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ABSTRACT: We describe a general approach to transforming molecular models
between different levels of resolution, based on machine learning methods. The
approach uses a matched set of models at both levels of resolution for training, but
requires only the coordinates of their particles and no side information (e.g.,
templates for substructures, defined mappings, or molecular mechanics force
fields). Once trained, the approach can transform further molecular models of the
system between the two levels of resolution in either direction with equal facility.

1. INTRODUCTION

A key component of almost all multiscale modeling
applications is a tool that enables models of a system at one
resolution (e.g., atomistic) to be transformed into their
equivalent at another (e.g., coarse grained, CG). In most
cases, the process of going from a higher resolution to a lower
is quite straightforward: According to the rules of the particular
coarse-graining approach, each low-resolution particle has its
position (Cartesian coordinates) defined as the center of mass,
or similar, of a defined subset of the higher resolution particles.
This process is typically called “mapping”. However, the
reverse transformation from a low-resolution representation of
the system to a higher (backmapping) is of necessity a more
complex procedure since there is, by definition, insufficient
information in the low-resolution data alone to allow for an
unambiguous assignment of the coordinates at the higher level
of resolution. A wide variety of computational approaches to
backmapping have been explored. Many are tied quite closely
to certain simulation packages or coarse-graining schemes,
making use of both their knowledge base and structure
refinement facilities to achieve the resolution transforma-
tion.1−6 More recently a number of approaches based on
advanced machine learning (ML) methods (e.g., generative
adversarial networks,7,8 autoencoders,9 Gaussian process
regression, random forests,10 Baysian inference11) have also
been explored, though in general so far only demonstrated on
very specific classes of problems and/or molecules of limited
size.
As part of a current research project exploring ligand binding

to the human beta-1 adrenoceptor, (β1-AR) we were
interested in comparing the behavior of CG (Martini)12 and
atomistic simulations of the same system. In the course of this

work, we discovered that combinations of relatively traditional
supervised and unsupervised ML methods can provide a route
to backmapping CG models to atomistic representations that
requires no side information (e.g., substructure templates,
molecular mechanics force fields), is not specific to any
particular molecular type, is quick and easy to train, and is
flexible with regards to the coarse-graining scheme.
In the next section, we describe the ML elements of our

approach, which in addition to multivariate linear regression
makes use of graph methods, principal component analysis
(PCA), and restraint optimization. Then we evaluate the
performance of the method when applied to multiscale
(atomistic/Martini)12 models of GPCR/lipid systems and
compare with an established approach (the CG2AT2 code of
Vickery and Stansfeld).6

2. METHODS
2.1. Molecular Data Representation. The ML methods

discussed here include both supervised and unsupervised
approaches and so require training and testing data sets at both
levels of resolution. We define Xtrain as an S×N matrix of
Cartesian coordinates corresponding to S training samples of a
system of N/3 particles, and Ytrain similarly as an S×M matrix
of S samples of a system of M/3 particles. Xtest and Ytest are
vectors of length N and M, respectively. We assume that
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coordinate sets within Xtrain and Ytrain have independently been
least-squares fitted to remove any global translation and
rotation, for example, by generalized Procrustes analysis,13 and
Xtest and Ytest are also least-squares fitted to ⟨Xtrain⟩ or ⟨Ytrain⟩
as appropriate.
2.2. Application of General Linear Models to

Molecular Data. General linear models (GLM) use an
N×M matrix B to predict Y from X (for simplicity we assume
that X contains an element of constant value 1, so one row of B
represents the intercepts):

Y X Btest test≅ (1)

The elements of B can be estimated by multiple linear
regression using the training sets Xtrain, Ytrain. IfM < min(N, S),
then the predicted values of Y are linearly independent, but if
M > N, then no matter how large the training set, the problem
is under-determined and the values of Y are not linearly
independent, which is the case of interest. To implement GLM
methods here, we use the LinearRegression code from the
Python scikit-learn package.14

