4,265 research outputs found
A pro-drug of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) prevents differentiated SH-SY5Y cells from toxicity induced by 6-hydroxydopamine
Regular consumption of green tea benefits people in prevention from cardiovascular disorders, obesity as well as neurodegenerative diseases. (-)-Epigallocatechin-3-gallate (EGCG) is regarded as the most biologically active catechin in green tea. However, the stability and bioavailability of EGCG are restricted. The purpose of the present study was to investigate whether a pro-drug, a fully acetylated EGCG (pEGCG), could be more effective in neuroprotection in Parkinsonism mimic cellular model. Retinoic acid (RA)-differentiated neuroblastoma SH-SY5Y cells were pre-treated with different concentrations of EGCG and pEGCG for 30 min and followed by incubation of 25 μM 6-hydroxydopamine (6-OHDA) for 24 h. We found that a broad dosage range of pEGCG (from 0.1 to 10 μM) could significantly reduce lactate dehydrogenase release. Likewise, 10 μM of pEGCG was effective in reducing caspase-3 activity, while EGCG at all concentrations tested in the model failed to attenuate caspase-3 activity induced by 6-OHDA. Furthermore, Western-blot analysis showed that Akt could be one of the specific signaling pathways stimulated by pEGCG in neuroprotection. It was demonstrated that 25 μM of 6-OHDA significantly suppressed the phosphorylation level of Akt. Only pEGCG at 10 μM markedly increased its phosphorylation level compared to 6-OHDA alone. Taken together, as pEGCG has higher stability and bioavailbility for further investigation, it could be a potential neuroprotective agent and our current findings may offer certain clues for optimizing its application in future. © 2009 Elsevier Ireland Ltd. All rights reserved.postprin
Evidence for variation in the effective population size of animal mitochondrial DNA
Background: It has recently been shown that levels of diversity in mitochondrial DNA are remarkably constant across animals of diverse census population sizes and ecologies, which has led to the suggestion that the effective population of mitochondrial DNA may be relatively constant. Results: Here we present several lines of evidence that suggest, to the contrary, that the effective population size of mtDNA does vary, and that the variation can be substantial. First, we show that levels of mitochondrial and nuclear diversity are correlated within all groups of animals we surveyed. Second, we show that the effectiveness of selection on non-synonymous mutations, as measured by the ratio of the numbers of non-synonymous and synonymous polymorphisms, is negatively correlated to levels of mitochondrial diversity. Finally, we estimate the effective population size of mitochondrial DNA in selected mammalian groups and show that it varies by at least an order of magnitude. Conclusions: We conclude that there is variation in the effective population size of mitochondria. Furthermore we suggest that the relative constancy of DNA diversity may be due to a negative correlation between the effective population size and the mutation rate per generation
Ruthenium polypyridyl complexes and their modes of interaction with DNA : is there a correlation between these interactions and the antitumor activity of the compounds?
Various interaction modes between a group of six ruthenium polypyridyl complexes and DNA have been studied using a number of spectroscopic techniques. Five mononuclear species were selected with formula [Ru(tpy) L1L2](2-n)?, and one closely related dinuclear cation of formula [{Ru(apy)(tpy)}2{l-H2N(CH2)6NH2}]4?. The ligand tpy is 2,20:60,200-terpyridine and the ligand L1 is a bidentate ligand, namely, apy (2,20-azobispyridine), 2-phenylazopyridine, or 2-phenylpyridinylmethylene amine. The ligand L2 is a labile monodentate ligand, being Cl-, H2O, or CH3CN. All six species containing a labile L2 were found to be able to coordinate to the DNA model base 9-ethylguanine by 1H NMR and mass spectrometry. The dinuclear cationic species, which has no positions available for coordination to a DNA base, was studied for comparison purposes. The interactions between a selection of four representative complexes and calf-thymus DNA were studied by circular and linear dichroism. To explore a possible relation between DNA-binding ability and toxicity, all compounds were screened for anticancer activity in a variety of cancer cell lines, showing in some cases an activity which is comparable to that of cisplatin. Comparison of the details of the compound structures, their DNA binding, and their toxicity allows the exploration of structure–activity relationships that might be used to guide optimization of the activity of agents of this class of compounds
