751 research outputs found

    CPT symmetry and antimatter gravity in general relativity

    Full text link
    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.Comment: 6 pages, to be published in EPL (http://epljournal.edpsciences.org/

    Search for a periodic signal from Cygnus X-3 usingmuons observed underground in the Frejus detector (4800 mwe)

    Get PDF
    Periodic signals from Cygnus X-3 in the ultra high energy range were recently reported by air shower arrays and attributed to gamma rays. Although gamma rays are expected to produce muon-poor showers, the preceding observations have stimulated similar studies based on underground muons. Two groups have claimed a significant underground signal coming from Cygnus X-3. The results are, however, extremely difficult to explain in the present framework of particle physics, and clearly need confirmation. The preliminary results obtained from the Frejus underground detector during its first 16 months of operation (March 1984 to June 1985) are presented

    Emergent Geometry and Gravity from Matrix Models: an Introduction

    Full text link
    A introductory review to emergent noncommutative gravity within Yang-Mills Matrix models is presented. Space-time is described as a noncommutative brane solution of the matrix model, i.e. as submanifold of \R^D. Fields and matter on the brane arise as fluctuations of the bosonic resp. fermionic matrices around such a background, and couple to an effective metric interpreted in terms of gravity. Suitable tools are provided for the description of the effective geometry in the semi-classical limit. The relation to noncommutative gauge theory and the role of UV/IR mixing is explained. Several types of geometries are identified, in particular "harmonic" and "Einstein" type of solutions. The physics of the harmonic branch is discussed in some detail, emphasizing the non-standard role of vacuum energy. This may provide new approach to some of the big puzzles in this context. The IKKT model with D=10 and close relatives are singled out as promising candidates for a quantum theory of fundamental interactions including gravity.Comment: Invited topical review for Classical and Quantum Gravity. 57 pages, 5 figures. V2,V3: minor corrections and improvements. V4,V5: some improvements, refs adde

    Identification of backgrounds in the EDELWEISS-I dark matter search experiment

    Get PDF
    This paper presents our interpretation and understanding of the different backgrounds in the EDELWEISS-I data sets. We analyze in detail the several populations observed, which include gammas, alphas, neutrons, thermal sensor events and surface events, and try to combine all data sets to provide a coherent picture of the nature and localisation of the background sources. In light of this interpretation, we draw conclusions regarding the background suppression scheme for the EDELWEISS-II phase

    Dark Matter Search in the Edelweiss Experiment

    Get PDF
    Preliminary results obtained with 320g bolometers with simultaneous ionization and heat measurements are described. After a few weeks of data taking, data accumulated with one of these detectors are beginning to exclude the upper part of the DAMA region. Prospects for the present run and the second stage of the experiment, EDELWEISS-II, using an innovative reversed cryostat allowing data taking with 100 detectors, are briefly described.Comment: IDM 2000, 3rd International Workshop on the Identification of Dark Matter, York (GB), 18-22/09/2000, v2.0 minor modification

    The meaning of life in a developing universe

    Get PDF
    The evolution of life on Earth has produced an organism that is beginning to model and understand its own evolution and the possible future evolution of life in the universe. These models and associated evidence show that evolution on Earth has a trajectory. The scale over which living processes are organized cooperatively has increased progressively, as has its evolvability. Recent theoretical advances raise the possibility that this trajectory is itself part of a wider developmental process. According to these theories, the developmental process has been shaped by a larger evolutionary process that involves the reproduction of universes. This evolutionary process has tuned the key parameters of the universe to increase the likelihood that life will emerge and develop to produce outcomes that are successful in the larger process (e.g. a key outcome may be to produce life and intelligence that intentionally reproduces the universe and tunes the parameters of ‘offspring’ universes). Theory suggests that when life emerges on a planet, it moves along this trajectory of its own accord. However, at a particular point evolution will continue to advance only if organisms emerge that decide to advance the evolutionary process intentionally. The organisms must be prepared to make this commitment even though the ultimate nature and destination of the process is uncertain, and may forever remain unknown. Organisms that complete this transition to intentional evolution will drive the further development of life and intelligence in the universe. Humanity’s increasing understanding of the evolution of life in the universe is rapidly bringing it to the threshold of this major evolutionary transition

    Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes

    Get PDF
    The EDELWEISS-II collaboration has completed a direct search for WIMP dark matter with an array of ten 400-g cryogenic germanium detectors in operation at the Laboratoire Souterrain de Modane. The combined use of thermal phonon sensors and charge collection electrodes with an interleaved geometry enables the efficient rejection of gamma-induced radioactivity as well as near-surface interactions. A total effective exposure of 384 kg.d has been achieved, mostly coming from fourteen months of continuous operation. Five nuclear recoil candidates are observed above 20 keV, while the estimated background is 3.0 events. The result is interpreted in terms of limits on the cross-section of spin-independent interactions of WIMPs and nucleons. A cross-section of 4.4x10^-8 pb is excluded at 90%CL for a WIMP mass of 85 GeV. New constraints are also set on models where the WIMP-nucleon scattering is inelastic.Comment: 23 pages, 5 figures; matches published versio

    Science and economics in the management of an invasive species

    Get PDF
    Author Posting. © American Institute of Biological Sciences, 2006. This article is posted here by permission of American Institute of Biological Sciences for personal use, not for redistribution. The definitive version was published in BioScience 56 (2006): 931-935, doi: 10.1641/0006-3568(2006)56[931:SAEITM]2.0.CO;2Estimates of the economic impacts of nonnative nuisance ("invasive") species must rely on both a sound ecological understanding and the proper application of economic methods. Focusing on the example of the invasive European green crab (Carcinus maenas), we show that the crab's estimated economic impact—which has been used to help justify recent public policy—is based on data taken from the wrong geographic location. Furthermore, the predictions of ecological effects appear to rest on loose footing, and economic methods have been misapplied in constructing the estimate. Our purpose is to call attention to the need for the more careful application of science and economics in managing this pressing environmental issue.This work was supported by a research grant from the US Department of Commerce,National Oceanic and Atmospheric Administration, Project no. NA16RG1698
    corecore