2.3. Application of Principal Component Analysis to
Molecular Data. Although the application of PCA to
molecular data is now quite well established, for completeness
we outline the key elements of the process here. Principal
component analysis of the S×N matrix X yields an N×L
eigenvector matrix W, where L = min(S, N), that transforms
each row vector xi, of X (each configuration) into a new vector
of length L, usually called a scores vector, ti:

t x Wi i= (2)

or, over the whole set:

T XW= (3)

While the total variance in the original data X may be
arbitrarily distributed among the elements of X, the PCA
approach results in the first column of T explaining the
maximum component of the variance, while subsequent
columns capture in turn the maximal amount of the
subsequently remaining variance. Because of the highly
correlated nature of particle motions in a typical molecular
system, these column variances tend to decrease rapidly along
the series, and since each column mean is zero (from the mean
centering done initially), later elements of each scores vector ti
also tend to zero. The matrix W is an orthogonal matrix, so its
inverse is its transpose, and this permits the reverse
transformation of a scores vector into a vector of Cartesian
displacements:

x t Wi i
T= (4)

Since the later elements of ti tend to zero, their contribution
to xi tends to zero, so we can truncate W and ti to smaller
number, M, of eigenvectors and scores, and

x t xWiM iM M i
T= ≅ (5)

that is, it is often possible to reconstruct the Cartesian
coordinates of an observation from the first M of its L scores
with good accuracy even if M ≪ L. Here we use our own PCA
code that wraps the Python scikit-learn implementation in a
form tailored for molecular data.
2.4. Predicting Molecular Topology from Coordinate

Data. Given sufficient samples of “good quality” coordinate
data, it is possible to estimate the underlying molecular
topology. For example, approximately invariant and short

interparticle distances may signal bonded interactions. Knowl-
edge of this topology can support additional methods to
improve the accuracy of predicted molecular structures. If we
assume that the coordinate set is for a single molecule, then, in
graph terminology, it forms a single connected component. A
short, but not necessarily minimal, spanning tree may be
produced as follows. First, the mean N×N distance matrix D is
calculated for the S×N coordinate matrix X. Next an
unconnected graph of N nodes is generated. The elements of
D are then scanned in order of increasing value (i.e., starting
with the shortest distance). For each Dij, if there is no current
path (of any length) in the graph from i to j, an edge is added
between them. The process continues until all nodes in the
graph form a single connected component. Here we use the
Python NetworkX package15 to implement this process.

2.5. Predicting Coordinates from Invariant Geometry:
Sprouting and Shaving. The topologies of molecules at full
atomistic resolution are likely to contain many singly
connected nodes, for example, each hydrogen atom. Typically,
the positions of these atoms can be predicted with good
accuracy from a knowledge of the positions of their closest
“heavy” neighbors because of the stiffness of bond length and
angle parameters. Put another way, a Z-matrix for such an
atom, if appropriately defined by its relationship to these
neighbors, will be almost invariant. This property and process
is of course what underpins the many methods available to add
hydrogen atoms to heavy-atom only molecular structures (e.g.,
Reduce),16 but here we implement the method without the
requirement for any knowledge of the molecule’s chemistry.
First the training data are used to predict the graph, as
described above. For each singly connected node i, the
connected node j is found. The other nodes connected to j are
then found. If there are at least two of them that are not
themselves singly connected, then two are chosen, k and l.
From examination of the training data, the mean bond length
between i and j, the mean angle ijk, and mean (improper)
torsion ijkl are found and used to define the Z-matrix entry for
particle i. A high-resolution coordinate set X of size N may
thus be decomposed into a Z-matrix of length T for the
terminal atoms plus a coordinate set H of size (N-3T) for the
“heavy” atoms. Later on, new coordinate sets for just the (N-
3T) heavy atoms may be expanded to all N atoms by
application of Z, since each row in Z defines the coordinates of
a terminal atom by reference to coordinates of heavy atoms
only. Here we refer to the former process as “shaving” and the
latter as “sprouting”. Our Python code to implement this
leverages the MDTraj package17 for fast calculation of bond
angles and dihedrals.

