1,204 research outputs found

    On the critical nature of plastic flow: one and two dimensional models

    Full text link
    Steady state plastic flows have been compared to developed turbulence because the two phenomena share the inherent complexity of particle trajectories, the scale free spatial patterns and the power law statistics of fluctuations. The origin of the apparently chaotic and at the same time highly correlated microscopic response in plasticity remains hidden behind conventional engineering models which are based on smooth fitting functions. To regain access to fluctuations, we study in this paper a minimal mesoscopic model whose goal is to elucidate the origin of scale free behavior in plasticity. We limit our description to fcc type crystals and leave out both temperature and rate effects. We provide simple illustrations of the fact that complexity in rate independent athermal plastic flows is due to marginal stability of the underlying elastic system. Our conclusions are based on a reduction of an over-damped visco-elasticity problem for a system with a rugged elastic energy landscape to an integer valued automaton. We start with an overdamped one dimensional model and show that it reproduces the main macroscopic phenomenology of rate independent plastic behavior but falls short of generating self similar structure of fluctuations. We then provide evidence that a two dimensional model is already adequate for describing power law statistics of avalanches and fractal character of dislocation patterning. In addition to capturing experimentally measured critical exponents, the proposed minimal model shows finite size scaling collapse and generates realistic shape functions in the scaling laws.Comment: 72 pages, 40 Figures, International Journal of Engineering Science for the special issue in honor of Victor Berdichevsky, 201

    Cerebellar Modules and Their Role as Operational Cerebellar Processing Units

    Get PDF
    The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form

    An assessment of multimodal imaging of subsurface text in mummy cartonnage using surrogate papyrus phantoms

    Get PDF
    Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to provide robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. The tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation

    Envisioning a World Beyond APCs/BPCs

    Get PDF
    This archival page includes documents and recordings related to the international symposium, “Envisioning a World Beyond APCs/BPCs,” held in Lawrence, Kansas, on Thursday and Friday, November 17-18. The presenters were a group of 18 internationally respected scholars, publishers, university librarians, and executives from foundations and organizations, who were asked to participate in a discussion about current models available for achieving an expansive, inclusive, and balanced worldwide open publishing ecosystem. The symposium was co-sponsored by the University of Kansas Libraries, Open Access Network (a project of K|N Consultants), Allen Press, SPARC, and ARL. The materials included here are the symposium schedule, recordings of Parts 1 and 2 of the Nov. 17 livestream, a transcript of the livestream, and team proposals originating from the Nov. 18 morning session.This symposium was sponsored by the University of Kansas Libraries, Open Access Network (a project of K|N Consultants), Allen Press, and SPARC

    Retrieving C and O Abundance of HR 8799 c by Combining High- and Low-Resolution Data

    Full text link
    The formation and evolution pathway for the directly-imaged multi-planetary system HR 8799 remains mysterious. Accurate constraints on the chemical composition of the planetary atmosphere(s) are key to solving the mystery. We perform a detailed atmospheric retrieval on HR 8799~c to infer the chemical abundances and abundance ratios using a combination of photometric data along with low- and high-resolution spectroscopic data (R∌\sim20-35,000). We specifically retrieve [C/H], [O/H], and C/O and find them to be 0.55−0.39+0.36^{+0.36}_{-0.39}, 0.47−0.32+0.31^{+0.31}_{-0.32}, and 0.67−0.15+0.12^{+0.12}_{-0.15} at 68\% confidence. The super-stellar C and O abundances, yet a stellar C/O ratio, reveal a potential formation pathway for HR 8799~c. Planet c, and likely the other gas giant planets in the system, formed early on (likely within ∌\sim1 Myr), followed by further atmospheric enrichment in C and O through the accretion of solids beyond the CO iceline. The enrichment either preceded or took place during the early phase of the inward migration to the planet current locations.Comment: 19 pages, 6 figures, 3 tables, accepted to AAS journal

    Retrieving the C and O Abundances of HR 7672~AB: a Solar-Type Primary Star with a Benchmark Brown Dwarf

