
arXiv: arXiv:0000.0000

Principal nested shape space analysis of

molecular dynamics data∗

Ian L. Dryden, Kwang-Rae Kim, Charles A. Laughton & Huiling Le

School of Mathematical Sciences,
University of Nottingham,

University Park,
Nottingham, NG7 2RD,

United Kingdom
e-mail: ian.dryden@nottingham.ac.uk

huiling.le@nottingham.ac.uk

SAS Korea
South Korea

e-mail: kr4kim@gmail.com

School of Pharmacy,
University of Nottingham,

University Park,
Nottingham, NG7 2RD,

United Kingdom
e-mail: charles.laughton@nottingham.ac.uk

Abstract: Molecular dynamics simulations produce huge datasets of tem-
poral sequences of molecules. It is of interest to summarize the shape evo-
lution of the molecules in a succinct, low-dimensional representation. How-
ever, Euclidean techniques such as principal components analysis (PCA)
can be problematic as the data may lie far from in a flat manifold. Prin-
cipal nested spheres gives a fundamentally different decomposition of data
from the usual Euclidean sub-space based PCA (Jung et al., 2012). Sub-
spaces of successively lower dimension are fitted to the data in a backwards
manner, with the aim of retaining signal and dispensing with noise at each
stage. We adapt the methodology to 3D sub-shape spaces and provide some
practical fitting algorithms. The methodology is applied to cluster analysis
of peptides, where different states of the molecules can be identified. Also,
the temporal transitions between cluster states are explored.

MSC 2010 subject classifications: Primary 62H11; secondary 62G25.
Keywords and phrases: dimension reduction, manifold, principal com-
ponents analysis, principal nested spheres, Riemannian, shape.

1. Introduction

There are many notions of shape, and one of the most common is that the
shape of an object is obtained by removing location, rotation and scale (Kendall,
1984). Analyzing the shapes of objects measured at sets of labelled landmarks
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is of interest in a wide variety of disciplines (Dryden and Mardia, 2016), and in
many applications the dataset is large, either in sample size or in dimension, or
in both. For example, in molecular dynamics simulations the three dimensional
co-ordinates of a molecule of hundreds or thousands of atoms may be available
for millions of observations. It is of interest to summarize the main features of
shape variability, such as describing the main modes of variability and clustering
the data into several states. A key aspect is to project the data into a low
dimensional space which retains the main features of the signal in the data.

The most common approaches to dimension reduction in shape analysis in-
volve projecting the data into a tangent space to the mean shape and then car-
rying out principal components analysis (PCA) in this Euclidean space (Kent,
1994; Cootes et al., 1994; Dryden and Mardia, 2016, Section 7.7). This approach
has been successful in many applications over the past couple of decades, al-
though if the data are very dispersed then the method can be problematic as
the data may lie far from in a flat manifold. In addition, linear variation (cor-
responding to geodesics in the manifold) may not be the most appropriate or
efficient summary of the variability. There have been several advances in dimen-
sion reduction on manifolds, motivated by shape analysis applications. Fletcher
et al. (2004) developed principal geodesic analysis to the manifold setting by
finding principal directions and variances in the tangent space and projecting
back to the manifold using the exponential map. The above approaches are for-
wards fitting, in that the lower dimension representations are fitted before the
higher dimensional ones.

Huckemann and Ziezold (2006) proposed a method of PCA for Riemannian
manifolds based on geodesics of the intrinsic metric, and Huckemann et al.
(2010) developed an algorithmic method to perform intrinsic PCA on quotient
spaces based on generalized geodesics. Kenobi et al. (2010) proposed two intrin-
sic methods of fitting minimal geodesics through shape data, and an extension
to polynomial fitting. These intrinsic methods differ in their formulation from
the tangent space methods, in that tangent space PCA involves maximising the
explained variance for each linear component in the tangent space, whereas the
intrinsic geodesic methods involves minimizing the unexplained variance in or-
der to fit a geodesic subspace. The intrinsic methods are also forwards fitting
in the sense that the first principal geodesic is fitted before the second prin-
cipal geodesic etc., although there is a different notion of a mean which is the
point that minimizes the variance of the projected data in the principal geodesic.
Panaretos et al. (2014) introduce principal flow which is a curve passing through
the mean of the data, where a particle moves along the principal flow in a path
of maximal variation, up to smoothness constraints.

