229 research outputs found

    Radiative Seesaw Mechanism at Weak Scale

    Get PDF
    We investigate an alternative seesaw mechanism for neutrino mass generation. Neutrino mass is generated at loop level but the basic concept of usual seesaw mechanism is kept. One simple model is constructed to show how this mechanism is realized. The applications of this seesaw mechanism at weak scale to cosmology and neutrino physics are discussed.Comment: 12 Pages, latex, no figure

    A clock network for geodesy and fundamental science

    Get PDF
    Leveraging the unrivaled performance of optical clocks in applications in fundamental physics beyond the standard model, in geo-sciences, and in astronomy requires comparing the frequency of distant optical clocks truthfully. Meeting this requirement, we report on the first comparison and agreement of fully independent optical clocks separated by 700 km being only limited by the uncertainties of the clocks themselves. This is achieved by a phase-coherent optical frequency transfer via a 1415 km long telecom fiber link that enables substantially better precision than classical means of frequency transfer. The fractional precision in comparing the optical clocks of three parts in 101710^{17} was reached after only 1000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than with any other existing frequency transfer method. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.Comment: 14 pages, 3 figures, 1 tabl

    General Analysis of Antideuteron Searches for Dark Matter

    Full text link
    Low energy cosmic ray antideuterons provide a unique low background channel for indirect detection of dark matter. We compute the cosmic ray flux of antideuterons from hadronic annihilations of dark matter for various Standard Model final states and determine the mass reach of two future experiments (AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron detection over current bounds. We consider generic models of scalar, fermion, and massive vector bosons as thermal dark matter, describe their basic features relevant to direct and indirect detection, and discuss the implications of direct detection bounds on models of dark matter as a thermal relic. We also consider specific dark matter candidates and assess their potential for detection via antideuterons from their hadronic annihilation channels. Since the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we find that antideuterons can be a good indirect detection channel for a variety of thermal relic electroweak scale dark matter candidates, even when the rate for direct detection is highly suppressed.Comment: 44 pages, 15 Figure

    Serological profile of foot-and-mouth disease in wildlife populations of West and Central Africa with special reference to Syncerus caffer subspecies

    Get PDF
    The role which West and Central African wildlife populations might play in the transmission dynamics of FMD is not known nor have studies been performed in order to assess the distribution and prevalence of FMD in wild animal species inhabiting those specific regions of Africa. This study reports the FMD serological profile extracted from samples (n = 696) collected from wildlife of West and Central Africa between 1999 and 2003. An overall prevalence of FMDV NSP reactive sera of 31.0% (216/696) was estimated, where a significant difference in seropositivity (p = 0.000) was reported for buffalo (64.8%) as opposed to other wild animal species tested (17.8%). Different levels of exposure to the FMDV resulted for each of the buffalo subspecies sampled (p = 0.031): 68.4%, 50.0% and 0% for Nile Buffalo, West African Buffalo and African Forest Buffalo, respectively. The characterisation of the FMDV serotypes tested for buffalo found presence of antibodies against all the six FMDV serotypes tested, although high estimates for type O and SAT 3 were reported for Central Africa. Different patterns of reaction to the six FMDV serotypes tested were recorded, from sera only positive for a single serotype to multiple reactivities. The results confirmed that FMDV circulates in wild ruminants populating both West and Central Africa rangelands and in particular in buffalo, also suggesting that multiple FMDV serotypes might be involved with type O, SAT 2 and SAT 1 being dominant. Differences in serotype and spill-over risk between wildlife and livestock likely reflect regional geography, historical circulation and differing trade and livestock systems