    Full text link
    A benchmark brown dwarf (BD) is a BD whose properties (e.g., mass and chemical composition) are precisely and independently measured. Benchmark BDs are valuable in testing theoretical evolutionary tracks, spectral synthesis, and atmospheric retrievals for sub-stellar objects. Here, we report results of atmospheric retrieval on a synthetic spectrum and a benchmark BD -- HR 7672~B -- with \petit. First, we test the retrieval framework on a synthetic PHOENIX BT-Settl spectrum with a solar composition. We show that the retrieved C and O abundances are consistent with solar values, but the retrieved C/O is overestimated by 0.13-0.18, which is ∌\sim4 times higher than the formal error bar. Second, we perform retrieval on HR 7672~B using high spectral resolution data (R=35,000) from the Keck Planet Imager and Characterizer (KPIC) and near infrared photometry. We retrieve [C/H], [O/H], and C/O to be −0.24±0.05-0.24\pm0.05, −0.19±0.04-0.19\pm0.04, and 0.52±0.020.52\pm0.02. These values are consistent with those of HR 7672~A within 1.5-σ\sigma. As such, HR 7672~B is among only a few benchmark BDs (along with Gl 570~D and HD 3651~B) that have been demonstrated to have consistent elemental abundances with their primary stars. Our work provides a practical procedure of testing and performing atmospheric retrieval, and sheds light on potential systematics of future retrievals using high- and low-resolution data.Comment: 29 pages, 17 figures, 5 tables, resubmitted to AAS journals after first revisio

    Communications Biophysics

    Get PDF
    Contains research objectives and reports on six research projects split into three sections.National Institutes of Health (Grant 5 P01 NS13126-07)National Institutes of Health (Training Grant 5 T32 NS07047-05)National Institutes of Health (Training Grant 2 T32 NS07047-06)National Science Foundation (Grant BNS 77-16861)National Institutes of Health (Grant 5 R01 NS1284606)National Institutes of Health (Grant 5 T32 NS07099)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 5 R01 NS14092-04)Gallaudet College SubcontractKarmazin Foundation through the Council for the Arts at M.I.T.National Institutes of Health (Grant 1 R01 NS1691701A1)National Institutes of Health (Grant 5 R01 NS11080-06)National Institutes of Health (Grant GM-21189

    A shot in the Dark (Ages): a faint galaxy at z=9.76z=9.76 confirmed with JWST

    Full text link
    The appearance of galaxies over the first billion years after the Big Bang is believed to be responsible for the last dramatic change in the state of the Universe. Ultraviolet photons from galaxies within this time period - the Epoch of Reionization - ionized intergalactic Hydrogen, rendering the Universe transparent to UV radiation and ending the so-called cosmic Dark Ages, sometime after redshift z∌8z\sim8. The majority of ionizing photons in the first few hundred Myrs of cosmic history are thought to derive from galaxies significantly fainter than the characteristic luminosity L∗L^{*}. These faint galaxies are thought to be surrounded by sufficient neutral gas to prevent the escape of the Lyman-α\alpha photons that would allow confirmation with current observatories. Here we demonstrate the power of the recently commissioned James Webb Space Telescope to transform our understanding of the sources of reionization, by reporting the first spectroscopic confirmation of a very low luminosity (∌0.05L∗\sim0.05 L^{*}) galaxy at z=9.76z=9.76, observed 480 Myr after the Big Bang, via the detection of the Lyman-break and redward continuum with the NIRSpec and NIRCam instruments. The galaxy JD1 is gravitationally magnified by a factor of Ό∌13\mu\sim13 by the foreground cluster A2744. The power of JWST and lensing allows us to peer deeper than ever before into the cosmic Dark Ages, revealing the compact (∌\sim150 pc) and complex morphology and physical properties of an ultrafaint galaxy (MUV=−17.45M_{\rm UV}=-17.45).Comment: Submitted to Nature. 34 pages, 4 main figures, 1 supplementary figure, 2 supplementary tables. Comments are welcom
    • 

    corecore