A very different backwards approach to subspace fitting was considered by
Jung et al. (2012) who introduced a technique called Principal Nested Spheres
(PNS) for sequentially decomposing a unit sphere into subspheres of succes-
sively lower dimension. This backwards approach to dimension reduction is the
approach that we consider, which requires special adaptation to be applica-
ble to three dimensional shapes and to large datasets, and these are our main
methodological contributions.
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The main motivation for this work comes from biomedical sciences, where it
is of great interest to study the changes in shape of a protein, as its shape is
an important component of a protein’s function. Studies of this type are often
approached through molecular dynamics simulations, which are large determin-
istic simulations using Newtonian mechanics to model the movement of a protein
in a box of water molecules (e.g. Salomon-Ferrer et al., 2013). We consider a
dataset of 100 independent simulation runs in the study of the small alanine
pentapeptide (Ala5) which consists of k = 29 atoms in R3 at 10, 000 equal pi-
cosecond (10−12s) time intervals. Further details on this particular peptide are
given by Margulis et al. (2002). The 100 runs all start with fairly similar (but
different) configurations and the subsequent simulated configurations vary con-
siderably over the 10000 time points (10 nanoseconds). Figure 1 shows example
configurations at times near the beginning and end of the sequence for run 1,
after removing the effect of rotation, translation and scaling using generalized
Procrustes analysis (Gower, 1975; Goodall, 1991). As seen in the figures, the
shape changes quite a lot with bending and straightening over the course of
time.

Shape analysis can be considered an example of Object Oriented Data Anal-
ysis (Wang and Marron, 2007; Marron and Alonso, 2014), and the key initial
question to ask is: “What are the data objects?” We have several choices avail-
able in our application, for example the data objects could be (i) the shapes of
each individual molecule of 29 atoms in 3 dimensions or (ii) individual runs of
29 atoms in 3 dimensions observed at all 10,000 time points. The two respective
choices of object space are (i) Σ29

3 and (ii) (Σ29
3 )10000, where Σkm is the shape

space of k points in m dimensions (Kendall, 1984). For the application in this
paper we will consider (i) for our data objects, and so the full sample size is
n = 10, 000×100 = 1, 000, 000 in our case, whereas in (ii) the sample size would
be n = 100.

It is of interest to describe the shape variability using a low dimensional
representation and to examine if there are preferred states, i.e. clusters of shapes
which are more commonly formed by the dynamic peptide. Also, the patterns
of temporal transitions between states are of interest.

2. Shape PCA, principal nested spheres and principal nested shape
spaces

2.1. Shape PCA

Consider k × m configuration matrices X̃i, i = 1, . . . , n, where n is the num-
ber of configurations. Shape PCA is similar to classical PCA (Jolliffe, 2002),
except the shapes must first be projected into the Procrustes tangent space
centred at the overall estimated mean shape of the data. Technical details of
the Procrustes tangent space are given in Appendix 1. The observations are
optimally aligned (by translating, scaling and rotating) using generalized Pro-
crustes analysis (Gower, 1975; Goodall, 1991) and the full Procrustes sample
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Fig 1. Temporal sequences of thinned run 1.

mean is obtained as an estimate of the overall population mean shape (Dry-
den and Mardia, 2016, Equation (6.11)). The procedure is described in detail
in Chapter 7 of Dryden and Mardia (2016) and is implemented in the shapes

package in R (Dryden, 2018). Let Ti, i = 1, . . . , n, be the Procrustes tangent pro-
jection of centred, scaled and rotated configurations of X̃i at their Procrustes
mean (Dryden and Mardia, 2016, Equation (4.33)), which are obtained using the
command procGPA with option tangentcoords="partial" from the R package
shapes. The principal components are the eigenvectors of the sample covariance
matrix of Ti, i = 1, . . . , n, and these eigenvectors and the PC scores are given
in the output of procGPA. The method is equivalent to carrying out PCA using
the extrinsic Frobenius distance between matrices in the pre-shape space after
removing rotations using Procrustes registration.

2.2. Principal nested spheres

The analysis of the principal nested spheres for a given data set in a unit sphere
Sd is introduced in Jung et al. (2012). The main idea is that a high dimensional
unit sphere is decomposed into successively lower dimensional subspheres using
backwards fitting, and at each level the Euclidean PNS scores are obtained from
the residuals. The method can capture non-geodesic variation, so if the data lie
on a curved submanifold of the sphere, then the resulting variation after fitting
the PNS can be linearly represented (Jung et al., 2012). PNS is an iterative
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method of decomposing Sd into a sequence {Ud−k | k = 1, . . . , d− 1} of nested
(sub-) spheres, where each Ui is a sphere of dimension i and Ui ⊂ Ui+1 ⊂ Sd.
At each step k, the method captures the variation of the data set in a lower
dimensional subsphere and provides the best (d−k)-dimensional approximation
Ud−k to the data. Since Ui is a great subsphere of Sd if and only if Ui is a unit
sphere, the method extends the existing methods of finding principal geodesics
for the data. The main ingredients of the method can be summarised as follows.

Any subsphere of Si of dimension i − 1 can be characterised by v ∈ Si and
r ∈ (0, π/2] as

Ai−1(v, r) = {x ∈ Si | ρ(v, x) = r}, (2.1)

where ρ(x, y) is the spherical distance between x, y ∈ Si given by ρ(x, y) =
cos−1 (〈x, y〉Ri+1).