2.6. Refining Coordinates from Invariant Geometry.
In addition to the Z-matrix-based approach for predicting the
positions of terminal particles, we evaluate an elastic network-
based approach18 applicable to all particles. We use the graph
discussed above to create an elastic network between all
bonded particles, and also all pairs of particles bonded to a
common neighbor (i.e., we assume all bond angles are almost
invariant). Target lengths for each edge in the elastic network
are taken from the training set’s mean distance matrix, and all
force constants set to a common value. The coordinates of
crude predicted models are then relaxed using a truncated
Newton method (Python package scikit-learn).

2.7. Initializing the Resolution Transformation Meth-
od. Astute readers will have noticed an apparent chicken-and-
egg conundrum here: This ML method requires a training set
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of matched pairs of structures and high and low resolution -
how are these to be generated? This is the one point where
side information is required. It is assumed that there is an
independent approach to performing the forward mapping
transformation, that is, to convert a model at high resolution to
one at low resolution. This is typically not a major issue; coarse
graining procedures are typically conceptually and computa-
tionally straightforward, in contrast to the reverse trans-
formation which is the key aim of the present approach. The
parametrization of a new resolution transformation ML
pipeline thus begins by taking an ensemble of representative
structures at high resolution and applying the already-existing
forward mapping approach to generate their low-resolution
counterparts. There is no requirement that the molecular

systems used for training are the same as those which will be
ultimately backmapped, only that the training set(s) between
them feature all of the molecular components present in the
target system (in the sense of whole molecules, submolecular
fragments would not suffice).

2.8. Alternative Resolution Transformation Work-
flows. The simplest resolution transformation procedure
investigated here involves just the GLM step; however, other
workflows tested the value of adding a variety of pre- and
postprocessing steps (Figure 1).
The simple GLM workflow (“GLM”, Figure 1a) requires

matrix B to be estimated from the training data Xtrain, Ytrain by
multiple linear regression. Since for backmapping, M > N, the
columns of the N×M matrix B are not linearly independent, so

Figure 1. ML-based backmapping pipelines evaluated in this work. Items in circles are data, and items in boxes are data transformation processes.
Xtest: low-resolution data; Ypred: high-resolution predicted coordinates; Sx: low-resolution PCA scores; Sy: high-resolution PCA scores; Hpred: high-
resolution heavy atom coordinates; Ycrude: approximate (intermediate) high-resolution predicted coordinates; Hcrude: approximate (intermediate)
high-resolution heavy atom coordinates; GLM: general linear model; PCA: principal component analysis; Sprout: terminal atom prediction
algorithm; ENM: elastic network energy minimization.

Figure 2. Data flows for the training of each of the ML-based backmapping pipelines illustrated in Figure 1. Dark bars indicate where the same data
are used to train two steps. Key to symbols in Figure 1.
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limiting the potential of the approach to accurately model Ytest,
given Xtest.
As a potential route to mitigating this, we next explored a

workflow (“PCA-GLM-PCA”, Figure 1b) in which X and Y are
first subjected to PCA, so the GLM step maps the N scores of
X (assuming N ≥ number of training samples, S) onto the top
N scores of Y, and matrix B is fully determined. We
hypothesized that moving the dimensionality expansion
process from the GLM to the inverse transform of the PCA
of Y (predictingM Cartesian coordinates from N scores) might
work better as PCA is designed for such tasks.
The next workflow (“GLM-Sprout”, Figure 1c) explored the

potential of the “shave” and “sprout” approach described in the
Methods section, by which the M Y coordinates are separated
into a constant Z matrix representation for T particles plus a
smaller Cartesian coordinate matrix H for the remaining (M-
3T) coordinates. Now the GLM step has to map the N CG
coordinates onto a smaller number of fine-grained ones, and
the approach is likely to be more performant; indeed, it might
be that (M-3T) < N, and matrix B is fully determined.
An elastic network-based coordinate refinement step may be

added into each of the above workflows (Figure 1d−f),
creating the “GLM-ENM”, “PCA-GLM-PCA-ENM”, and
“GLM-ENM-Sprout” options, respectively.
2.9. Training the Resolution Transformation Pipe-

