434 research outputs found

    Reliability and validity of the progress questionnaire: an adaptation of the outcome questionnaire

    Get PDF
    Patient- focused research is a methodology that involves the regular measurement of patient progress in treatment and the provision of feedback to clinicians to allow modification of interventions to maximize outcomes. A critical component of patient focused research endeavors is the availability of psychometrically sound assessment questionnaires, and one such measure is the Outcome Questionnaire (OQ-45.2). This investigation was comprised of three studies. Study 1 examined the factor structure and internal consistency of the Progress Questionnaire (PQ), an adaptation of the OQ-45.2, in 278 patients seeking psychotherapy and/or medication management services at a large, urban outpatient mental health clinic. Study 2 examined the factor structure and internal consistency of the OQ-45.2 in a sample of 450 patients receiving outpatient psychotherapy in numerous locations. Study 3 examined the temporal stability of the factor structure of the OQ-45.2. The PQ and OQ-45.2 were found to possess desirable estimates of internal consistency, similar to those previously reported for the OQ-45.2. The theoretically derived three factor structure of the OQ-45.2 was submitted to Confirmatory Factor Analysis (CFA) and found to be implausible for the PQ and the OQ-45.2. The studies next turned to exploratory procedures so as to investigate the empirical factor structures of the questionnaires. Results of a Principle Components Analysis (PCA) with Promax rotation revealed that the PQ was comprised of ten correlated factors accounting for 60% of the observed variance. Similarly, the OQ-45.2 was comprised of nine correlated factors accounting for 62% of the observed variance. The sample size in Study 2 permitted validation of this factor structure through CFA. The nine factor model provided significantly improved fit to the three factor model previously tested but was still implausible. Study 3 found that the ninefactor structure obtained with baseline data was not stable when imposed on a sample of data from the fourth assessment. The results suggest that the PQ is statistically less effective than the OQ-45.2, and further use of the modified version is not recommended. Possible explanations for the poor fit of the factor structures are offered, and guidelines are provided for future psychometric studies examining the OQ-45.2.Ph.D., Clinical Psychology -- Drexel University, 200

    Spitzer and near-infrared observations of a new bi-polar protostellar outflow in the Rosette Molecular Cloud

    Full text link
    We present and discuss \emph{Spitzer} and near-infrared H2_{2} observations of a new bi-polar protostellar outflow in the Rosette Molecular Cloud. The outflow is seen in all four IRAC bands and partially as diffuse emission in the MIPS 24 Ό\mum band. An embedded MIPS 24 Ό\mum source bisects the outflow and appears to be the driving source. This source is coincident with a dark patch seen in absorption in the 8 Ό\mum IRAC image. \emph{Spitzer} IRAC color analysis of the shocked emission was performed from which thermal and column density maps of the outflow were constructed. Narrow-band near-infrared (NIR) images of the flow reveal H2_2 emission features coincident with the high temperature regions of the outflow. This outflow has now been given the designation MHO 1321 due to the detection of NIR H2_2 features. We use these data and maps to probe the physical conditions and structure of the flow.Comment: Accepted for publication in The Astrophysical Journa

    In search for the missing arc root of the Southern California Batholith: P-T-t evolution of upper mantle xenoliths of the Colorado Plateau Transition Zone

    Get PDF
    Xenolith and seismic studies provide evidence for tectonic erosion and eastward displacement of lower crust-subcontinental mantle lithosphere (LC-SCML) underlying the Mojave Desert Region (i.e. southern California batholith (SCB)). Intensified traction associated with the Late Cretaceous flattening of the subducting Farallon plate, responsible for deforming the SW U.S., likely played a key role in “bulldozing” the tectonically eroded LC-SCML ∌500 km eastwards, to underneath the Colorado Plateau Transition Zone (CPTZ) and further inboard. The garnet clinopyroxenite xenoliths from two CPTZ localities, Chino Valley and Camp Creek (central Arizona), provide a rare glimpse of the material underlying the CPTZ. Thermodynamic modeling, in addition to major and trace element thermobarometry, suggests that the xenoliths experienced peak conditions of equilibration at 600-900 °C and 12-28 kbar. These peak conditions, along with the composition of the xenoliths (type “B” garnet and diopsidic clinopyroxene) strongly suggest a continental arc residue (“arclogite”), rather than a lower plate subduction (“eclogite”), origin. A bimodal zircon U-Pb age distribution with peaks at ca. 75 and 150 Ma, and a Jurassic Sm-Nd garnet age (154 ± 16 Ma, with initial ΔNd value of +8) overlaps eastern SCB pluton ages and suggests a consanguineous relationship. Cenozoic zircon U-Pb ages, REE geochemistry of zircon grains, and partially re-equilibrated Sm-Nd garnet ages indicate that displaced arclogite remained at elevated PT conditions (>700 °C) for 10s of Myr following its dispersal until late Oligocene entrainment in host latite. With a ∌100 Myr long thermal history overlapping that of the SCB and the CPTZ, these assemblages also contain evidence for late-stage hydration (e.g. secondary amphibole), potentially driven by de-watering of the Laramide slab. In light of these results, we suggest that the CPTZ arclogite originates from beneath the eastern half of the SCB, where it began forming in Late Jurassic time as mafic keel to continental arc magmas. The displacement and re-affixation of the arclogites further inboard during the Late Cretaceous flat slab subduction, might have contributed to the tectonic stability of the Colorado Plateau relative to adjacent geologic provinces through Laramide time and likely preconditioned the region to Cenozoic tectonism, e.g. present-day delamination beneath the plateau, high-magnitude extension and formation of metamorphic core complexes