For a data set {x1, . . . , xn} ⊂ Sd, the best fitting (d − 1)-dimensional sub-
sphere is defined to be

Ûd−1 = Ad−1(v̂1, r̂1),

where

(v̂1, r̂1) = argmin
v1∈Sd,r1∈(0,π/2]

n∑
i=1

εi,d−1(v1, r1)2 (2.2)

and εi,d−1(v1, r1) = ρ(xi, v1)− r1. Then

E(d− 1) = (ε̂1,d−1, . . . , ε̂n,d−1)>

are the signed residuals on the sphere, where ε̂i,d−1 = εi,d−1(v̂1, r̂1). Since Ûd−1

has radius sin(r̂1), denote by xpi the projection of xi onto Ûd−1 divided by

sin(r̂1), so that {xp1, . . . , xpn} ⊂ 1
sin(r̂1) Ûd−1. Since 1

sin(r̂1) Ûd−1 is isometric with

the standard unit sphere Sd−1, applying the above procedure to {xp1, . . . , xpn}
we get the best fitting (d− 2)-dimensional (sub-)sphere to the data to be

Ûd−2 = sin(r̂1)Ad−2(v̂2, r̂2) = {sin(r̂1)x | x ∈ Ad−2(v̂2, r̂2)} ⊂ Ûd−1,

where (v̂2, r̂2) is determined by (2.2) using {xp1, . . . , xpn} with d replaced by

d − 1 and Sd replaced by the (d − 1)-dimensional unit sphere 1
sin(r̂) Ûd−1, and

where Ad−1(v̂2, r̂2) is defined on 1
sin(r̂) Ûd−1 in a similar fashion to that in (2.1).

Moreover, the corresponding residuals are

E(d− 2) = sin(r̂1) (ε̂1,d−2, . . . , ε̂n,d−2)>.

The resulting fitting sequence {Ûd−k | k = 1, . . . , d − 1} obtained by repeating
this procedure is the so called principal nested spheres for the given data set
{x1, . . . , xn}. Writing E(0) for the spherical coordinates of the final projection
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points in Û1 of the data, with respect to their Fréchet mean in that sphere
(assuming it is unique), the resulting combined residuals[

E(0) E(1) · · · E(d− 1)
]>

give a representation of the data, where the ith column comprises the coordi-
nates of xi in terms of the principal nested spheres. This representation is called
the PNS coordinates of the data and can be used to interpret the structure of
the data.

2.3. Principal nested shape-spaces

Principal nested spheres analysis for a data set on a sphere uses the particular
structure of the sphere. In principle, this can be generalised to a sequence of
fitting nested sub-manifolds for a data set contained in a manifold. However, it
is generally not straightforward. For the analysis of shape variation of a given
set of configurations, we propose a method of applying the technique of PNS to
obtain principal nested sub-shape spaces (PNSS) for shapes of m-dimensional
configurations.

We wish to describe the shape variability of the peptide data, and so this re-
quires removing information about translation, scale and rotation. For a given
configuration X̃ in Rm with k > m labelled landmarks that are not all iden-
tical, the pre-shape X of the configuration is obtained from X̃ by removing
the effects of translation and scaling. The pre-shape X can be represented by
a (k − 1) × m matrix of unit norm (Kendall, 1984) and it is known that the
pre-shape sphere Skm consisting of all pre-shapes of such configurations is the
entire sphere Sm(k−1)−1. Then, the shape [X] of X̃ is the equivalence class of
X under rotation, i.e. [X] = {XR | R ∈ SO(m)}.

In order to remove rotations we consider the quotient space of the pre-shape
sphere Skm with respect to rotations SO(m), and this shape space is complicated
for m ≥ 3 being non-homogenous and containing singularities (Le and Kendall,
1993). However, practical statistical analysis can be carried out by identifying
the tangent space TX0

(Skm) to the pre-shape sphere at a point X0 as comprising
two orthogonal real sub-spaces: the vertical and horizontal tangent spaces. The
vertical tangent space VX0 contains the rotation information and the horizon-
tal tangent space HX0 contains the shape information, and the latter is often
called the Procrustes tangent space (Kent and Mardia, 2001). Working in this
horizontal tangent space forms the heart of most practical statistical analyses
of landmark shapes.

To develop the method of PNSS we need to make some further identifications.
We consider the subset of the pre-shape sphere Skm which is orthogonal to VX0 ,
and denote it by SX0

which a great sphere of dimension (k−1)m−m(m−1)/2−1.
In fact SX0

is the image of HX0
using the exponential map onto the sphere. If we

now have a datapoint X 6= X0 on the pre-shape sphere then we can obtain the
Procrustes fit as the solution to minimizing the great circle distance ρ(XR,X0)
over rotations R. The Procrustes fit is denoted by SX = XRX with the fitted
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rotation matrix RX , and for all X ∈ SX0 the Procrustes fits SX lie within a
half-sphere of SX0

, because the distance ρ(SX , X0) ≤ π/2. The Procrustes fit
will be unique if the rank of X is at least m− 1 and [X] is outside the cut-locus
of [X0]. In the case of uniqueness, which will often be the case for practical data,
we can identify the subset of the sphere

BX0
= {SX ∈ SX0

| X ∈ Skm and SX is unique}

with a bijective map with the subset of shape space

B[X0] = {[X] ∈ Σkm | [X] is non-singular and not in the cut locus of [X0]}.