lines. All resolution transformation pipelines can be trained
using just matched pairs of training coordinate sets at the two
levels of resolution; no additional information, for example,

molecular topologies or force field parameters, is required
(Figure 2).
For the “GLM” pipeline (Figure 2a), the elements of B are

fit to Xtrain and Ytrain by multiple linear regression. For the
“PCA-GLM-PCA” pipeline (Figure 2b), the two PCA models
are determined independently from Xtrain and Ytrain, then each
is used to transform the associated coordinates to sets of
scores, SX and SY. The B matrix of the GLM is then fitted to
these. For the “GLM-Sprout” pipeline (Figure 2c), first the
sprout algorithm is parametrized using the high-resolution data
set Ytrain, then it is applied to that data to generate a “shaved”
version of the training set, Htrain. Finally, the GLM is fitted to
this and Xtrain. Pipelines containing elastic network minimiza-
tion steps are trained in the same way, using Ytrain or Htrain as
appropriate (Figure 2d−f).

2.10. Performance Metrics. With a test set Xtrain of low-
resolution samples and the matched Ytrain high-resolution set,
the most obvious performance metric is the RMSD between
predicted structures, Ypred, and Ytrain. However, this is not really
fair because the forward mapping of any Y within a certain
envelope could generate the same X, so even if Ypred deviates
from Ytest, it is not necessarily “wrong”. Therefore, we also take
the Ypred structures, forward-map them to Xpred, and measure
the RMSD between Xpred and Xtest (which legitimately should
ideally be zero).
In addition to RMSD, we also measure how well the

reconstruction procedures generate structures with accurate
bond lengths and angles, since we find that these metrics and
low RMSD do not always correlate.

Figure 3. Examples from the training (left) and test (right) data used to evaluate the resolution transformation methods, to illustrate the size and
nature of the system. The training set features of one molecule of β1-AR (pink) in a DPPC bilayer (cyan), while the test set features a β1-AR dimer
(pink and orange) in a DPPC bilayer.

Table 1. Performance of ML-Based Pipelines Applied to Backmapping Martini Models of DPPCa

molecule options ⟨RMSDfg⟩
b ⟨RMSDcg⟩

c ⟨RMSEbonds⟩
d ⟨RMSEangles⟩

e

DPPC none 1.35 0.10 0.63 37.2
DPPC PCA 1.38 0.25 0.67 35.4
DPPC ENM 1.65 0.62 0.25 22.7
DPPC Sprout 1.52 0.05 0.25 26.2
DPPC ENM + Sprout 1.69 0.50 0.11 14.2
DPPC Sprout + PCA 1.53 0.18 0.26 27.3
DPPC PCA + ENM 1.68 0.53 0.23 21.7
DPPC all 1.70 0.53 0.11 14.1

aPredicting coordinates of 130 atoms from those of 12 CG beads, training set of 1000 samples, independent test set of 100 samples. bMean RMSD
(Å) between true and predicted atomistic structures in the test set. cMean RMSD (Å) between true CG structures in the test set and those
generated by forward-mapping the predicted atomistic structures. dMean value of the root-mean-square error in predicted bond lengths (Å). eMean
value of the root-mean-square error in predicted bond angles (°).
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3. RESULTS

Our training data (Figure 3) came from a 200 ns MD all-atom
simulation of a molecule of the human β1-AR in a DPPC
bilayer (348 molecules of lipid). Full details of the simulation
protocols are included in the Supporting Information. The
simulation provided us with a set of 501 snapshots and thus a
total of 501 conformations of the protein and 174,348
conformations of DPPC. Our test data (Figure 3) was 10
snapshots taken from an independent all-atom simulation of a
dimer of β1-AR in a bilayer of 546 DPPC lipids.
Both all-atom trajectories were converted to Martini CG

equivalents using a version of “Martinize”19 adapted to handle
DPPC, then all four trajectories were split into separate test or
training sets for the protein and for DPPC. Though in total
over 174, 000 conformations of DPPC were potentially
available in the training set and 5460 in the test set, we cut
this down to just the first 1000 of these for the training set and
100 for the test set.
3.1. Backmapping Performance for DPPC. We began