    Study of measured pulsar masses and their possible conclusions

    Full text link
    We study the statistics of 61 measured masses of neutron stars (NSs) in binary pulsar systems, including 18 double NS (DNS) systems, 26 radio pulsars (10 in our Galaxy) with white dwarf (WD) companions, 3 NSs with main-sequence companions, 13 NSs in X-ray binaries, and one undetermined system. We derive a mean value of M = 1.46 +/- 0.30 solar masses. When the 46 NSs with measured spin periods are divided into two groups at 20 milliseconds, i.e., the millisecond pulsar (MSP) group and others, we find that their mass averages are, respectively, M=1.57 +/- 0.35 solar masses and M=1.37+/- 0.23 solar masses. In the framework of the pulsar recycling hypothesis, this suggests that an accretion of approximately 0.2 solar mass is sufficient to spin up a neutron star and place it in the millisecond pulsar group. An empirical relation between the accreting mass and MSP spin period is \Delta M=0.43 (solar mass)(P/1 ms)^{-2/3}. UNlike the standard recycling process, if a MSP is formed by the accretion induced collapse (AIC) of a white dwarf with a mass less than Chandrasekha limit, e.g. 1.35 solar mass, then the binary MSPs involved in AICs is not be higher than 20%, which imposes a constraint on the AIC origin of MSPs.Comment: 6 pages, 5 figures, in press, Astronomy and Astrophysics 2011, 527, 8

    Quantum cascade laser frequency stabilisation at the sub-Hz level

    Full text link
    Quantum Cascade Lasers (QCL) are increasingly being used to probe the mid-infrared "molecular fingerprint" region. This prompted efforts towards improving their spectral performance, in order to reach ever-higher resolution and precision. Here, we report the stabilisation of a QCL onto an optical frequency comb. We demonstrate a relative stability and accuracy of 2x10-15 and 10-14, respectively. The comb is stabilised to a remote near-infrared ultra-stable laser referenced to frequency primary standards, whose signal is transferred via an optical fibre link. The stability and frequency traceability of our QCL exceed those demonstrated so far by two orders of magnitude. As a demonstration of its capability, we then use it to perform high-resolution molecular spectroscopy. We measure absorption frequencies with an 8x10-13 relative uncertainty. This confirms the potential of this setup for ultra-high precision measurements with molecules, such as our ongoing effort towards testing the parity symmetry by probing chiral species

    Prevalence of high-risk human papillomavirus types in Mexican women with cervical intraepithelial neoplasia and invasive carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prevalence of high risk (HR) human papillomavirus (HPV) types in the states of San Luis Potosí (SLP) and Guanajuato (Gto), Mexico, was determined by restriction fragment length-polymorphism (RFLP) analysis on the E6 ~250 bp (E6-250) HR-HPV products amplified from cervical scrapings of 442 women with cervical intraepithelial neoplasia and invasive carcinoma (280 from SLP and 192 from Gto). Fresh cervical scrapings for HPV detection and typing were obtained from all of them and cytological and/or histological diagnoses were performed on 383.</p> <p>Results</p> <p>Low grade intraepithelial squamous lesions (LSIL) were diagnosed in 280 cases (73.1%), high grade intraepithelial squamous lesions (HSIL) in 64 cases (16.7%) and invasive carcinoma in 39 cases (10.2%). In the 437 cervical scrapings containing amplifiable DNA, only four (0.9%) were not infected by HPV, whereas 402 (92.0%) were infected HR-HPV and 31 (7.1%) by low-risk HPV. RFLP analysis of the amplifiable samples identified infections by one HR-HPV type in 71.4%, by two types in 25.9% and by three types in 2.7%. The overall prevalence of HR-HPV types was, in descending order: 16 (53.4%) > 31 (15.6%) > 18 (8.9%) > 35 (5.6) > 52 (5.4%) > 33 (1.2%) > 58 (0.7%) = unidentified types (0.7%); in double infections (type 58 absent in Gto) it was 16 (88.5%) > 31 (57.7%) > 35 (19.2%) > 18 (16.3%) = 52 (16.3%) > 33 (2.8%) = 58 (2.8%) > unidentified types (1.0%); in triple infections (types 33 and 58 absent in both states) it was 16 (100.0%) > 35 (54.5%) > 31 (45.5%) = 52 (45.5%) > 18 (27.3%). Overall frequency of cervical lesions was LSIL (73.1%) > HSIL (16.7%) > invasive cancer (10.2%). The ratio of single to multiple infections was inversely proportional to the severity of the lesions: 2.46 for LSIL, 2.37 for HSIL and 2.15 for invasive cancer. The frequency of HR-HPV types in HSIL and invasive cancer lesions was 16 (55.0%) > 31 (18.6%) > 35 (7.9%) > 52 (7.1%) > 18 (4.3%) > unidentified types (3.6%) > 33 (2.9%) > 58 (0.7%).</p> <p>Conclusion</p> <p>Ninety percent of the women included in this study were infected by HR-HPV, with a prevalence 1.14 higher in Gto. All seven HR-HPV types identifiable with the PCR-RFLP method used circulate in SLP and Gto, and were diagnosed in 99.3% of the cases. Seventy-one percent of HR-HPV infections were due to a single type, 25.9% were double and 2.7% were triple. Overall frequency of lesions was LSIL (73.1%) > HSIL (16.7%) > invasive cancer (10.2%), and the ratio of single to multiple infections was inversely proportional to severity of the lesions: 2.46 for LSIL, 2.37 for HSIL and 2.15 for invasive cancer. The frequency of HR-HPV types found in HSIL and invasive cancer was 16 (55.0%) > 31 (18.6%) > 35 (7.9%) > 52 (7.1%) > 18 (4.3%) > unidentified types (3.6%) > 33 (2.9%) > 58 (0.7%). Since the three predominant types (16, 31 and 18) cause 77.9% of the HR-HPV infections and immunization against type 16 prevents type 31 infections, in this region the efficacy of the prophylactic vaccine against types 16 and 18 would be close to 80%.</p

    Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser

    Get PDF
    Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray–matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the L3-edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm2. We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale

    Antiprotons in cosmic rays from neutralino annihilation

    Full text link
    We calculate the antiproton flux due to relic neutralino annihilations, in a two-dimensional diffusion model compatible with stable and radioactive cosmic ray nuclei. We find that the uncertainty in the primary flux induced by the propagation parameters alone is about two orders of magnitude at low energies, and it is mainly determined by the lack of knowledge on the thickness of the diffusive halo. On the contrary, different dark matter density profiles do not significantly alter the flux: a NFW distribution produces fluxes which are at most 20% higher than an isothermal sphere. The most conservative choice for propagation parameters and dark matter distribution normalization, together with current data on cosmic antiprotons, cannot lead to any definitive constraint on the supersymmetric parameter space, neither in a low-energy effective MSSM, or in a minimal SUGRA scheme. However, if the best choice for propagation parameters - corresponding to a diffusive halo of L=4 kpc - is adopted, some supersymmetric configurations with the neutralino mass of about 100 GeV should be considered as excluded. An enhancement flux factor - due for instance to a clumpy dark halo or to a higher local dark matter density - would imply a more severe cut on the supersymmetric parameters.Comment: 23 pages, 2 tables and 19 figures, typeset with ReVTeX4. The paper may also be found at http://www.to.infn.it/~fornengo/papers/pbar03.ps.gz or through http://www.to.infn.it/astropart/index.html A subsection added. Final version to appear in PR

    Prospects for Indirect Detection of Neutralino Dark Matter

    Full text link
    Dark matter candidates arising in models of particle physics incorporating weak scale supersymmetry may produce detectable signals through their annihilation into neutrinos, photons, or positrons. A large number of relevant experiments are planned or underway. The `logically possible' parameter space is unwieldy. By working in the framework of minimal supergravity, we can survey the implications of the experiments for each other, as well as for direct searches, collider searches, low-energy experiments, and naturalness in a transparent fashion. We find that a wide variety of experiments provide interesting probes. Particularly promising signals arise in the mixed gaugino-Higgsino region. This region is favored by low-energy particle physics constraints and arises naturally from minimal supergravity due to the focus point mechanism. Indirect dark matter searches and traditional particle searches are highly complementary. In cosmologically preferred models, if there are charged superpartners with masses below 250 GeV, then some signature of supersymmetry must appear before the LHC begins operation.Comment: 37 pages, 20 figures. Latest Super-Kamiokande result included, expected sensitivities of HESS and CANGAROO updated, references added. Version to appear in Phys. Rev.
    corecore