19 research outputs found

    Cost-Effectiveness of Stronger Woodframe Buildings

    Get PDF
    We examine the cost-effectiveness of improvements in woodframe buildings. These include retrofits, redesign measures, and improved quality in 19 hypothetical woodframe dwellings. We estimated cost-effectiveness for each improvement and each zip code in California. The dwellings were designed under the CUREE-Caltech Woodframe Project. Costs and seismic vulnerability were determined on a component-by-component basis using the Assembly Based Vulnerability method, within a nonlinear time-history structural-analysis framework and using full-size test specimen data. Probabilistic site hazard was calculated by zip code, considering site soil classification, and integrated with vulnerability to determine expected annualized repair cost. The approach provides insight into uncertainty of loss at varying shaking levels. We calculated present value of benefit to determine cost-effectiveness in terms of benefit-cost ratio (BCR). We find that one retrofit exhibits BCRs as high as 8, and is in excess of 1 in half of California zip codes. Four retrofit or redesign measures are cost-effective in at least some locations. Higher quality is estimated to save thousands of dollars per house. Results are illustrated by maps for the Los Angeles and San Francisco regions and are available for every zip code in California

    Improving Loss Estimation for Woodframe Buildings. Volume 2: Appendices

    Get PDF
    This report documents Tasks 4.1 and 4.5 of the CUREE-Caltech Woodframe Project. It presents a theoretical and empirical methodology for creating probabilistic relationships between seismic shaking severity and physical damage and loss for buildings in general, and for woodframe buildings in particular. The methodology, called assembly-based vulnerability (ABV), is illustrated for 19 specific woodframe buildings of varying ages, sizes, configuration, quality of construction, and retrofit and redesign conditions. The study employs variations on four basic floorplans, called index buildings. These include a small house and a large house, a townhouse and an apartment building. The resulting seismic vulnerability functions give the probability distribution of repair cost as a function of instrumental ground-motion severity. These vulnerability functions are useful by themselves, and are also transformed to seismic fragility functions compatible with the HAZUS software. The methods and data employed here use well-accepted structural engineering techniques, laboratory test data and computer programs produced by Element 1 of the CUREE-Caltech Woodframe Project, other recently published research, and standard construction cost-estimating methods. While based on such well established principles, this report represents a substantially new contribution to the field of earthquake loss estimation. Its methodology is notable in that it calculates detailed structural response using nonlinear time-history structural analysis as opposed to the simplifying assumptions required by nonlinear pushover methods. It models physical damage at the level of individual building assemblies such as individual windows, segments of wall, etc., for which detailed laboratory testing is available, as opposed to two or three broad component categories that cannot be directly tested. And it explicitly models uncertainty in ground motion, structural response, component damageability, and contractor costs. Consequently, a very detailed, verifiable, probabilistic picture of physical performance and repair cost is produced, capable of informing a variety of decisions regarding seismic retrofit, code development, code enforcement, performance-based design for above-code applications, and insurance practices

    Improving Loss Estimation for Woodframe Buildings. Volume 1: Report

    Get PDF
    This report documents Tasks 4.1 and 4.5 of the CUREE-Caltech Woodframe Project. It presents a theoretical and empirical methodology for creating probabilistic relationships between seismic shaking severity and physical damage and loss for buildings in general, and for woodframe buildings in particular. The methodology, called assembly-based vulnerability (ABV), is illustrated for 19 specific woodframe buildings of varying ages, sizes, configuration, quality of construction, and retrofit and redesign conditions. The study employs variations on four basic floorplans, called index buildings. These include a small house and a large house, a townhouse and an apartment building. The resulting seismic vulnerability functions give the probability distribution of repair cost as a function of instrumental ground-motion severity. These vulnerability functions are useful by themselves, and are also transformed to seismic fragility functions compatible with the HAZUS software. The methods and data employed here use well-accepted structural engineering techniques, laboratory test data and computer programs produced by Element 1 of the CUREE-Caltech Woodframe Project, other recently published research, and standard construction cost-estimating methods. While based on such well established principles, this report represents a substantially new contribution to the field of earthquake loss estimation. Its methodology is notable in that it calculates detailed structural response using nonlinear time-history structural analysis as opposed to the simplifying assumptions required by nonlinear pushover methods. It models physical damage at the level of individual building assemblies such as individual windows, segments of wall, etc., for which detailed laboratory testing is available, as opposed to two or three broad component categories that cannot be directly tested. And it explicitly models uncertainty in ground motion, structural response, component damageability, and contractor costs. Consequently, a very detailed, verifiable, probabilistic picture of physical performance and repair cost is produced, capable of informing a variety of decisions regarding seismic retrofit, code development, code enforcement, performance-based design for above-code applications, and insurance practices

    The 3rd Global Summit of Research Institutes for Disaster Risk Reduction: Expanding the Platform for Bridging Science and Policy Making

    Get PDF
    The Global Alliance of Disaster Research Institutes held its 3rd Global Summit of Research Institutes for Disaster Risk Reduction at the Disaster Prevention Research Institute, Kyoto University, Japan, 19–21 March, 2017. The Global Alliance seeks to contribute to enhancing disaster risk reduction (DRR) and disaster resilience through the collaboration of research organizations around the world. The summit aim was to expand the platform for bridging science and policy making by evaluating the evidence base needed to meet the expected outcomes and actions of the Sendai Framework for Disaster Risk Reduction 2015–2030 and its Science and Technology Roadmap. The summit reflected the international nature of collaborative research and action. A pre-conference questionnaire filled out by Global Alliance members identified 323 research projects that are indicative of current research. These were categorized to support seven parallel discussion sessions related to the Sendai Framework priorities for action. Four discussion sessions focused on research that aims to deepen the understanding of disaster risks. Three cross-cutting sessions focused on research that is aimed at the priorities for action on governance, resilience, and recovery. Discussion summaries were presented in plenary sessions in support of outcomes for widely enhancing the science and policy of DRR

    Review of literature on decision support systems for natural hazard risk reduction: Current status and future research directions

    Get PDF

    Unreinforced Masonry Buildings

    No full text
    Testing and analysis of Unreinforced Masonry Buildings (URM or UMB

    トシニオケルジシンキケンドノカイセキトタイシンカシュホウニカンスルケンキュウ

    No full text
    京都大学0048新制・課程博士工学博士甲第2554号工博第707号新制||工||502(附属図書館)6676UT51-56-G67京都大学大学院工学研究科土木工学専攻(主査)教授 山田 善一, 教授 土岐 憲三, 教授 吉川 和広学位規則第5条第1項該当Kyoto UniversityDA
    corecore