by exploring the performance of our approach using the DPPC
data. The atomistic model of DPPC consists of 130 atoms,
while the Martini model has just 12 beads. The test set of 100
conformations is structurally diverse: At the all-atom level, the
mean RMSD between conformations is 4.83 Å. This obviously
presents a significant challenge for any backmapping approach;
however, we do have in this case the availability of a training
set of where the number of observations (1000) is much
greater than the number of coordinates (390) we seek to
predict.
Results are shown in Table 1. The basic “GLM” pipeline can

regenerate atomistic models of DPPC from their CG
equivalents with a mean RMSD of just 1.36 Å, and these
atomistic models are entirely consistent with the CG
representation (can be mapped back to CG structures with a
mean RMSD from the test conformation of just 0.12 Å).
However, inspection of the models shows they have poor
geometry, particularly for the hydrogen atoms, as the bond
length and angle error metrics show. We explored Lasso20 and
Ridge21 regression enhancements but saw no significant
improvement in performance (results not shown). Surprisingly,
the PCA-GLM-PCA pipeline performs slightly worse, even
though the GLM step now has the apparently easier task of
predicting just 30 scores (3N-6) from 30 scores, rather than
390 coordinates from 36 coordinates; the PCA inverse
transform of those 30 scores to 390 coordinates suffers from
considerable inaccuracy, even though 30 scores are enough to
capture 86% of the total variance for the training set. We did
evaluate the option of training a GLM model to predict more
than 30 atomistic PC scores from the 30 CG scores, but since
the system is thus inevitably underdetermined and the

atomistic PCs not linearly independent, we were not surprised
when no better performance was obtained (results not shown).
The “GLM-ENM” pipeline results in models with somewhat
improved internal geometry but not by much; the crude
models from the GLM step are frequently too bad start points
for the truncated Newton algorithm in the ENM stage to
converge. The “GLM-Sprout” pipeline performs better: The
geometry of the models is as good as achieved with the ENM
step, without the associated drift away from the underpinning
Martini conformation. This makes sense, the “shaving” process
reduces the atomistic model from 130 atoms to 48, simplifying
the task for the GLM step which now has to predict just 144
coordinates from 36. Now if we add the ENM step back in,
creating the “GLM-ENM-Sprout” pipeline, the reduced
number and improved quality of the crude coordinates
presented to the minimizer enables it to perform much better,
in turn presenting even better “shaved” coordinates to the final
“sprout” step. The resulting atomistic models show very good
structural metrics with just a small cost to the RMSD metrics.
As seen above with the “GLM-ENM” pipeline, the ENM
process does result in some drift of the structure away from the
CG reference (RMSD CG around 0.5 Å), but this still is, in
absolute terms, a modest error. More detailed analysis of the
relatively modest bond angle metric reveals that small numbers
of poorly predicted values skew the result somewhat, for
example, for this “GLM-ENM-Sprout” pipeline, 50% of bond
angles are predicted to within 7° (data not shown). Reversing
the order of the Sprout and ENM steps in the pipeline (so the
ENM step is last) results in marginally worse performance
(data not shown). As expected, based on its indifferent
contribution noted before, adding a PCA step into the pipeline
offers no advantages over the corresponding pipelines that
omit it.
The GLM-ENM-Sprout pipeline is computationally efficient,

despite the inclusion of the iterative refinement step, and the
backmapping process takes about 23 ms per DPPC
conformation.
Using the optimal “GLM-ENM-Sprout” pipeline, we then

examined the importance of the size of the training set (Table
2). We see that the accuracy of the reconstructed coordinates
decreases steadily as the training set gets smaller, though the
geometric quality of the structures is less affected; the Sprout
and ENM steps can be parametrized to good accuracy with
very few training structures. Using more than 1000
observations in the training set provided no enhancement in
performance.