The subsets BX0
and B[X0] are diffeomorphic to each other. The practical im-

plication of this identification is that any sub-manifolds in BX0
are mapped to

sub-manifolds in B[X0].

Definition: Given a sequence of principal nested spheres on SX0 (as defined
in Section 2.2), the intersection of the sequence of principal nested spheres with
BX0

maps to a sequence of sub-manifolds in B[X0], which we define as a se-
quence of Principal Nested Shape Spaces. The final point in the sequence,
with dimension 0, corresponds to the PNSS mean shape.

We now consider the practical implementation of principal nested shape
spaces for the peptide shape data in m = 3 dimensions. First of all an over-
all Procrustes mean X̄ is obtained using generalized Procrustes analysis. We
use the function procGPA in the shapes package in R (Dryden, 2018). For our
dataset each Procrustes fit is unique, as will generally be the case for most
practical datasets. We then apply PNS to the Procrustes fitted data on SX̄ , and
the resulting PNS subspaces intersections with BX̄ will be have a diffeomorphic
mapping to the PNSS subspaces in B[X̄], and the PNS scores are equal to the
PNSS scores.

PNSS uses the relationship between the pre-shape sphere Skm and the shape
space Σkm to construct a nested sequence of sub-shape-spaces in a given shape
space from a sequence of nested subspheres, as constructed in the previous sec-
tion, in the corresponding pre-shape sphere. Despite not being strictly analogous
to the concept of principal nested spheres, this approach does offer an extrinsic
method to apply that concept. The m = 2 dimensional case was discussed by
Jung et al. (2012), where complex arithmetic leads to a simple adaptation of
PNS to planar shapes, where the shape space is the complex projective space
CP k−2, which is a homogeneous space (Kendall, 1984).

A full technical construction of PNSS is given in Appendix 1.

2.4. Approximate PNSS using PC scores

When a dataset is large, the numerical computation required for the principal
nested spheres analysis, and so for the principal nested sub-shape-spaces anal-
ysis, usually tends to be slow. In fact the time required to compute PNSS on
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large datasets can be extensive. Much of the time is spent fitting the higher
dimensional spheres, which are taking account of small amounts of noise. An
alternative approximate approach is to first carry out PCA and retain the first
p PC scores, where these scores capture a high percentage of the variability. If
the Procrustes fits of the original data configurations to their mean shape X̄
are close to a great subsphere of a lower dimension than the dimension of BX̄ ,
the speed of computation can be much improved by first using the technique
of principal component analysis to determine this great subsphere and then
using the projections to this subsphere as the input for the principal nested
sub-shape-spaces analysis.

The technical details of the method of approximate PNSS using PC scores
are given in Appendix 2.

A practical implementation of PNSS using PC scores is given in the shapes

package in R using the command pns4pc (Dryden, 2018), and this code is used
in our peptide application. Output from the R command pns4pc includes the
PNSS scores, where the first PNSS score is a circular variable and the remaining
PNSS scores are Euclidean. In our application we shall see that the clusters of
peptide states are much more apparent in the PNSS scores compared to the
PC scores. The percentage of shape variability explained by the PNSS scores
is helpful to explore the efficiency and effectiveness of the method, and we will
see that the first few PNSS scores explain much more shape variability than the
first few PC scores.

3. Peptide shape analysis

3.1. Molecular dynamics data

The data set consists of a total of 100 runs, with each run consisting of k = 29
landmarks in m = 3 dimensional space from a small peptide (Ala5) evaluated
at consecutive n = 10000 times at picosecond intervals. As the time interval
between consecutive configurations is very small, we first thin the data in time
to give 100 configurations at equally spaced times from each run. The thinned
times are t1 = 1, t2 = 102, t3 = 203, . . . , t99 = 9899, t100 = 10000. We con-
sider temporal sequences of each run and register using generalized Procrustes
analysis (Gower, 1975; Goodall, 1991).

The starting configuration for each peptide is quite similar at the start of
each run with the Riemannian shape distance ρ between pairs of runs primarily
less than 0.3 radians, where 0 ≤ ρ ≤ π

2 . The variability in shape between runs is
much larger at the end (Riemannian distances up to about 1.1), as see in Figure
2.

3.2. Shape PCA and PNSS

We first run shape PCA on the thinned 100 configurations from each of 100
runs (10000 configurations in total), Much of the data variation can be much
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Fig 2. Histograms (a) and boxplots (b) of pairwise Riemannian shape distances at first
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explained by first several principal components as shown in Figure 3. We choose
the first ten shape principal components for the computation of PNSS using
PC scores since those ten explain 90.1% of the shape variation. The percentages
of shape variability captured by the first three individual PC scores are 28.7%,
16.4%, 12.7% and by the PNSS scores are 65%, 9.2%, 3.9%.
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Fig 3. (Left) Cumulative percent explained by principal components for PNSS (black) and
shape PCA (red). (Right) The percentages of shape variability captured by the individual PC
scores for PNSS (black) and shape PCA (red).

