277 research outputs found

    Pericyte heterogeneity identified by 3D ultrastructural analysis of the microvessel wall

    Get PDF
    Confident identification of pericytes (PCs) remains an obstacle in the field, as a single molecular marker for these unique perivascular cells remains elusive. Adding to this challenge is the recent appreciation that PC populations may be heterogeneous, displaying a range of morphologies within capillary networks. We found additional support on the ultrastructural level for the classification of these PC subtypes—“thin-strand” (TSP), mesh (MP), and ensheathing (EP)—based on distinct morphological characteristics. Interestingly, we also found several examples of another cell type, likely a vascular smooth muscle cell, in a medial layer between endothelial cells (ECs) and pericytes (PCs) harboring characteristics of the ensheathing type. A conserved feature across the different PC subtypes was the presence of extracellular matrix (ECM) surrounding the vascular unit and distributed in between neighboring cells. The thickness of this vascular basement membrane was remarkably consistent depending on its location, but never strayed beyond a range of 150–300 nm unless thinned to facilitate closer proximity of neighboring cells (suggesting direct contact). The density of PC-EC contact points (“peg-and-socket” structures) was another distinguishing feature across the different PC subtypes, as were the apparent contact locations between vascular cells and brain parenchymal cells. In addition to this thinning, the extracellular matrix (ECM) surrounding EPs displayed another unique configuration in the form of extensions that emitted out radially into the surrounding parenchyma. Knowledge of the origin and function of these structures is still emerging, but their appearance suggests the potential for being mechanical elements and/or perhaps signaling nodes via embedded molecular cues. Overall, this unique ultrastructural perspective provides new insights into PC heterogeneity and the presence of medial cells within the microvessel wall, the consideration of extracellular matrix (ECM) coverage as another PC identification criteria, and unique extracellular matrix (ECM) configurations (i.e., radial extensions) that may reveal additional aspects of PC heterogeneity

    Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation

    Get PDF
    In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes

    The ecology of exercise: mechanisms underlying Individual variation in behavior, activity, and performance: an introduction to symposium

    Get PDF
    Wild animals often engage in intense physical activity while performing tasks vital for their survival and reproduction associated with foraging, avoiding predators, fighting, providing parental care, and migrating. In this theme issue we consider how viewing these tasks as “exercise”—analogous to that performed by human athletes—may help provide insight into the mechanisms underlying individual variation in these types of behaviors and the importance of physical activity in an ecological context. In this article and throughout this issue, we focus on four key questions relevant to the study of behavioral ecology that may be addressed by studying wild animal behavior from the perspective of exercise physiology: (1) How hard do individual animals work in response to ecological (or evolutionary) demands?; (2) Do lab-based studies of activity provide good models for understanding activity in free-living animals and individual variation in traits?; (3) Can animals work too hard during “routine” activities?; and (4) Can paradigms of “exercise” and “training” be applied to free-living animals? Attempts to address these issues are currently being facilitated by rapid technological developments associated with physiological measurements and the remote tracking of wild animals, to provide mechanistic insights into the behavior of free-ranging animals at spatial and temporal scales that were previously impossible. We further suggest that viewing the behaviors of non-human animals in terms of the physical exercise performed will allow us to fully take advantage of these technological advances, draw from knowledge and conceptual frameworks already in use by human exercise physiologists, and identify key traits that constrain performance and generate variation in performance among individuals. It is our hope that, by highlighting mechanisms of behavior and performance, the articles in this issue will spur on further synergies between physiologists and ecologists, to take advantage of emerging cross-disciplinary perspectives and technologies

    Legal professionals and witness statements from people with a suspected mental health diagnosis