3.2. Backmapping Performance for β1-AR. Back-
mapping the protein structure represents some different
challenges for this methodology. For a start, the problem is
larger: A molecule of the protein is 4473 atoms or 628 CG

Table 2. Performance of ML-Based “GLM-ENM-Sprout” Pipelines Applied to Backmapping Martini Models of DPPC as a
Function of the Size of the Training Data Set

molecule options ⟨RMSDfg⟩
a ⟨RMSDcg⟩

b ⟨RMSEbonds⟩
c ⟨RMSEangles⟩

d

DPPC Ntrain = 500 1.69 0.51 0.12 13.7
DPPC Ntrain = 100 1.76 0.54 0.14 14.4
DPPC Ntrain = 50 1.93 0.69 0.17 14.5
DPPC Ntrain = 20 2.14 0.95 0.20 15.3
DPPC Ntrain = 10 2.76 1.87 0.19 15.0

aMean RMSD (Å) between true and predicted atomistic structures in the test set. bMean RMSD (Å) between true CG structures in the test set
and those generated by forward-mapping the predicted atomistic structures. cMean value of the root-mean-square error in predicted bond lengths
(Å). dMean value of the root-mean-square error in predicted bond angles (°).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00735
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00735/suppl_file/ct1c00735_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00735?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


particles. The test structures are less divergent, the mean
RMSD between them is just 1.78 Å, but all are significantly
different from the structures in the training set (mean RMSD
between test and training set 3.4 Å). In addition, there are now
just 501 samples in the training set. Despite these differences,
the performance of the different pipelines matches very well
what was observed for the DPPC test case (Table 3). Adding
Sprout or ENM to the pipeline improves the performance over
the basic GLM method, and adding both is even better. The
GLM-ENM-Sprout pipeline rebuilds CG models of the protein
back to full atomistic models (including hydrogens) with a
mean RMSD error of just 1.72 Å and even smaller errors in
bond lengths and angles than was obtained for DPPC. As
expected for this much larger system, the reconstruction
process is more computationally demanding at about 1.2 s per
protein conformation.
3.3. Backmapping Performance for a Combined

Protein−Lipid System. Finally, having produced optimized
and trained backmapping pipelines for both proteins and lipids
independently, we evaluated the performance of our method
when applied to backmapping entire snapshots of the β1-AR
dimer + lipid system from CG to all-atom representations
(Figure 4). We compared the performance of our approach
(GLM-ENM-Sprout, henceforth referred to as “GLIMPS”)
with the CG2AT2 method of Vickery and Stansfeld. Each of
our 10 test CG snapshots was backmapped using both
methods. For our GLIMPS pipeline, we used the Python-based
command line tools we have developed as part of this project,
and which are freely available (see Supporting Information).
The full CG2AT2 pipeline includes a final NVT molecular
dynamics step, but for fairer comparison, we omitted this,
stopping the process after the energy minimization step

(option “-o none”). We also investigated what happened to
models generated by GLIMPS when they were further
subjected to a similar force field-based energy minimization
step (same Gromacs code and force field as used by
CG2AT2).
Results are shown in Table 4. In terms of overall accuracy of

reconstruction, the two approaches show very comparable

performance. Bond and angle metrics are somewhat better for
CG2AT2, but this is to be expected as the method includes a
force field-based energy minimization step. If the same force
field-based refinement step is added to the end of the GLIMPS
pipeline, the quality of the resulting structures matches that of
CG2AT2.

Table 3. Performance of ML-Based Pipelines Applied to Backmapping Martini Models of β1-ARa

molecule options ⟨RMSDfg⟩
b ⟨RMSDcg⟩

c ⟨RMSEbonds⟩
d ⟨RMSEangles⟩

e

β1 none 2.58 1.07 1.23 23.6
β1 PCA 2.58 1.07 1.24 23.6
β1 ENM 1.89 1.20 0.44 23.0
β1 Sprout 2.01 1.07 0.43 14.9
β1 Sprout + ENM 1.72 1.09 0.07 7.32
β1 Sprout + PCA 2.07 1.07 0.43 14.9
β1 PCA + ENM 1.92 1.19 0.55 24.4
β1 all 1.72 1.09 0.07 7.27

aPredicting coordinates of 4473 atoms from those of 628 CG beads, training set of 501 samples, independent test set of 20 samples. bMean RMSD
(Å) between true and predicted atomistic structures in the test set. cMean RMSD (Å) between true CG structures in the test set, and those
generated by forward-mapping the predicted atomistic structures. dMean value of the root-mean-square error in predicted bond lengths (Å). eMean
value of the root-mean-square error in predicted bond angles (°).

