336 research outputs found

    p70 S6 kinase and actin dynamics: A perspective

    Get PDF
    p70 S6 kinase (p70S6K), a member of the AGC serine/threonine kinase family, was initially identified as a key player, together with its downstream effector S6, in the regulation of cellular growth and survival. The p70S6K protein has emerged in recent years as a multifunctional protein which also regulates the actin cytoskeleton and thus plays a role in cell migration. This new function is through two important activities of p70S6K, namely actin cross-linking and Rac1 and Cdc42 activation. The testis is critically dependent on an intricate balance of fundamental cellular processes such as adhesion, migration, and differentiation. It is increasingly evident that Rho GTPases and actin binding proteins play fundamental roles in regulating spermatogenesis within the testis. In this review, we will discuss current findings of p70S6K in the control of actin cytoskeleton dynamics. In addition, the potential role of p70S6K in spermatogenesis and testicular function will be highlighted

    Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects

    Get PDF
    A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Cortactin and phagocytosis in isolated Sertoli cells

    Get PDF
    BACKGROUND: Cortactin, an actin binding protein, has been associated with Sertoli cell ectoplasmic specializations in vivo, based on its immunolocalization around the heads of elongated spermatids, but not previously identified in isolated Sertoli cells. In an in vitro model of Sertoli cell-spermatid binding, cortactin was identified around debris and dead germ cells. Based on this observation, we hypothesized that this actin binding protein may be associated with a non-junction-related physiological function, such as phagocytosis. The purpose of this study was to identify the presence and distribution of cortactin in isolated rat Sertoli cells active in phagocytic activity following the addition of 0.8 μm latex beads. RESULTS: Sertoli cell monocultures were incubated with or without follicle stimulating hormone (FSH; 0.1 μg/ml) in the presence or absence of cytochalasin D (2 μM), as an actin disrupter. Cortactin was identified by standard immunostaining with anti-cortactin, clone 4F11 (Upstate) after incubation times of 15 min, 2 hr, and 24 hr with or without beads. Cells exposed to no hormone and no beads appeared to have a ubiquitous distribution of cortactin throughout the cytoplasm. In the presence of cytochalasin D, cortactin immunostaining was punctate and distributed in a pattern similar to that reported for actin in cells exposed to cytochalasin D. Sertoli cells not exposed to FSH, but activated with beads, did not show cortactin immunostaining around the phagocytized beads at any of the time periods. FSH exposure did not alter the distribution of cortactin within Sertoli cells, even when phagocytic activity was upregulated by the presence of beads. CONCLUSION: Results of this study suggest cortactin is not associated with peripheralized actin at junctional or phagocytic sites. Further studies are necessary to clarify the role of cortactin in Sertoli cells

    Assessing the health and development of ART-conceived young adults: A study of feasibility, parent recall, and acceptability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Assisted reproductive technologies (ART) to treat infertility have been available for nearly three decades. There have been a number of systematic comparisons of the health and development of ART-conceived with spontaneously-conceived (SC) children. Data are equivocal, some finding no differences and others that there are more health and developmental problems in the ART group. It is agreed that perinatal mortality and morbidity are worse after assisted than spontaneous conception and the impact of the hormonally altered intrauterine environment on puberty and later fertility of offspring are unknown. To date however, there has been no investigation of the health and development of ART-conceived young adults, including from the world's few prospective cohorts of ART conceived children. Obtaining these data requires contact to be made with people at least twenty years after discharge from the treating service. Given the ethical difficulties of approaching families to participate in research up to two decades after cessation of treatment, the aim of this exploratory qualitative investigation was to assess the feasibility and acceptability of approaching mothers treated for infertility prior to 1988, and their recall of the health and development of their ART-conceived young adult children.</p> <p>Methods</p> <p>Mothers treated for infertility at the Royal Women's Hospital Reproductive Biology Unit in Melbourne, Australia prior to 1988 were approached by a senior clinician and invited to participate in individual semi-structured interviews which could include their partners and/or young adult children if they wished. Recruitment continued until theoretic saturation had been reached.</p> <p>Results</p> <p>Ten mothers, two of their husbands and five young adults participated in interviews, and the health and development of 15 ART-conceived young adults were described. The experience of conception, pregnancy, birth and the health and development of the children were recalled vividly and in detail. Families were pleased to have been approached and supported the need for systematic data collection. Mode of conception had been disclosed from childhood to all the offspring.</p> <p>Conclusion</p> <p>With careful and sensitive recruitment strategies it is feasible and acceptable to contact women treated for infertility at least two decades ago and their families, to assess the health and development of ART-conceived young adults.</p

    Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS) tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder.</p> <p>Results</p> <p>The activity of small neuronal ensembles (6-18 cells) over brief time intervals (2-50 ms) contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison). The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals.</p> <p>Conclusion</p> <p>The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.</p

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Accounting for Ecosystem Alteration Doubles Estimates of Conservation Risk in the Conterminous United States

    Get PDF
    Previous national and global conservation assessments have relied on habitat conversion data to quantify conservation risk. However, in addition to habitat conversion to crop production or urban uses, ecosystem alteration (e.g., from logging, conversion to plantations, biological invasion, or fire suppression) is a large source of conservation risk. We add data quantifying ecosystem alteration on unconverted lands to arrive at a more accurate depiction of conservation risk for the conterminous United States. We quantify ecosystem alteration using a recent national assessment based on remote sensing of current vegetation compared with modeled reference natural vegetation conditions. Highly altered (but not converted) ecosystems comprise 23% of the conterminous United States, such that the number of critically endangered ecoregions in the United States is 156% higher than when calculated using habitat conversion data alone. Increased attention to natural resource management will be essential to address widespread ecosystem alteration and reduce conservation risk

    Multisensory and Motor Representations in Rat Oral Somatosensory Cortex

    Get PDF
    Abstract In mammals, a complex array of oral sensors assess the taste, temperature and haptic properties of food. Although the representation of taste has been extensively studied in the gustatory cortex, it is unclear how the somatosensory cortex encodes information about the properties of oral stimuli. Moreover, it is poorly understood how different oral sensory modalities are integrated and how sensory responses are translated into oral motor actions. To investigate whether oral somatosensory cortex processes food-related sensations and movements, we performed in vivo whole-cell recordings and motor mapping experiments in rats. Neurons in oral somatosensory cortex showed robust post-synaptic and sparse action potential responses to air puffs. Membrane potential showed that cold water evoked larger responses than room temperature or hot water. Most neurons showed no clear tuning of responses to bitter, sweet and neutral gustatory stimuli. Finally, motor mapping experiments with histological verification revealed an initiation of movements related to food consumption behavior, such as jaw opening and tongue protrusions. We conclude that somatosensory cortex: (i) provides a representation of the temperature of oral stimuli, (ii) does not systematically encode taste information and (iii) influences orofacial movements related to food consummatory behavior
    corecore