Oral Delivery of Photopolymerizable Nanogels Loaded with Gemcitabine for Pancreatic Cancer Therapy: Formulation Design, and in vitro and in vivo Evaluations
Adi Yugatama,1,2,* Ya-Lin Huang,1,* Ming-Jen Hsu,3 Jia-Pei Lin,1 Fang-Ching Chao,4 Jenny KW Lam,5 Chien-Ming Hsieh1,5,6 1School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan; 2Department of Pharmacy, Sebelas Maret University, Surakarta, 57126, Indonesia; 3Department of Pharmacology, Taipei Medical University, Taipei, 11031, Taiwan; 4CNRS UMR 8612, Institut Galien Paris-Saclay, Université Paris-Saclay, Orsay, 91400, France; 5Department of Pharmaceutics, School of Pharmacy, University College, London, WC1N 1AX, UK; 6Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan*These authors contributed equally to this workCorrespondence: Jenny KW Lam, Department of Pharmaceutics, School of Pharmacy, University College London, 29– 39 Brunswick Square, London, WC1N 1AX, UK, Email [email protected] Chien-Ming Hsieh, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan, Email [email protected]: Gemcitabine (GEM) faces challenges of poor oral bioavailability and extensive first-pass metabolism. Currently, only injectable formulations are available for clinical use. Hence, there is an urgent demand for the development of advanced, efficacious, and user-friendly dosage forms to maintain its status as the primary treatment for pancreatic ductal adenocarcinoma (PDAC). Nanogels (NGs) offer a novel oral drug delivery system, ideal for hydrophilic compounds like GEM. This study aims to develop NGs tailored for GEM delivery, with the goal of enhancing cellular uptake and gastrointestinal permeability for improved administration in PDAC patients.Methods: We developed cross-linked NGs via photopolymerization of methacryloyl for drug delivery of GEM. We reveal characterization, cytotoxicity, and cellular uptake studies in Caco-2 and MIA PaCa-2 cells. In addition, studies of in vitro permeability and pharmacokinetics were carried out to evaluate the bioavailability of the drug.Results: Our results show NGs, formed via photopolymerization of methacryloyl, had a spherical shape with a size of 233.91± 7.75 nm. Gemcitabine-loaded NGs (NGs-GEM) with 5% GelMA exhibited efficient drug loading (particle size: 244.07± 19.52 nm). In vitro drug release from NGs-GEM was slower at pH 1.2 than pH 6.8. Cellular uptake studies indicated significantly enhanced uptake in both MIA PaCa-2 and Caco-2 cells. While there was no significant difference in GEM’s AUC and Cmax between NGs-GEM and free-GEM groups, NGs-GEM showed markedly lower dFdU content (10.07 hr∙μg/mL) compared to oral free-GEM (19.04 hr∙μg/mL) after oral administration (p< 0.01), highlighting NGs’ efficacy in impeding rapid drug metabolism and enhancing retention.Conclusion: In summary, NGs enhance cellular uptake, inhibit rapid metabolic degradation of GEM, and prolong retention after oral administration. These findings suggest NGs-GEM as a promising candidate for clinical use in oral pancreatic cancer therapy.Keywords: oral delivery, nanogel, gemcitabine, pancreatic cance
Chemo- and Thermosensory Responsiveness of Grueneberg Ganglion Neurons Relies on Cyclic Guanosine Monophosphate Signaling Elements
Neurons of the Grueneberg ganglion (GG) in the anterior nasal region of mouse pups respond to cool temperatures and to a small set of odorants. While the thermosensory reactivity appears to be mediated by elements of a cyclic guanosine monophosphate (cGMP) cascade, the molecular mechanisms underlying the odor-induced responses are unclear. Since odor-responsive GG cells are endowed with elements of a cGMP pathway, specifically the transmembrane guanylyl cyclase subtype GC-G and the cyclic nucleotide-gated ion channel CNGA3, the possibility was explored whether these cGMP signaling elements may also be involved in chemosensory GG responses. Experiments with transgenic mice deficient for GC-G or CNGA3 revealed that GG responsiveness to given odorants was significantly diminished in these knockout animals. These findings suggest that a cGMP cascade may be important for both olfactory and thermosensory signaling in the GG. However, in contrast to the thermosensory reactivity, which did not decline over time, the chemosensory response underwent adaptation upon extended stimulation, suggesting that the two transduction processes only partially overlap. Copyright (C) 2011 S. Karger AG, Base
Estimating Animal Abundance in Ground Beef Batches Assayed with Molecular Markers
Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411∼1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source