Figure 4. Example of the performance of the GLIMPS resolution transformation method. Left: Actual (blue) and predicted (pink) atomistic
models for a section of the protein compared to the CG representation (orange). Right: Actual (blue) and predicted (pink) atomistic models for a
representative DPPC lipid molecule compared to the CG representation (cyan).

Table 4. Comparison of the GLIMPS ML Pipeline and
CG2AT2 Method Applied to Backmapping Martini Models
of β1-AR Dimer/DPPC Lipid Systemsa

component method ⟨RMSDfg⟩
b ⟨RMSEbonds⟩

c ⟨RMSEangles⟩
d

DPPC GLIMPS 1.68 0.11 14.1
DPPC CG2AT 1.92 0.01 4.9
DPPC GLIMPS + EM 1.77 0.01 2.0
β1 GLIMPS 1.73 0.08 7.9
β1 CG2AT 1.57 0.01 2.2
β1 GLIMPS + EM 1.58 0.01 1.8

aAn independent test set of 10 samples. The training data were the
same as that used above. Metrics for GLIMPS models after an
additional force-field-based energy minimization step are also shown.
bMean RMSD (Å) between true and predicted atomistic structures in
the test set. cMean value of the root-mean-square error in predicted
bond lengths (Å). dMean value of the root-mean-square error in
predicted bond angles (°).
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3.4. Testing the Generality of GLIMPS: Backmapping
DNA Structures from Noncoordinate-Type Coarse
Grained Data. The GLIMPS approach is very flexible; indeed
there is no requirement that the CG model that is back
mapped is even one based on the Cartesian coordinates of
beads. To test this, we took 7061 snapshots from an atomistic
MD simulation of a DNA 20mer duplex (unpublished data)
and used cpptraj22 to calculate the base pair step helical
parameters (shift, slide, rise, tilt, roll, twist + Zp) for each step
in each snapshot, that is, generating a CG model of the duplex
(1266 atoms) consisting of 133 helical parameters. Saving a
random 50 of the data samples as the test set, we then trained a
“GLM-Sprout-ENM” pipeline with the remainder. The trained
back-mapper could generate atomistic models for the test set
from the helical parameter representations with a mean error
of 0.69 Å. An example of one of the poorer-predicted models
(RMSD 0.9 Å) is shown in Figure 5.

4. CONCLUSIONS

We have identified a ML-based approach to backmapping CG
models of molecular structures to finer grained ones that
requires only matched sets of coordinates at the two
resolutions as a training data set. Despite having no explicit
knowledge of molecular structure or force fields, or any rules
that were used in the original forward-mapping process, the
method can reconstruct atomistic models of protein−lipid
systems from Martini CG representations with an accuracy
close to that achieved by tools that do (here, CG2AT2). While
tools such as CG2AT2 have the advantage that they generate
not only sets of atomistic coordinates but also complementary
topology and parameter files, and also that in effect they come
“pre-trained” for common membrane simulation components,
GLIMPS has the advantage that it can be applied to systems
containing nonstandard components, such as ligands or
cofactors, with very little additional effort. As long as a
method is on hand that can convert the atomistic model of this
component to the CG form, GLIMPS can learn the
backmapping and apply it to independent data without any
end user intervention. More generally, GLIMPS is easily
applied to backmapping any CG model, not just a Martini one.
We envisage GLIMPS as a particularly useful tool in multiscale
simulation scenarios where there is a need to run a simulation
at one level of representation for a time, then convert to
another level and run for a time, and then convert back and run
longer, etc. We have developed a Python library and set of
command-line tools to implement the GLIMPS procedure;
this is freely available (see Supporting Information).
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