108 research outputs found

    Mapping the phase diagram of the writhe of DNA nanocircles using atomistic molecular dynamics simulations

    Get PDF
    We have investigated the effects of duplex length, sequence, salt concentration and superhelical density on the conformation of DNA nanocircles containing up to 178 base pairs using atomistic molecular dynamics simulation. These calculations reveal that the partitioning of twist and writhe is governed by a delicate balance of competing energetic terms. We have identified conditions which favour circular, positively or negatively writhed and denatured DNA conformations. Our simulations show that AT-rich DNA is more prone to denaturation when subjected to torsional stress than the corresponding GC containing circles. In contrast to the behaviour expected for a simple elastic rod, there is a distinct asymmetry in the behaviour of over and under-wound DNA nanocircles. The most biologically relevant negatively writhed state is more elusive than the corresponding positively writhed conformation, and is only observed for larger circles under conditions of high electrostatic screening. The simulation results have been summarised by plotting a phase diagram describing the various conformational states of nanocircles over the range of circle sizes and experimental conditions explored during the study. The changes in DNA structure that accompany supercoiling suggest a number of mechanisms whereby changes in DNA topology in vivo might be used to influence gene expression

    Exploring the Counterion Atmosphere around DNA: What Can Be Learned from Molecular Dynamics Simulations?

    Get PDF
    AbstractThe counterion distribution around a DNA dodecamer (5′-CGCGAATTCGCG-3′) is analyzed using both standard and novel techniques based on state of the art molecular dynamics simulations. Specifically, we have explored the population of Na+ in the minor groove of DNA duplex, and whether or not a string of Na+ can replace the spine of hydration in the narrow AATT minor groove. The results suggest that the insertion of Na+ in the minor groove is a very rare event, but that when once the ion finds specific sites deep inside the groove it can reside there for very long periods of time. According to our simulation the presence of Na+ inside the groove does not have a dramatic influence in the structure or dynamics of the duplex DNA. The ability of current MD simulations to obtain equilibrated pictures of the counterion atmosphere around DNA is critically discussed

    Ligand-induced conformational selection predicts the selectivity of cysteine protease inhibitors

    Get PDF
    Cruzain, a cysteine protease of Trypanosoma cruzi, is a validated target for the treatment of Chagas disease. Due to its high similarity in three-dimensional structure with human cathepsins and their sequence identity above 70% in the active site regions, identifying potent but selective cruzain inhibitors with low side effects on the host organism represents a significant challenge. Here a panel of nitrile ligands with varying potencies against cathepsin K, cathepsin L and cruzain, are studied by molecular dynamics simulations as both non-covalent and covalent complexes. Principal component analysis (PCA), identifies and quantifies patterns of ligand-induced conformational selection that enable the construction of a decision tree which can predict with high confidence a low-nanomolar inhibitor of each of three proteins, and determine the selectivity for one against others

    Multiscale modelling of drug-polymer nanoparticle assembly identifies parameters influencing drug encapsulation efficiency

    Get PDF
    Using a multiscale (dual resolution) approach combining an atomistic (GROMOS96) and coarse-grain (MARTINI) force field, we have been able to simulate the process of drug-polymer nanoparticle assembly by nanoprecipitation from mixed solvents. Here we present the development and application of this method to the interaction of three poly(glycerol adipate) polymer variants with the anti-cancer drug dexamethasone phosphate. Differences in encapsulation efficiency and drug loading between the polymers are in agreement with the experimental trend. Reference atomistic simulations at key points along the predicted aggregation pathway support the accuracy of the much more compute-efficient multiscale methodology

    Unveiling a Novel Transient Druggable Pocket in BACE-1 through Molecular Simulations: Conformational Analysis and Binding Mode of Multisite Inhibitors

    Get PDF
    The critical role of BACE-1 in the formation of neurotoxic ß-amyloid peptides in the brain makes it an attractive target for an efficacious treatment of Alzheimer's disease. However, the development of clinically useful BACE-1 inhibitors has proven to be extremely challenging. In this study we examine the binding mode of a novel potent inhibitor (compound 1, with IC50 80 nM) designed by synergistic combination of two fragments - huprine and rhein - that individually are endowed with very low activity against BACE-1. Examination of crystal structures reveals no appropriate binding site large enough to accommodate 1. Therefore we have examined the conformational flexibility of BACE-1 through extended molecular dynamics simulations, paying attention to the highly flexible region shaped by loops 8-14, 154-169 and 307-318. The analysis of the protein dynamics, together with studies of pocket druggability, has allowed us to detect the transient formation of a secondary binding site, which contains Arg307 as a key residue for the interaction with small molecules, at the edge of the catalytic cleft. The formation of this druggable 'floppy' pocket would enable the binding of multisite inhibitors targeting both catalytic and secondary sites. Molecular dynamics simulations of BACE-1 bound to huprine-rhein hybrid compounds support the feasibility of this hypothesis. The results provide a basis to explain the high inhibitory potency of the two enantiomeric forms of 1, together with the large dependence on the length of the oligomethylenic linker. Furthermore, the multisite hypothesis has allowed us to rationalize the inhibitory potency of a series of tacrine-chromene hybrid compounds, specifically regarding the apparent lack of sensitivity of the inhibition constant to the chemical modifications introduced in the chromene unit. Overall, these findings pave the way for the exploration of novel functionalities in the design of optimized BACE-1 multisite inhibitors

