1,569 research outputs found

    First Results From Sleuth: The Palomar Planet Finder

    Get PDF
    We discuss preliminary results from our first search campaign for transiting planets performed using Sleuth, an automated 10 cm telescope with a 6 degree square field of view. We monitored a field in Hercules for 40 clear nights between UT 2003 May 10 and July 01, and obtained an rms precision (per 15-min average) over the entire data set of better than 1% on the brightest 2026 stars, and better than 1.5% on the brightest 3865 stars. We identified no strong candidates in the Hercules field. We conducted a blind test of our ability to recover transiting systems by injecting signals into our data and measuring the recovery rate as a function of transit depth and orbital period. About 85% of transit signals with a depth of 0.02 mag were recovered. However, only 50% of transit signals with a depth of 0.01 mag were recovered. We expect that the number of stars for which we can search for transiting planets will increase substantially for our current field in Andromeda, due to the lower Galactic latitude of the field

    Preliminary Constraints on 12C(alpha,gamma)16O from White Dwarf Seismology

    Full text link
    For many years, astronomers have promised that the study of pulsating white dwarfs would ultimately lead to useful information about the physics of matter under extreme conditions of temperature and pressure. In this paper we finally make good on that promise. Using observational data from the Whole Earth Telescope and a new analysis method employing a genetic algorithm, we empirically determine that the central oxygen abundance in the helium-atmosphere variable white dwarf GD 358 is 84+/-3 percent. We use this value to place preliminary constraints on the 12C(alpha,gamma)16O nuclear reaction cross-section. More precise constraints will be possible with additional detailed simulations. We also show that the pulsation modes of our best-fit model probe down to the inner few percent of the stellar mass. We demonstrate the feasibility of reconstructing the internal chemical profiles of white dwarfs from asteroseismological data, and find an oxygen profile for GD 358 that is qualitatively similar to recent theoretical calculations.Comment: Accepted for publication in the Astrophysical Journal, 7 pages, 6 figures, 2 tables, uses emulateapj5.st

    Sherlock: An Automated Follow-Up Telescope for Wide-Field Transit Searches

    Get PDF
    The most significant challenge currently facing photometric surveys for transiting gas-giant planets is that of confusion with eclipsing binary systems that mimic the photometric signature. A simple way to reject most forms of these false positives is high-precision, rapid-cadence monitoring of the suspected transit at higher angular resolution and in several filters. We are currently building a system that will perform higher-angular-resolution, multi-color follow-up observations of candidate systems identified by Sleuth (our wide-field transit survey instrument at Palomar), and its two twin system instruments in Tenerife and northern Arizona.Comment: 4 pages, 3 figures, to appear in AIP Conf Proc: The Search for Other Worlds, eds. S. S. Holt & D. Demin

    Detection of a Temperature Inversion in the Broadband Infrared Emission Spectrum of TrES-4

    Get PDF
    We estimate the strength of the bandpass-integrated thermal emission from the extrasolar planet TrES-4 at 3.6, 4.5, 5.8, and 8.0 micron using the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We find relative eclipse depths of 0.137 +/- 0.011%, 0.148 +/- 0.016%, 0.261 +/- 0.059%, and 0.318 +/- 0.044% in these four bandpasses, respectively. We also place a 2 sigma upper limit of 0.37% on the depth of the secondary eclipse in the 16 micron IRS peak-up array. These eclipse depths reveal that TrES-4 has an emission spectrum similar to that of HD 209458b, which requires the presence of water emission bands created by an thermal inversion layer high in the atmosphere in order to explain the observed features. TrES-4 receives more radiation from its star than HD 209458b and has a correspondingly higher effective temperature, therefore the presence of a temperature inversion in this planet's atmosphere lends support to the idea that inversions might be correlated with the irradiance received by the planet. We find no evidence for any offset in the timing of the secondary eclipse, and place a 3 sigma upper limit of |ecos(omega)|<0.0058 where e is the planet's orbital eccentricity and omega is the argument of pericenter. From this we conclude that tidal heating from ongoing orbital circulatization is unlikely to be the explanation for TrES-4's inflated radius.Comment: 10 pages in emulateapj format, 7 figures (some in color), accepted for publication in Ap

    [N]pT Monte Carlo Simulations of the Cluster-Crystal-Forming Penetrable Sphere Model

