approaches.
By developing useful frameworks, we can empower researchers to explore the potential of combined
reasoning, and AI in general. We present here a framework for developing combined
reasoning systems, based upon Baars’ Global Workspace Theory. The architecture describes a
collection of processes, embodying individual reasoning techniques, which communicate via a
global workspace. We present, also, a software toolkit which allows users to implement systems
according to the framework. We describe how, despite the restrictions of the framework, we
have used it to create systems to perform a number of combined reasoning tasks. As well
as being as effective as previous implementations, the simplicity of the underlying framework
means they are structured in a straightforward and comprehensible manner. It also makes the
systems easy to extend to new capabilities, which we demonstrate in a number of case studies.
Furthermore, the framework and toolkit we describe allow developers to harness the parallel
nature of the underlying theory by enabling them to readily convert their implementations into
distributed systems. We have experimented with the framework in a number of application domains
and, through these applications, we have contributed to constraint satisfaction problem
solving and automated theory formation
hENT1 Predicts Benefit from Gemcitabine in Pancreatic Cancer but Only with Low CDA mRNA
SIMPLE SUMMARY: Recent clinical trials suggest that combination therapies that include either gemcitabine or 5-fluorouracil (5-FU) both give significant survival benefits for pancreatic cancer patients. The tumor level of the nucleoside transporter hENT1 is prognostic in patients treated with adjuvant gemcitabine but not adjuvant 5-FU. This work shows for the first time that hENT1 is only predictive of benefit from gemcitabine over 5-FU in patients with low levels of CDA transcript. A choice between adjuvant 5-FU based combination therapies (such as FOLFIRINOX) and gemcitabine-based therapy (e.g., GemCap) could be made based on a combination of hENT1 protein and CDA mRNA measured in a resected tumor. ABSTRACT: Gemcitabine or 5-fluorouracil (5-FU) based treatments can be selected for pancreatic cancer. Equilibrative nucleoside transporter 1 (hENT1) predicts adjuvant gemcitabine treatment benefit over 5-FU. Cytidine deaminase (CDA), inside or outside of the cancer cell, will deaminate gemcitabine, altering transporter affinity. ESPAC-3(v2) was a pancreatic cancer trial comparing adjuvant gemcitabine and 5-FU. Tissue microarray sections underwent in situ hybridization and immunohistochemistry. Analysis of both CDA and hENT1 was possible with 277 patients. The transcript did not correlate with protein levels for either marker. High hENT1 protein was prognostic with gemcitabine; median overall survival was 26.0 v 16.8 months (p = 0.006). Low CDA transcript was prognostic regardless of arm; 24.8 v 21.2 months with gemcitabine (p = 0.02) and 26.4 v 14.6 months with 5-FU (p = 0.02). Patients with low hENT1 protein did better with 5-FU, but only if the CDA transcript was low (median survival of 5-FU v gemcitabine; 29.3 v 18.3 months, compared with 14.2 v 14.6 with high CDA). CDA mRNA is an independent prognostic biomarker. When added to hENT1 protein status, it may also provide treatment-specific predictive information and, within the frame of a personalized treatment strategy, guide to either gemcitabine or 5FU for the individual patient
Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial
Background
Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear.
Methods
RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047.
Findings
Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths.
Interpretation
Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
A global workspace framework for combined reasoning
Artificial Intelligence research has produced many effective techniques for solving a wide range of problems. Practitioners tend to concentrate their efforts in one particular problem solving paradigm and, in the main, AI research describes new methods for solving particular types of problems or improvements in existing approaches. By contrast, much less research has considered how to fruitfully combine different problem solving techniques. Numerous studies have demonstrated how a combination of reasoning approaches can improve the effectiveness of one of those methods. Others have demonstrated how, by using several different reasoning techniques, a system or method can be developed to accomplish a novel task, that none of the individual techniques could perform. Combined reasoning systems, i.e., systems which apply disparate reasoning techniques in concert, can be more than the sum of their parts. In addition, they gain leverage from advances in the individual methods they encompass. However, the benefits of combined reasoning systems are not easily accessible, and systems have been hand-crafted to very specific tasks in certain domains. This approach means those systems often suffer from a lack of clarity of design and are inflexible to extension. In order for the field of combined reasoning to advance, we need to determine best practice and identify effective general approaches. By developing useful frameworks, we can empower researchers to explore the potential of combined reasoning, and AI in general. We present here a framework for developing combined reasoning systems, based upon Baars’ Global Workspace Theory. The architecture describes a collection of processes, embodying individual reasoning techniques, which communicate via a global workspace. We present, also, a software toolkit which allows users to implement systems according to the framework. We describe how, despite the restrictions of the framework, we have used it to create systems to perform a number of combined reasoning tasks. As well as being as effective as previous implementations, the simplicity of the underlying framework means they are structured in a straightforward and comprehensible manner. It also makes the systems easy to extend to new capabilities, which we demonstrate in a number of case studies. Furthermore, the framework and toolkit we describe allow developers to harness the parallel nature of the underlying theory by enabling them to readily convert their implementations into distributed systems. We have experimented with the framework in a number of application domains and, through these applications, we have contributed to constraint satisfaction problem solving and automated theory formation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Clinical and genetic characteristics of hereditary pancreatitis in Europe.