    Get PDF
    Individuals with mental health problems are considered to be part of a group labeled ‘vulnerable’ in forensic psychology literature and the legal system more generally. In producing witness statements, there are numerous guidelines in the UK, designed to facilitate the production of reliable and valid accounts by those deemed to be vulnerable witnesses. And yet, it is not entirely clear how mental health impacts on reliability and validity within the judicial system, partly due to the diversity of those who present with mental health difficulties. In this paper, we set out to explore how legal professionals operating in the UK understand the impact of mental distress on the practical production of witness testimonies. Twenty legal professionals, including police officers, judges, magistrates and detectives were involved in a semi-structured interview to examine their knowledge and experience of working with mental health problems, and how they approached and worked with this group. A thematic analysis was conducted on the data and specific themes relevant to the overall research question are presented. These include a) dilemmas and deficiencies in knowledge of mental health, b) the abandonment of diagnosis and c) barriers to knowledge: time restrictions, silence, professional identity and fear. Finally, we explore some of the implications of these barriers, with regard to professional practice

    Williams and the Desirability of Body‐Bound Immortality Revisited

    Get PDF
    Bernard Williams argues that human mortality is a good thing because living forever would necessarily be intolerably boring. His argument is often attacked for unfoundedly proposing asymmetrical requirements on the desirability of living for mortal and immortal lives. My first aim in this paper is to advance a new interpretation of Williams' argument that avoids these objections, drawing in part on some of his other writings to contextualize it. My second aim is to show how even the best version of his argument only supports a somewhat weaker thesis: it may be possible for some people with certain special psychological features to enjoy an immortal life, but no one has good reason to bet on being such a person

    Willpower Satisficing

    Get PDF
    Satisficing Consequentialism is often rejected as hopeless. Perhaps its greatest problem is that it risks condoning the gratuitous prevention of goodness above the baseline of what qualifies as “good enough”. I propose a radical new willpower-based version of the view that avoids this problem, and that better fits with the motivation of avoiding an excessively demanding conception of morality. I further demonstrate how, by drawing on the resources of an independent theory of blameworthiness, we may obtain a principled specification of what counts as “good enough”

    Managing Radiation Degradation of CCDs on the Chandra X-Ray Observatory--III

    Get PDF
    The CCDs on the Chandra X-ray Observatory are vulnerable to radiation damage from low-energy protons scattered off the telescope's mirrors onto the focal plane. Following unexpected damage incurred early in the mission, the Chandra team developed, implemented, and maintains a radiation-protection program. This program--involving scheduled radiation safing during radiation-belt passes, intervention based upon real-time space-weather conditions and radiation-environment modeling, and on-board radiation monitoring with autonomous radiation safing--has successfully managed the radiation damage to the CCDs. Since implementing the program, the charge-transfer inefficiency (CTI) has increased at an average annual rate of only 3.2x 10(exp -6) (2.3 percent) for the front-illuminated CCDs and 1.0x10(exp -6) (6.7 percent) for the back-illuminated CCDs. This paper describes the current status of the Chandra radiation-management program, emphasizing enhancements implemented since the previous papers

    BASIL: A Toolbox for Perfusion Quantification using Arterial Spin Labelling

    Get PDF
    Arterial Spin Labelling (ASL) MRI is now an established non-invasive method to quantify cerebral blood flow and is increasingly being used in a variety of neuroimaging applications. With standard ASL acquisition protocols widely available, there is a growing interest in advanced options that offer added quantitative precision and information about haemodynamics beyond perfusion. In this article we introduce the BASIL toolbox, a research tool for the analysis of ASL data included within the FMRIB Software Library (FSL) and explain its operation in a variety of typical use cases. BASIL is not offered as a clinical tool, and nor is this work intended to guide the clinical application of ASL. Built around a Bayesian model-based inference algorithm, the toolbox is designed to quantify perfusion and other haemodynamic measures, such as arterial transit times, from a variety of possible ASL input data, particularly exploiting the information available in more advanced multi-delay acquisitions. At its simplest, the BASIL toolbox offers a graphical user interface that provides the analysis options needed by most users; through command line tools, it offers more bespoke options for users needing customised analyses. As part of FSL, the toolbox exploits a range of complementary neuroimaging analysis tools so that ASL data can be easily integrated into neuroimaging studies and used alongside other modalities
    corecore