3,579 research outputs found
Pigment analysis by Raman microscopy and portable X-ray fluorescence (pXRF) of thirteenth to fourteenth century illuminations and cuttings from Bologna
Non-destructive pigment analysis by Raman microscopy (RM) and portable X-ray fluorescence (pXRF) has been carried out on some Bolognese illuminations and cuttings chosen to represent the beginnings, evolution and height of Bolognese illuminated manuscript production. Dating to the thirteenth and fourteenth centuries and held in a private collection, the study provides evidence for the pigments generally used in this period. The results, which are compared with those obtained for other north Italian artwork, show the developments in usage of artistic materials and technique. Also addressed in this study is an examination of the respective roles of RM and pXRF analysis in this area of technical art history
Differential elastic scattering cross sections for 54.9eV positrons incident on helium
Absolute differential elastic scattering cross sections measured with the 3-m, high resolution, time-of-flight spectrometer are presented for 54.9eV positrons incident on He. Five point moving average differential cross sections are plotted against average scattering angles which range from 14 to 36 deg. Also the averages of five differential cross sections which have adjacent values of scattering angle are plotted versus the corresponding averages of the scattering angles. The curve fitted to these data is shaped like the theoretical curve but has its minimum and its maximum at scattering angles that are about 4 deg higher and 15 deg lower respectively than predicted by theory
K2P A photometry pipeline for the K2 mission
With the loss of a second reaction wheel, resulting in the inability to point
continuously and stably at the same field of view, the NASA Kepler satellite
recently entered a new mode of observation known as the K2 mission. The data
from this redesigned mission present a specific challenge; the targets
systematically drift in position on a ~6 hour time scale, inducing a
significant instrumental signal in the photometric time series --- this greatly
impacts the ability to detect planetary signals and perform asteroseismic
analysis. Here we detail our version of a reduction pipeline for K2 target
pixel data, which automatically: defines masks for all targets in a given
frame; extracts the target's flux- and position time series; corrects the time
series based on the apparent movement on the CCD (either in 1D or 2D) combined
with the correction of instrumental and/or planetary signals via the KASOC
filter (Handberg & Lund 2014), thus rendering the time series ready for
asteroseismic analysis; computes power spectra for all targets, and identifies
potential contaminations between targets. From a test of our pipeline on a
sample of targets from the K2 campaign 0, the recovery of data for multiple
targets increases the amount of potential light curves by a factor .
Our pipeline could be applied to the upcoming TESS (Ricker et al. 2014) and
PLATO 2.0 (Rauer et al. 2013) missions.Comment: 14 pages, 20 figures, Accepted for publication in The Astrophysical
Journal (Apj
Asteroseismic surface gravity for evolved stars
Context: Asteroseismic surface gravity values can be of importance in
determining spectroscopic stellar parameters. The independent log(g) value from
asteroseismology can be used as a fixed value in the spectroscopic analysis to
reduce uncertainties due to the fact that log(g) and effective temperature can
not be determined independently from spectra. Since 2012, a combined analysis
of seismically and spectroscopically derived stellar properties is ongoing for
a large survey with SDSS/APOGEE and Kepler. Therefore, knowledge of any
potential biases and uncertainties in asteroseismic log(g) values is now
becoming important. Aims: The seismic parameter needed to derive log(g) is the
frequency of maximum oscillation power (nu_max). Here, we investigate the
influence of nu_max derived with different methods on the derived log(g)
values. The large frequency separation between modes of the same degree and
consecutive radial orders (Dnu) is often used as an additional constraint for
the determination of log(g). Additionally, we checked the influence of small
corrections applied to Dnu on the derived values of log(g). Methods We use
methods extensively described in the literature to determine nu_max and Dnu
together with seismic scaling relations and grid-based modeling to derive
log(g). Results: We find that different approaches to derive oscillation
parameters give results for log(g) with small, but different, biases for
red-clump and red-giant-branch stars. These biases are well within the quoted
uncertainties of ~0.01 dex (cgs). Corrections suggested in the literature to
the Dnu scaling relation have no significant effect on log(g). However somewhat
unexpectedly, method specific solar reference values induce biases of the order
of the uncertainties, which is not the case when canonical solar reference
values are used.Comment: 8 pages, 5 figures, accepted for publication by A&
Spectroscopic measurements of temperature and plasma impurity concentration during magnetic reconnection at the Swarthmore Spheromak Experiment
Electron temperature measurements during counterhelicity spheromak merging studies at the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)] are presented. VUV monochromator measurements of impurity emission lines are compared with model spectra produced by the non-LTE excitation kinematics code PRISMSPECT [J. J. MacFarlane et al., in Proceedings of the Third Conference on Inertial Fusion Science and Applications (2004)] to yield the electron temperature in the plasma with 1 µs time resolution. Average T_e is seen to increase from 12 to 19 eV during spheromak merging. Average C III ion temperature, measured with a new ion Doppler spectrometer (IDS) [C. D. Cothran et al., Rev. Sci. Instrum. 77, 063504 (2006)], likewise rises during spheromak merging, peaking at ~22 eV, but a similar increase in T_i is seen during single spheromak discharges with no merging. The VUV emission line measurements are also used to constrain the concentrations of various impurities in the SSX plasma, which are dominated by carbon, but include some oxygen and nitrogen. A burst of soft x-ray emission is seen during reconnection with a new four-channel detector (SXR). There is evidence for spectral changes in the soft x-ray emission as reconnection progresses, although our single-temperature equilibrium spectral models are not able to provide adequate fits to all the SXR data
