CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
A pro-drug of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) prevents differentiated SH-SY5Y cells from toxicity induced by 6-hydroxydopamine
Authors
TH Chan
RCC Chang
+9 more
J Chao
YS Ho
MJ Huie
CSW Lai
WH Lam
WKW Lau
M Wang
MS Yu
WH Yuen
Publication date
1 January 2010
Publisher
'Elsevier BV'
Doi
Abstract
Regular consumption of green tea benefits people in prevention from cardiovascular disorders, obesity as well as neurodegenerative diseases. (-)-Epigallocatechin-3-gallate (EGCG) is regarded as the most biologically active catechin in green tea. However, the stability and bioavailability of EGCG are restricted. The purpose of the present study was to investigate whether a pro-drug, a fully acetylated EGCG (pEGCG), could be more effective in neuroprotection in Parkinsonism mimic cellular model. Retinoic acid (RA)-differentiated neuroblastoma SH-SY5Y cells were pre-treated with different concentrations of EGCG and pEGCG for 30 min and followed by incubation of 25 μM 6-hydroxydopamine (6-OHDA) for 24 h. We found that a broad dosage range of pEGCG (from 0.1 to 10 μM) could significantly reduce lactate dehydrogenase release. Likewise, 10 μM of pEGCG was effective in reducing caspase-3 activity, while EGCG at all concentrations tested in the model failed to attenuate caspase-3 activity induced by 6-OHDA. Furthermore, Western-blot analysis showed that Akt could be one of the specific signaling pathways stimulated by pEGCG in neuroprotection. It was demonstrated that 25 μM of 6-OHDA significantly suppressed the phosphorylation level of Akt. Only pEGCG at 10 μM markedly increased its phosphorylation level compared to 6-OHDA alone. Taken together, as pEGCG has higher stability and bioavailbility for further investigation, it could be a potential neuroprotective agent and our current findings may offer certain clues for optimizing its application in future. © 2009 Elsevier Ireland Ltd. All rights reserved.postprin
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
The Hong Kong Polytechnic University Pao Yue-kong Library
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ira.lib.polyu.edu.hk:10397...
Last time updated on 10/02/2018
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/67956
Last time updated on 01/06/2016