We carry out the PNSS analysis to sequentially reduce the dimension of the
projected data from S10 to S1 to S0. The percentage variability explained by
the first two PNSS scores (74.2%) is much higher than the first two PCA scores
(45.1%). The PNSS score 1 is a circular variable, where the most negative score
and most positive PNSS1 score are identified with each other (at the cut point
of the circle). The higher PNSS scores do not have the extreme points identified
with each other.

We calculate PNSS1, PNSS2 and PNSS3 coordinates of all the 1,000,000
configurations through the model constructed using the thinned 10000 configu-
rations. The pairwise 2D plots of first three PNSS and PC scores are in Figure
4. A vertical long cluster forms all over PC2 between small range of PC1. On
the other hand, in PNSS1-PNSS2 plot three salient clusters are close to each
other and one cluster is positioned on the left side. For this particular peptide
there are believed to be four preferred shape states, and these can be clearly
seen in the first PNSS plot, whereas it is not evident with PCA. Hence, there
is a clear advantage in using PNSS compared to PCA in this dataset.

The relative variation of PNSS1 to PNSS2 is much higher than that of PC1
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to PC2. Since first two PNSS components account for high proportion (74.2%)
of the shape variability, the subsequent components from PNSS3 are far less
important. Both left and right tails in PNSS1 should be considered connected,
given this is a circular variable.

(a) PCA plot.

(b) PNSS plot using 10 shape PC scores.

Fig 4. Pairwise components plot of (a) shape PCA and (b) PNSS using first 10 shape PC
scores.

3.3. Cluster analysis

Given that there are believed to be four preferred states we now consider cluster
analysis. The result of four-group clustering is shown in Figure 5, where hierar-
chical clustering analysis using Ward’s method is used (Ward, 1963) but with
distances rather than squared distances (ward.D in R). In (a) the cluster analysis
was performed on (PC1, PC2, PC3) and in (b) it was performed using the great
circle distance on S10 then displayed in terms of (PNSS1, PNSS2) coordinates.
Three PCs in (a) are needed for separating them into four groups, on the other
hand two PNSSs in (b) are enough to split them clearly. However when looking
carefully at Figure 4 the four clusters do not stand out in the PCA plot even
with three PCs, but they are clearly distinct in the PNSS1-PNSS2 plot. Plotting
PNSS1 and PNSS2 with the colour scheme from PCA clustering is given in (c),
and we see that the result is similar. The most dense part of the blue cluster in
(b) is where the starting configurations for each of the runs are located. Ward’s
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method was our preferred clustering method, giving good practical separation
into four groups in our application.

In (d) we plot the PNSS scores on S2 using the PNSS clustering. The solid
red line is the estimated first principal arc, on the other hand the solid-dotted
red line is the estimated second principal arc where the solid line indicates the
PNSS2 values. In (e) we plot the same data as in (d) except we use the PCA
cluster colours, and the clustering in the plots (d) and (e) are very similar. If
we carry out the clustering on other sets of variables such as PNSS1, 2 then the
broad pattern is similar, particularly near the main modes for the four clusters.

3.4. Structure of PNSS variability

For each PNSS we can obtain an interval on S10 as

µ̂± csjej , j = 1, . . . , 10, (3.1)

where µ̂ is the PNSS mean, c is a constant, sj are standard deviation of jth
PNSS scores and ej are the direction of jth principal arc. As seen in Figure 3,
s1 = 0.5675, s2 = 0.2131, s3 = 0.1384 and we used c = 1.

We display the first three principal arcs in landmark space as shown in Figure
6 and we display both the PNSS mean (corresponding to PNSS component
0) and the Procrustes mean for comparison. The black dots with connected
black lines indicate the Procrustes mean. The PNSS mean is given by rainbow
coloured points (with the rainbow colour indicating point order). We can see that
the PNSS mean and Procrustes mean shapes are visibly different. In addition
coloured rainbow arcs have been drawn from the PNSS mean along the PNSS
score 1 direction to the ends of the interval (3.1). The grey points indicate the
location at c = 1 along the arc, and these are joined by grey lines which give an
idea of the structure of variability in the PNSS. This plot shows considerable
amounts of twisting along the arcs in PNSS1, and a smaller amount of different
bending in PNSS2 and PNSS3.

We see that the first PNSS score demonstrates an articulated type of move-
ment, sweeping out arcs. The PNSS mean is clearly different from the Procrustes
mean. The PNSS description of variation is particularly appropriate here as
bonds have fixed lengths, and local rotational movement is much more practical
than linear movement to and from the Procrustes mean, as in shape PCA.