    GLIMPS: A Machine Learning Approach to Resolution Transformation for Multiscale Modeling

    Get PDF
    We describe a general approach to transforming molecular models between different levels of resolution, based on machine learning methods. The approach uses a matched set of models at both levels of resolution for training, but requires only the coordinates of their particles and no side information (e.g., templates for substructures, defined mappings, or molecular mechanics force fields). Once trained, the approach can transform further molecular models of the system between the two levels of resolution in either direction with equal facility

    Experimental study and computational modelling of cruzain cysteine protease inhibition by dipeptidyl nitriles

    Get PDF
    Chagas disease affects millions of people in Latin America. This disease is caused by the protozoan parasite Trypanossoma cruzi. The cysteine protease cruzain is a key enzyme for the survival and propagation of this parasite lifecycle. Nitrile-based inhibitors are efficient inhibitors of cruzain that bind by forming a covalent bond with this enzyme. Here, three nitrile-based inhibitors dubbed Neq0409, Neq0410 and Neq0570 were synthesized, and the thermodynamic profile of the bimolecular interaction with cruzain was determined using isothermal titration calorimetry (ITC). The result suggests the inhibition process is enthalpy driven, with a detrimental contribution of entropy. In addition, we have used hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) and Molecular Dynamics (MD) simulations to investigate the reaction mechanism of reversible covalent modification of cruzain by Neq0409, Neq0410 and Neq0570. The computed free energy profile shows that the nucleophilic attack of Cys25 on the carbon C1 of inhibitiors and the proton transfer from His162 to N1 of the dipeptidyl nitrile inhibitor take place in a single step. The calculated free energy of the inhibiton reaction is in agreement with covalent experimental binding. Altogether, the results reported here suggests that nitrile-based inhibitors are good candidates for the development of reversible covalent inhibitors of cruzain and other cysteine proteases

    Principal nested shape space analysis of molecular dynamics data

    Get PDF
    Molecular dynamics simulations produce huge datasets of temporal sequences of molecules. It is of interest to summarize the shape evolution of the molecules in a succinct, low-dimensional representation. However, Euclidean techniques such as principal components analysis (PCA) can be problematic as the data may lie far from in a flat manifold. Principal nested spheres gives a fundamentally different decomposition of data from the usual Euclidean sub-space based PCA (Jung et al., 2012). Sub-spaces of successively lower dimension are fitted to the data in a backwards manner, with the aim of retaining signal and dispensing with noise at each stage. We adapt the methodology to 3D sub-shape spaces and provide some practical fitting algorithms. The methodology is applied to cluster analysis of peptides, where different states of the molecules can be identified. Also, the temporal transitions between cluster states are explored

    Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation

    Get PDF
    It is well established that gene regulation can be achieved through activator and repressor proteins that bind to DNA and switch particular genes on or off, and that complex metabolic networks deter- mine the levels of transcription of a given gene at a given time. Using three complementary computa- tional techniques to study the sequence-dependence of DNA denaturation within DNA minicircles, we have observed that whenever the ends of the DNA are con- strained, information can be transferred over long distances directly by the transmission of mechanical stress through the DNA itself, without any require- ment for external signalling factors. Our models com- bine atomistic molecular dynamics (MD) with coarse- grained simulations and statistical mechanical calcu- lations to span three distinct spatial resolutions and timescale regimes. While they give a consensus view of the non-locality of sequence-dependent denatura- tion in highly bent and supercoiled DNA loops, each also reveals a unique aspect of long-range informa- tional transfer that occurs as a result of restraining the DNA within the closed loop of the minicircles

    Development of fluorescent peptide G protein-coupled receptor activation biosensors for NanoBRET characterization of intracellular allosteric modulators

    Get PDF
    G protein-coupled receptors (GPCRs) are widely therapeutically targeted, and recent advances in allosteric modulator development at these receptors offer further potential for exploitation. Intracellular allosteric modulators (IAM) represent a class of ligands that bind to the receptor–effector interface (e.g., G protein) and inhibit agonist responses noncompetitively. This potentially offers greater selectivity between receptor subtypes compared to classical orthosteric ligands. However, while examples of IAM ligands are well described, a more general methodology for assessing compound interactions at the IAM site is lacking. Here, fluorescent labeled peptides based on the Gα peptide C terminus are developed as novel binding and activation biosensors for the GPCR-IAM site. In TR-FRET binding studies, unlabeled peptides derived from the Gαs subunit were first characterized for their ability to positively modulate agonist affinity at the β2-adrenoceptor. On this basis, a tetramethylrhodamine (TMR) labeled tracer was synthesized based on the 19 amino acid Gαs peptide (TMR-Gαs19cha18, where cha = cyclohexylalanine). Using NanoBRET technology to detect binding, TMR-Gαs19cha18 was recruited to Gs coupled β2-adrenoceptor and EP2 receptors in an agonist-dependent manner, but not the Gi-coupled CXCR2 receptor. Moreover, NanoBRET competition binding assays using TMR-Gαs19cha18 enabled direct assessment of the affinity of unlabeled ligands for β2-adrenoceptor IAM site. Thus, the NanoBRET platform using fluorescent-labeled G protein peptide mimetics offers novel potential for medium-throughput screens to identify IAMs, applicable across GPCRs coupled to a G protein class. Using the same platform, Gs peptide biosensors also represent useful tools to probe orthosteric agonist efficacy and the dynamics of receptor activation
    corecore