Hereditary pancreatitis is an autosomal dominant disease that is mostly caused by cationic trypsinogen (PRSS1) gene mutations. The aim was to determine phenotype-genotype correlations of families in Europe.Comparative StudyJournal ArticleMulticenter StudyResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Research Support, U.S. Gov't, P.H.S.info:eu-repo/semantics/publishe
Toxicity Testing in the 21st Century: A Vision and a Strategy
With the release of the landmark report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences, in 2007, precipitated a major change in the way toxicity testing is conducted. It envisions increased efficiency in toxicity testing and decreased animal usage by transitioning from current expensive and lengthy in vivo testing with qualitative endpoints to in vitro toxicity pathway assays on human cells or cell lines using robotic high-throughput screening with mechanistic quantitative parameters. Risk assessment in the exposed human population would focus on avoiding significant perturbations in these toxicity pathways. Computational systems biology models would be implemented to determine the dose-response models of perturbations of pathway function. Extrapolation of in vitro results to in vivo human blood and tissue concentrations would be based on pharmacokinetic models for the given exposure condition. This practice would enhance human relevance of test results, and would cover several test agents, compared to traditional toxicological testing strategies. As all the tools that are necessary to implement the vision are currently available or in an advanced stage of development, the key prerequisites to achieving this paradigm shift are a commitment to change in the scientific community, which could be facilitated by a broad discussion of the vision, and obtaining necessary resources to enhance current knowledge of pathway perturbations and pathway assays in humans and to implement computational systems biology models. Implementation of these strategies would result in a new toxicity testing paradigm firmly based on human biology
The variable phenotype of the p.A16V mutation of cationic trypsinogen (PRSS1) in pancreatitis families.
OBJECTIVE: To characterise the phenotypes associated with the p.A16V mutation of PRSS1. DESIGN: Clinical and epidemiological data were collected for any family in which a p.A16V mutation was identified, either referred directly to the European Registry of Hereditary Pancreatitis and Familial Pancreatic Cancer or via a collaborator. DNA samples were tested for mutations in PRSS1, SPINK1, CFTR and CTRC. PATIENTS: Participants were recruited on the basis of either family history of pancreatitis (acute or chronic), or the results of genetic testing. Families were categorised as having Hereditary Pancreatitis (HP); idiopathic disease; or pancreatitis in a single generation. HP was defined as 2 cases in 2 generations. MAIN OUTCOME MEASURES: Onset of painful episodes of pancreatitis, death from pancreatic cancer, diagnosis of diabetes mellitus and exocrine pancreatic failure. RESULTS: Ten families with p.A16V mutations were identified (22 affected individuals); six HP families, three with idiopathic disease and one with only a single generation affected. The median age of onset, ignoring non-penetrants, was 10 years (95% CI: 5,25). There were 8 confirmed cases of exocrine failure, 4 of whom also had diabetes mellitus. There were 3 pancreatic cancer cases. Two of these were confirmed as p.A16V carriers, only one of whom was affected by pancreatitis. p.A16V pancreatitics were compared to affected individuals with p.R122H, p.N29I and no PRSS1 mutation. No significant differences were proven using logrank or Mann-Whitney-U tests. CONCLUSIONS: Penetrance of p.A16V is highly variable and family dependent, suggesting it contributes to a multigenic inheritance of a predisposition to pancreatitis.JOURNAL ARTICLEinfo:eu-repo/semantics/publishe