In order to examine the shapes of the clusters, we plot the PNS mean and
Procrustes shapes of each cluster in Figure 7, together with the PNSS 1 arcs for
each cluster. The cluster 1 mean has two clear bends in the peptide, clusters 2
and 4 means have a single bend each in different positions, and cluster 3 mean
is broadly straight with no bends. These four cluster means are quite different,
and they illustrate the wide range of shape configurations that the peptides visit
during their temporal sequences. Also, cluster 1 is clearly more variable, with
larger PNSS 1 arcs than the other clusters. Also, the PNSS mean and Procrustes
mean are more different in cluster 1.
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Fig 5. Pairwise plots of PC1, PC2, PC3 scores (a) and PNSS1, PNSS2 scores (b)-(e). The
colour is using four-group hierarchical clustering on (PC1, PC2, PC3) in (a), (c) and (e)
and on S10 in (b) and (d), all using Ward’s method with non-squared distances. Panel (d),
(e) shows the projected data points on S2 with the estimated first two principal arcs.
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Fig 6. PNSS 1 (top left), PNSS 2 (top right) and PNSS 3 (bottom) in landmark space, with
PNSS mean (rainbow coloured points) on all plots, and the Procrustes mean (black) shown on
the PNSS1 plot. Rainbow arcs have been drawn from the PNSS mean along each PNSS score
direction to the ends of the interval (3.1). The grey points and lines show the landmarks at
c = 1.

Fig 7. PNSS 1 for each of the clusters 1 and 2 (top row, left, right) and clusters 3 and 4
(bottom row, left, right). The PNSS mean (rainbow coloured points) and Procrustes means
(black) are displayed. Rainbow arcs have been drawn from the PNSS mean along the PNSS 1
score direction to the ends of the interval (3.1)
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3.5. Temporal clustering

A graphical view of shape changing pattern within these four groups over time
can be seen as in Figure 8(a) for run 55. This run changes shape regularly but
some other runs have different patterns, for example run 66 changes very much
during the middle times, run 25 does not visit the yellow cluster, and so on. All
runs are shown in Figure 8(b).
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Fig 8. Visit history.

Since all 100 runs behave with different dynamic patterns, we ran cluster
analysis on 100 transition matrices within these four locations. To this end we
estimate transition matrices for each run, Tj , j = 1, . . . , 100, using empirical
probabilities and we use the Hellinger distance on transition matrices defined
by

H(T1, T2) =
1√
2

∥∥√T1 −
√
T2

∥∥.
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The overall transition matrix P estimated from all the runs is given in Table 1,
indicating the conditional probability from a cluster (rows) to another cluster
(columns). The transition jumps are evaluated at each 100 time points on the
original scale, i.e. for the thinned data. The overall equilibrium distribution of
the chain is given in Table 2, obtained from Pn as n→∞. Overall we see that
more time is spent in Cluster 3 and less in Cluster 4. There is a preference
to move from Cluster 1 to either Cluster 2 or 4 first, before then transitioning
to Cluster 3 as the next most likely move. So, we can see that the movement
between the states is asymmetric, and there are preferred orderings of transitions
between states.

Table 1
Overall average transition matrix.

1 2 3 4
1 0.8628 0.0712 0.0135 0.0525
2 0.0744 0.7480 0.1608 0.0168
3 0.0069 0.0893 0.8501 0.0537
4 0.0655 0.0178 0.1588 0.7578

1 2 3 4
Overall 0.213 0.218 0.416 0.153

TC1 0.411 0.220 0.254 0.114
TC2 0.085 0.218 0.540 0.158
TC3 0.180 0.112 0.334 0.374
TC4 0.091 0.105 0.795 0.008

Table 2
Equilibrium probabilities for Cluster 1,2,3,4, for the overall dataset and for runs within each

temporal cluster TC1,TC2,TC3,TC4.

According to the first panel in Figure 9 showing the average distance be-
tween clusters divided by average distance within clusters, we split the transi-
tion matrices into four groups (temporal clusters) TC1 to TC4, by hierarchical
clustering using Ward’s method with the Hellinger distance. Focusing on the
finishing locations where runs terminate, we estimated the final probability for
each location. In the bottom panel, the labels Cluster 1 to Cluster 4 on x-axis
denote the finish location labels which correspond to four groups in Figure 5
(b). Again we see that Cluster 3 is seen as finish location with high probability
overall and relatively fewer runs terminate at Cluster 4.

We also estimate the transition matrices with TC1,TC2,TC3 and TC4 and
display the equilibrium probabilities in Table 2. Simulation runs in TC1 have
a relatively strong pull to Cluster 1, runs in TC2 have a pull towards Cluster
3, runs in TC3 have a pull towards Clusters 3 and 4, and runs in TC4 have a
very strong pull towards Cluster 3. This behaviour is also seen in the estimated
probability of final locations in Figure 9.

Hence it is of interest that the molecular dynamics simulations do exhibit
different behaviours in the runs, with TC1 being particularly different from the
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other temporal clusters.
The analysis is dependent on the choice of temporal thinning. We have chosen

to thin to every 100 observations due to the very fine temporal resolution in the
original data. There would be some small periods spent in other clusters between
the thinned values, but the choice of 100 gives a good compromise between
excessive long times spent in a cluster (too little thinning) versus brief/missed
visits to clusters (too much thinning).

