We investigate the origin of a flux increase found during a transit of
TrES-1, observed with the HST. This feature in the HST light curve cannot be
attributed to noise and is supposedly a dark area on the stellar surface of the
host star eclipsed by TrES-1 during its transit. We investigate the likeliness
of two possible hypothesis for its origin: A starspot or a second transiting
planet. We made use of several transit observations of TrES-1 from space with
the HST and from ground with the IAC-80 telescope. On the basis of these
observations we did a statistical study of flux variations in each of the
observed events, to investigate if similar flux increases are present in other
parts of the data set. The HST observation presents a single clear flux rise
during a transit whereas the ground observations led to the detection of two
such events but with low significance. In the case of having observed a
starspot in the HST data, assuming a central impact between the spot and
TrES-1, we would obtain a lower limit for the spot radius of 42000 km. For this
radius the spot temperature would be 4690 K, 560 K lower then the stellar
surface of 5250 K. For a putative second transiting planet we can set a lower
limit for its radius at 0.37 RJ and for periods of less than 10.5 days, we
can set an upper limit at 0.72 RJ. Assuming a conventional interpretation,
then this HST observation constitutes the detection of a starspot.
Alternatively, this flux rise might also be caused by an additional transiting
planet. The true nature of the origin can be revealed if a wavelength
dependency of the flux rise can be shown or discarded with a higher certainty.
Additionally, the presence of a second planet can also be detected by radial
velocity measurements.Comment: 8 pages, 6 figures, accepted for publication in A&