Which older people decline participation in a primary care trial of physical activity and why: insights from a mixed methods approach
This article is available through the Brunel Open Access Publishing Fund. Copyright 2014 Rogers et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Physical activity is of vital importance to older peoples’ health. Physical activity intervention studies with older people often have low recruitment, yet little is known about non-participants. Methods: Patients aged 60–74 years from three UK general practices were invited to participate in a nurse-supported pedometer-based walking intervention. Demographic characteristics of 298 participants and 690 non-participants were compared. Health status and physical activity of 298 participants and 183 non-participants who completed a survey were compared using age, sex adjusted odds ratios (OR) (95% confidence intervals). 15 non-participants were interviewed to explore perceived barriers to participation. Results: Recruitment was 30% (298/988). Participants were more likely than non-participants to be female (54% v 47%; p = 0.04) and to live in affluent postcodes (73% v 62% in top quintile; p < 0.001). Participants were more likely than non-participants who completed the survey to have an occupational pension OR 2.06 (1.35-3.13), a limiting longstanding illness OR 1.72 (1.05-2.79) and less likely to report being active OR 0.55 (0.33-0.93) or walking fast OR 0.56 (0.37-0.84). Interviewees supported general practice-based physical activity studies, particularly walking, but barriers to participation included: already sufficiently active, reluctance to walk alone or at night, physical symptoms, depression, time constraints, trial equipment and duration. Conclusion: Gender and deprivation differences suggest some selection bias. However, trial participants reported more health problems and lower activity than non-participants who completed the survey, suggesting appropriate trial selection in a general practice population. Non-participant interviewees indicated that shorter interventions, addressing physical symptoms and promoting confidence in pursuing physical activity, might increase trial recruitment and uptake of practice-based physical activity endeavours.The National Institute for Health Research (NIHR) under its Research for Patient Benefit Programme (Grant Reference Number PB-PG-0909-20055)
Examination of Parental Effect on the Progeny Diapause by Reciprocal Cross Test in the Cabbage Beetle, Colaphellus bowringi
The cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae), a serious pest of crucifers in China, undergoes summer or winter diapause in the soil as an adult. In the present study, the incidence of diapause were measured in reciprocal crosses between a high—diapause strain (HD strain) and a laboratory—selected nondiapausing strain (ND strain) under different photoperiods and temperatures, to explore parental influences on the progeny diapause. Sensitivity to photoperiod in the selected nondiapausing strain was nearly eliminated at 25 °C, whereas sensitivity to temperature of the selected nondiapausing strain was retained under continuous darkness at 20 and 22 °C. Reciprocal crosses between the HD strain and the ND strain showed that the incidence of diapause in the progeny was always intermediate to that of the parents under different photoperiods and temperatures, suggesting that diapause induction was determined by both female and male parents. There was a significant effect of temperature; temperature interacted with reciprocal cross on diapause induction, whereas no significant effect of reciprocal cross was demonstrated. The incidence of diapause in ♀ND × ♂HD was the same as in ♀HD × ♂ND under continuous darkness at 18 °C (100%) and 26 °C (0%), but the former was higher than that in ♀HD × ♂ND under continuous darkness at 22 °C, suggesting that female parent does not exhibit strong influence on the diapause response to temperature. There was a significant effect of photoperiod and reciprocal cross on diapause induction, whereas no significant interactive effect on diapause induction was demonstrated. Incidence of diapause in ♀HD × ♂ND was always higher than in ♀ND × ♂HD at 25 °C and 12:12 L:D, 14:10 L:D, and 16:8 L:D, suggesting a strong maternal influence on the diapause response to photoperiod, though a significant difference was observed only at 14:10 L:D. Our results support the idea that diapause induction is determined by both female and male parents. However, results also indicated that a strong maternal influence on diapause was exhibited only in response to photoperiod
- …