    Characteristics and drivers of high-altitude ladybird flight: insights from vertical-looking entomological radar

    Get PDF
    Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range-shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends) and drivers (aphid abundance, air temperature, wind speed and rainfall) of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis). These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ~1100 m above ground level, where displacement speeds of up to ~60 km/h were recorded, however most ladybirds were found between ~150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a "typical" high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high-altitude insect flight and has important implications for predicting long-distance dispersal. © 2013 Jeffries et al

    Burnout and Mental Health Stigma among Juvenile Probation Officers: The Moderating Effect of Participatory Atmosphere

    Get PDF
    Despite high rates of mental health problems among juvenile justice-involved youth, mental health stigma among juvenile probation officers (JPOs) is under-studied. This cross-sectional study examined effects of job burnout and workplace participatory atmosphere on mental health stigma among JPOs across Indiana (n = 226). Participatory atmosphere moderated the relationship between JPO burnout-related cynicism and mental health stigma (interaction ÎČ = - 0.14, p = .04); burnout was related to greater mental health stigma at low levels of participatory atmosphere. Findings suggest participatory atmosphere mitigates effects of burnout on mental health stigma among JPOs. Organizational-level interventions might help to reduce mental health stigma and combat negative effects from burnout among JPOs

    The Luminosities of Protostars in the Spitzer c2d and Gould Belt Legacy Clouds

    Get PDF
    Motivated by the long-standing "luminosity problem" in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate Lbol for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 Lsun - 69 Lsun, and has a mean and median of 4.3 Lsun and 1.3 Lsun, respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (Lbol < 0.5 Lsun) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 um < wavelength < 850 um) and have Lbol underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35% - 40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased dataset should aid such future work.Comment: Accepted for publication in AJ. 21 pages, 10 figures, 4 table

    Strongly aligned gas-phase molecules at Free-Electron Lasers

    Full text link
    We demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the Linac Coherent Light Source. Chirped laser pulses, i. e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2,5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of \left = 0.85 was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.Comment: 10 pages, 5 figure

    On the Clustering of Sub-millimeter Galaxies

    Get PDF
    We measure the angular two-point correlation function of sub-millimeter galaxies (SMGs) from 1.1-millimeter imaging of the COSMOS field with the AzTEC camera and ASTE 10-meter telescope. These data yields one of the largest contiguous samples of SMGs to date, covering an area of 0.72 degrees^2 down to a 1.26 mJy/beam (1-sigma) limit, including 189 (328) sources with S/N greater than 3.5 (3). We can only set upper limits to the correlation length r_0, modeling the correlation function as a power-law with pre-assigned slope. Assuming existing redshift distributions, we derive 68.3% confidence level upper limits of r_0 < 6-8 h^-1 Mpc at 3.7 mJy, and r_0 < 11-12 h^-1 Mpc at 4.2 mJy. Although consistent with most previous estimates, these upper limits imply that the real r_0 is likely smaller. This casts doubts on the robustness of claims that SMGs are characterized by significantly stronger spatial clustering, (and thus larger mass), than differently selected galaxies at high-redshift. Using Monte Carlo simulations we show that even strongly clustered distributions of galaxies can appear unclustered when sampled with limited sensitivity and coarse angular resolution common to current sub-millimeter surveys. The simulations, however, also show that unclustered distributions can appear strongly clustered under these circumstances. From the simulations, we predict that at our survey depth, a mapped area of two degrees^2 is needed to reconstruct the correlation function, assuming smaller beam sizes of future surveys (e.g. the Large Millimeter Telescope's 6" beam size). At present, robust measures of the clustering strength of bright SMGs appear to be below the reach of most observations.Comment: 23 pages, 8 figures, accepted for publication in The Astrophysical Journa

    The SPLASH Survey: Kinematics of Andromeda's Inner Spheroid

    Full text link
    The combination of large size, high stellar density, high metallicity, and Sersic surface brightness profile of the spheroidal component of the Andromeda galaxy (M31) within R_proj ~ 20 kpc suggest that it is unlike any subcomponent of the Milky Way. In this work we capitalize on our proximity to and external view of M31 to probe the kinematical properties of this "inner spheroid." We employ a Markov chain Monte Carlo (MCMC) analysis of resolved stellar kinematics from Keck/DEIMOS spectra of 5651 red giant branch stars to disentangle M31's inner spheroid from its stellar disk. We measure the mean velocity and dispersion of the spheroid in each of five spatial bins after accounting for a locally cold stellar disk as well as the Giant Southern Stream and associated tidal debris. For the first time, we detect significant spheroid rotation (v_rot ~ 50 km/s) beyond R_proj ~ 5 kpc. The velocity dispersion decreases from about 140 km/s at R_proj = 7 kpc to 120 km/s at R_proj = 14 kpc, consistent to 2 sigma with existing measurements and models. We calculate the probability that a given star is a member of the spheroid and find that the spheroid has a significant presence throughout the spatial extent of our sample. Lastly, we show that the flattening of the spheroid is due to velocity anisotropy in addition to rotation. Though this suggests that the inner spheroid of M31 more closely resembles an elliptical galaxy than a typical spiral galaxy bulge, it should be cautioned that our measurements are much farther out (2 - 14 r_eff) than for the comparison samples.Comment: Accepted for publication in Ap
    • 

    corecore