    Full text link
    Certain models with purely repulsive pair interactions can form cluster crystals with multiply-occupied lattice sites. Simulating these models' equilibrium properties is, however, quite challenging. Here, we develop an expanded isothermal-isobaric [N]pT[N]pT ensemble that surmounts this problem by allowing both particle number and lattice spacing to fluctuate. We apply the method with a Monte Carlo simulation scheme to solve the phase diagram of a prototypical cluster-crystal former, the penetrable sphere model (PSM), and compare the results with earlier theoretical predictions. At high temperatures and densities, the equilibrium occupancy nceqn_{\mathrm{c}}^{\mathrm{eq}} of face-centered cubic (FCC) crystal increases linearly. At low temperatures, although nceqn_{\mathrm{c}}^{\mathrm{eq}} plateaus at integer values, the crystal behavior changes continuously with density. The previously ambiguous crossover around T∼0.1T\sim0.1 is resolved

    Detection of Planetary Emission from the Exoplanet TrES-2 using Spitzer /IRAC

    Get PDF
    We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127%+-0.021%, 0.230%+-0.024%, 0.199%+-0.054%, and 0.359%+-0.060%, at 3.6 microns, 4.5 microns, 5.8 microns, and 8.0 microns, respectively. We show that three of these flux contrasts are well fit by a black body spectrum with T_{eff}=1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. The observed planet-to-star flux ratios in all four IRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet.Comment: 8 pages, 4 figures, 2 tables. Accepted for publication in the Astrophysical Journal. V2: New figure added ; other minor changes throughou

    A cool starspot or a second transiting planet in the TrES-1 system?

    Full text link
    We investigate the origin of a flux increase found during a transit of TrES-1, observed with the HST. This feature in the HST light curve cannot be attributed to noise and is supposedly a dark area on the stellar surface of the host star eclipsed by TrES-1 during its transit. We investigate the likeliness of two possible hypothesis for its origin: A starspot or a second transiting planet. We made use of several transit observations of TrES-1 from space with the HST and from ground with the IAC-80 telescope. On the basis of these observations we did a statistical study of flux variations in each of the observed events, to investigate if similar flux increases are present in other parts of the data set. The HST observation presents a single clear flux rise during a transit whereas the ground observations led to the detection of two such events but with low significance. In the case of having observed a starspot in the HST data, assuming a central impact between the spot and TrES-1, we would obtain a lower limit for the spot radius of 42000 km. For this radius the spot temperature would be 4690 K, 560 K lower then the stellar surface of 5250 K. For a putative second transiting planet we can set a lower limit for its radius at 0.37 RJ_J and for periods of less than 10.5 days, we can set an upper limit at 0.72 RJ_J. Assuming a conventional interpretation, then this HST observation constitutes the detection of a starspot. Alternatively, this flux rise might also be caused by an additional transiting planet. The true nature of the origin can be revealed if a wavelength dependency of the flux rise can be shown or discarded with a higher certainty. Additionally, the presence of a second planet can also be detected by radial velocity measurements.Comment: 8 pages, 6 figures, accepted for publication in A&

    Laboratory Experiment of Checkerboard Pupil Mask Coronagraph

    Get PDF
    We present the results of the first laboratory experiment of checkerboard shaped pupil binary mask coronagraphs using visible light, in the context of the R&D activities for future mid-infrared space missions such as the 3.5 m SPICA telescope. The primary aim of this work is to demonstrate the coronagraphic performance of checkerboard masks down to a 10−610^{-6} peak-to-peak contrast, which is required to detect self-luminous extra-solar planets in the mid-infrared region. Two masks, consisting of aluminum films on a glass substrates, were manufactured using nano-fabrication techniques with electron beam lithography: one mask was optimized for a pupil with a 30% central obstruction and the other was for a pupil without obstruction. The theoretical contrast for both masks was 10−710^{-7} and no adaptive optics system was employed. For both masks, the observed point spread functions were quite consistent with the theoretical ones. The average contrast measured within the dark regions was 2.7×10−72.7 {\times} 10^{-7} and 1.1×10−71.1 {\times} 10^{-7}. The coronagraphic performance significantly outperformed the 10−610^{-6} requirement and almost reached the theoretical limit determined by the mask designs. We discuss the potential application of checkerboard masks for mid-infrared coronagraphy, and conclude that binary masks are promising for future high-contrast space telescopes.Comment: 6 pages, 6 figure
    • …
    corecore