Variation in the frequency separations with activity and impact on stellar parameter determination
Frequency separations used to infer global properties of stars through
asteroseismology can change depending on the strength and at what epoch of the
stellar cycle the p-mode frequencies are measured. In the Sun these variations
have been seen, even though the Sun is a low-activity star. In this paper, we
discuss these variations and their impact on the determination of the stellar
parameters (radius, mass and age) for the Sun. Using the data from maximum and
minimum activity, we fitted an age for the Sun that differs on average by 0.2
Gyr: slightly older during minimum activity. The fitted radius is also lower by
about 0.5% for the solar effective temperature during minimum.Comment: to be published in JPCS to be published in JPC
The onset of solar cycle 24: What global acoustic modes are telling us
We study the response of the low-degree, solar p-mode frequencies to the
unusually extended minimum of solar surface activity since 2007. A total of
4768 days of observations collected by the space-based, Sun-as-a-star
helioseismic GOLF instrument are analyzed. A multi-step iterative
maximum-likelihood fitting method is applied to subseries of 365 days and 91.25
days to extract the p-mode parameters. Temporal variations of the l=0, 1, and 2
p-mode frequencies are then obtained from April 1996 to May 2009. While the
p-mode frequency shifts are closely correlated with solar surface activity
proxies during the past solar cycles, the frequency shifts of the l=0 and l=2
modes show an increase from the second half of 2007, when no significant
surface activity is observable. On the other hand, the l=1 modes follow the
general decreasing trend of the solar surface activity. The different
behaviours between the l=0 and l=2 modes and the l=1 modes can be interpreted
as different geometrical responses to the spatial distribution of the solar
magnetic field beneath the surface of the Sun. The analysis of the low-degree,
solar p-mode frequency shifts indicates that the solar activity cycle 24
started late 2007, despite the absence of activity on the solar surface.Comment: To be accepted by A&A (with minor revisions), 4 pages, 3 figures, 1
tabl
Total cross sections for positrons scattered elastically from helium based on new measurements of total ionization cross sections
An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease
Sounding stellar cycles with Kepler - I. Strategy for selecting targets
The long-term monitoring and high photometric precision of the Kepler
satellite will provide a unique opportunity to sound the stellar cycles of many
solar-type stars using asteroseismology. This can be achieved by studying
periodic changes in the amplitudes and frequencies of the oscillation modes
observed in these stars. By comparing these measurements with conventional
ground-based chromospheric activity indices, we can improve our understanding
of the relationship between chromospheric changes and those taking place deep
in the interior throughout the stellar activity cycle. In addition,
asteroseismic measurements of the convection zone depth and differential
rotation may help us determine whether stellar cycles are driven at the top or
at the base of the convection zone. In this paper, we analyze the precision
that will be possible using Kepler to measure stellar cycles, convection zone
depths, and differential rotation. Based on this analysis, we describe a
strategy for selecting specific targets to be observed by the Kepler
Asteroseismic Investigation for the full length of the mission, to optimize
their suitability for probing stellar cycles in a wide variety of solar-type
stars.Comment: accepted for publication in MNRA
NGC 6819: testing the asteroseismic mass scale, mass loss, and evidence for products of non-standard evolution
We present an extensive peakbagging effort on Kepler data of 50 red
giant stars in the open star cluster NGC 6819. By employing sophisticated
pre-processing of the time series and Markov Chain Monte Carlo techniques we
extracted individual frequencies, heights and linewidths for hundreds of
oscillation modes.
We show that the "average" asteroseismic parameter , derived
from these, can be used to distinguish the stellar evolutionary state between
the red giant branch (RGB) stars and red clump (RC) stars.
Masses and radii are estimated using asteroseismic scaling relations, both
empirically corrected to obtain self-consistency as well as agreement with
independent measures of distance, and using updated theoretical corrections.
Remarkable agreement is found, allowing the evolutionary state of the giants to
be determined exclusively from the empirical correction to the scaling
relations. We find a mean mass of the RGB stars and RC stars in NGC 6819 to be
and ,
respectively. The difference is
almost insensitive to systematics, suggesting very little RGB mass loss, if
any.
Stars that are outliers relative to the ensemble reveal overmassive members
that likely evolved via mass-transfer in a blue straggler phase. We suggest
that KIC 4937011, a low-mass Li-rich giant, is a cluster member in the RC phase
that experienced very high mass-loss during its evolution. Such over- and
undermassive stars need to be considered when studying field giants, since the
true age of such stars cannot be known and there is currently no way to
distinguish them from normal stars.Comment: 21 pages, 11 figure
- …