4. Discussion

We have developed the method of principal nested shape spaces as an extension
of principal nested spheres Jung et al. (2012), and the peptide application clearly
demonstrates the utility of the method. The technique has been applied to other
datasets, including molecular dynamics simulations of enzyme data. Again useful
insights are obtained from the backwards method for the enzymes data that are
different from using conventional tangent space shape PCA, which is a forwards
method that requires estimation of the mean shape at the outset. The general
approach to backwards PCA and principal nested manifold relations is discussed
by Damon and Marron (2014). Further related work includes Pennec (2016)
who discusses barycentric sub-spaces, where sub-manifolds are generated from
weighted means of reference points.

The data are available at:

http://www.maths.nottingham.ac.uk/∼ild/pnss
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Appendix 1

Principal nested sub-shape-spaces for m-dimensional data

Let X̃ in Rm denote k > m labelled landmarks that are not all identical, and
write X for the pre-shape of the configuration obtained from X̃ by removing
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the effects of translation and scaling. The pre-shape X is a (k − 1)×m matrix
of unit norm, and the pre-shape sphere is denoted Skm.

The tangent space TX(Skm) to Skm at any X ∈ Skm is the subspace of M(k −
1,m) given by

TX(Skm) = {Z ∈M(k − 1,m) | tr(X>Z) = 0},

where M(k − 1,m) denotes the space of all (k − 1) ×m matrices. In terms of
the quotient map from the pre-shape sphere Skm to the Kendall shape space
Σkm of configurations in Rm of k labelled landmarks, we can decompose TX(Skm)
into the direct sum of two orthogonal subspaces, one of which is tangent to the
equivalence class of X. We denote this subspace of TX(Skm) by VX . Its orthogonal
complement HX is the Procrustean, or the horizontal, sub-tangent space at X.
It is known that (Kent and Mardia, 2001)

VX = {XA | A is m×m skew-symmetric matrix}
HX = {Z ∈ TX(Skm) | X>Z is symmetric},

and that HX is isometric with the tangent space at [X] to the shape space Σkm.

For any 1 6 j1 < j2 6 m, write Ej1j2 for the m×m skew-symmetric matrix
with (j1, j2) component 1, (j2, j1) component −1 and 0 otherwise. Then, for any
pre-shape X0 ∈ Skm with rank(X0) = m,

tr
(
(X0Ej1,j2)>(X0Ej1,j2)

)
= ‖X0Ej1,j2‖2 > 0,

so that X0;j1,j2 = X0Ej1,j2/‖X0Ej1,j2‖ ∈ Skm. Moreover, {X0;j1,j2 | 1 6 j1 <
j2 6 m} spans VX0 .

The subset of Skm orthogonal to the Euclidean subspace spanned by {X0;j1,j2 |
1 6 j1 < j2 6 m} is a great sphere of dimension m× (k− 1)−m(m− 1)/2− 1.
We denote this subsphere by SX0

, that is,

SX0
= {S ∈ Skm | ρ(S,X0;j1,j2) = π/2,∀1 6 j1 < j2 6 m}.

Clearly, X0 ∈ SX0 and the dimension of SX0 is the same as that of the shape
space Σkm. It can be checked that SX0

is the image of HX0
under the exponential

map at X0.
For any pre-shape X ∈ Skm \{X0}, we apply the ordinary Procrustes analysis

procedure to choose SX = XRX ∈ [X], where

RX = argmin
R∈SO(m)

ρ(X0, XR).

• The resulting SX is usually called the Procrustes fit to X0 of the original
configuration;

• SX has the same shape as X;
• X>0 SX is symmetric;
• ρ(X0, SX) 6 π/2; and
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• the spherical distance distance, ρ(X0, SX), between SX and X0 is the same
as the induced Riemannian shape distance between the shapes of X0 and
X.

The fact that X>0 SX is a symmetric matrix implies that, for any 1 6 j1 <
j2 6 m,

〈X0;j1,j2 , SX〉 = tr((X0Ej1,j2)>SX) = −tr(Ej1,j2X
>
0 SX) = 0,

so that ρ(X0;j1,j2 , SX) = π/2. It follows that SX ∈ SX0 and, in particular,
that the intersection {XR | R ∈ SO(m)}

⋂
SX0 is always non-empty. Since

ρ(X0, SX) 6 π/2, all such SX lie in the same half sphere of SX0
.

For given X0 and X, the corresponding RX , and hence the corresponding
SX , is not necessarily unique. The uniqueness of SX , or RX , is equivalent to the
shape [X] being within the non-singular part of Σkm but outside the cut locus
of the shape [X0] (Le, 1991). Hence, the subset

BX0
= {SX ∈ SX0

| X ∈ Skm and SX is unique}

of SX0
is topologically a ball in SX0

containing X0 and is bijective, under the
quotient map, with the subset

B[X0] = {[X] ∈ Σkm | [X] is non-singular and not in the cut locus of [X0]}

of Σkm. Note that [X] being non-singular is equivalent to it being shape of a
configuration whose pre-shape matrix X has rank at least m − 1. Since the
quotient map is differentiable and since BX0

and B[X0] are respectively subman-

ifolds of Skm and Σkm, it follows that these two sets are diffeomorphic with each
other. Thus, any sub-manifold in BX0

⊂ SX0
is mapped to a sub-manifold in

B[X0] ⊂ Σkm. In particular, the intersection of BX0
with a subsphere of SX0

is

mapped to a sub-manifold of Σkm, so that the intersection of BX0
with a sequence

of nested subspheres of SX0
is mapped to a sequence of nested sub-manifolds of

Σkm. However that these maps are not isometric. Nevertheless, the great circle
arc through X0 is mapped to a geodesic in Σkm through [X0].

Appendix 2

Approximate PNSS using PCA

Consider configurations X̃i, i = 1, . . . , n in Rm of k labelled landmarks with
Procrustes mean shape X̄. Their pre-shape matrices are Xi, i = 1, . . . , n, and
their Procrustes fits to X̄ are Si = SXi , i = 1, . . . , n. Let Ti, i = 1, . . . , n, be the
Procrustes tangent projection of Xi at X̄ (Dryden and Mardia, 2016, (4.33)),
i.e.

Ti = Si − 〈X̄, Si〉 X̄ = Si − tr(X̄>Si) X̄ ∈ HX̄ ⊂ TX̄(Skm),
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and vj be the unit eigenvector corresponding to the jth largest eigenvalue of
the covariance matrix of Ti, i = 1, . . . , n,

cov =
1

n

n∑
i=1

vec(Ti − T̄ )vec(Ti − T̄ )>,

where y = vec(Y ) is the vectorize operation of stacking the columns Y into a
single vector y, T̄ = 1

n

∑n
i=1 Ti and Vj = vec−1

m (vj), where vec−1
m (y) = Y is the

inverse vectorise operator forming a matrix Y of m columns. Then, 〈X̄, Vj〉 = 0
and Vj ∈ HX̄ . For any 1 6 p < m(k − 1)−m(m− 1)/2− 1, the p-dimensional
unit sphere SX̄;V1,...,Vp

in the (p + 1)-dimensional linear subspace spanned by

X̄, V1, . . . , Vp is a p-dimensional subsphere of SX̄ . A minimal practical require-
ment is that the first p eigenvalues will be strictly positive. If we choose p such
that the first p principal components explain a high proportion of the total
variation of the data then, without much loss of information, the use of the pro-
jection of Si to SX̄;V1,...,Vp

as the input for the principal nested sub-shape-spaces
analysis will reduce the initial dimension of the sphere and improve the speed
of computation.

The projection of Si to SX̄;V1,...,Vp
can be approximated by using the shape

principal component scores, where the shape principal component score for the
ith configuration on the jth principal component is given by λ̃ij = 〈Ti, Vj〉, i =
1, . . . , n, j = 1, . . . ,m(k − 1)−m(m− 1)/2− 1. For this, let

Wi = ρ(X̄, Si)
Ti
‖Ti‖

∈ TX̄(Skm).

Then, Wi is the image of Si under the inverse exponential map of Skm at X̄, it
lies in HX̄ and, in particular, ‖Wi‖ = ρ(X̄, Si). By writing

λij = 〈Wi, Vj〉 =
ρ(X̄, Si)

‖Ti‖
λ̃ij ,

the projection of Wi in the subspace, spanned by V1, . . . , Vp, of the tangent space
TX̄(Skm) is

Ui =

p∑
j=1

λijVj . (4.1)

The image S∗i of Ui under the exponential map back in the pre-shape sphere is

S∗i = X̄ cos(‖Ui‖) +
Ui
‖Ui‖

sin(‖Ui‖)

= cos(‖Ui‖) X̄ +
sin(‖Ui‖)
‖Ui‖

p∑
j=1

λijVj ∈ SX̄;V1,...,Vp

where, if ‖Ui‖ = 0, we take S∗i = (1, 0, . . . , 0). When Si is sufficiently close to
SX̄;V1,...,Vp

, S∗i gives a good approximation to the projection of Si to SX̄;V1,...,Vp
.
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Since X̄, V1, · · · , Vp are orthonormal, they form a basis of the (p+1)-dimensional
linear subspace spanned by themselves and, in terms of this new basis, S∗i can
be expressed as (

cos(‖Ui‖),
sin(‖Ui‖)
‖Ui‖

λi1, · · · ,
sin(‖Ui‖)
‖Ui‖

λip

)
.

This representation will simplify computation. Conversely, for a given G =
(G1, G2, . . . , Gp+1)> ∈ SX̄;V1,...,Vp

, its principal component scores are

s

sin(s)
(G2, G3, . . . , Gp+1)

>
(4.2)

where s = cos−1(G1).
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