205 research outputs found
Towards a regional ocean forecasting system for the IBI (Iberia-Biscay-Ireland area): developments and improvements within the ECOOP project framework
The regional ocean operational system remains a key element in downscaling from large scale (global or basin scale) systems to coastal ones. It enables the transition between systems in which the resolution and the resolved physics are quite different. Indeed, coastal applications need a system to predict local high frequency events (inferior to the day) such as storm surges, while deep sea applications need a system to predict large scale lower frequency ocean features. In the framework of the ECOOP project, a regional system for the Iberia-Biscay-Ireland area has been upgraded from an existing V0 version to a V2. This paper focuses on the improvements from the V1 system, for which the physics are close to a large scale basin system, to the V2 for which the physics are more adapted to shelf and coastal issues. Strong developments such as higher regional physics resolution in the NEMO Ocean General Circulation Model for tides, non linear free surface and adapted vertical mixing schemes among others have been implemented in the V2 version. Thus, regional thermal fronts due to tidal mixing now appear in the latest version solution and are quite well positioned. Moreover, simulation of the stratification in shelf areas is also improved in the V2
Direct determination of turbulent burning velocity during aluminum flame propagation: A comparison of three experimental methods
Burning velocity is a key parameter of main flame propagation models. However, its experimental determination while studying propagating dust flame is still challenging. In this work, aluminum flame propagation in a vertical tube is studied. Two aluminum powders with median diameters of 6.2 and 20.7 μm are analyzed for different equivalence ratios with air. The main objective of this work is to compare the methods commonly used in the literature to determine the burning velocity in the case of propagating flames. One of these methods is based on the estimation of the thermal expansion coefficient. This article focuses first on the estimation of this coefficient and presents the limits of considering the adiabatic flame temperature for its estimation. As detailed in the paper, these methods have some limitations and are therefore compared with an innovative method based on a local direct determination of the burning velocity. This local method is based on the measurement of the unburned flow velocity just ahead of the propagating flame front by Time-Resolved Particle Image Velocimetry (TR-PIV). The methods commonly used in the literature mainly underestimate the burning velocity when compared with the local method. The local method is then used to study the influence of the particle size distribution and the equivalence ratio on the turbulent burning velocity. Firstly, we observe that the turbulent burning velocity increases while the flame is propagating in the vertical tube. Furthermore, the turbulent burning velocity with the 6-μm powder is higher than with the 20-μm powder
The Hrs/Stam Complex Acts as a Positive and Negative Regulator of RTK Signaling during Drosophila Development
BACKGROUND: Endocytosis is a key regulatory step of diverse signalling pathways, including receptor tyrosine kinase (RTK) signalling. Hrs and Stam constitute the ESCRT-0 complex that controls the initial selection of ubiquitinated proteins, which will subsequently be degraded in lysosomes. It has been well established ex vivo and during Drosophila embryogenesis that Hrs promotes EGFR down regulation. We have recently isolated the first mutations of stam in flies and shown that Stam is required for air sac morphogenesis, a larval respiratory structure whose formation critically depends on finely tuned levels of FGFR activity. This suggest that Stam, putatively within the ESCRT-0 complex, modulates FGF signalling, a possibility that has not been examined in Drosophila yet. PRINCIPAL FINDINGS: Here, we assessed the role of the Hrs/Stam complex in the regulation of signalling activity during Drosophila development. We show that stam and hrs are required for efficient FGFR signalling in the tracheal system, both during cell migration in the air sac primordium and during the formation of fine cytoplasmic extensions in terminal cells. We find that stam and hrs mutant cells display altered FGFR/Btl localisation, likely contributing to impaired signalling levels. Electron microscopy analyses indicate that endosome maturation is impaired at distinct steps by hrs and stam mutations. These somewhat unexpected results prompted us to further explore the function of stam and hrs in EGFR signalling. We show that while stam and hrs together downregulate EGFR signalling in the embryo, they are required for full activation of EGFR signalling during wing development. CONCLUSIONS/SIGNIFICANCE: Our study shows that the ESCRT-0 complex differentially regulates RTK signalling, either positively or negatively depending on tissues and developmental stages, further highlighting the importance of endocytosis in modulating signalling pathways during development
Convergence in floodplain pond communities indicates different pathways to community assembly
Disturbance can strongly influence ecosystems, yet much remains unknown about the relative importance of key processes (selection, drift, and dispersal) in the recovery of ecological communities following disturbance. We combined field surveys with a field experiment to elucidate mechanisms governing the recovery of aquatic macroinvertebrates in habitats of an alluvial floodplain following flood disturbance. We monitored macroinvertebrates in 24 natural parafluvial habitats over 60 days after a major flood, as well as the colonization of 24 newly-built ponds by macroinvertebrates over 45 days in the same floodplain. We examined the sources of environmental variation and their relative effects on aquatic assemblages using a combination of null models and Mantel tests. We also used a joint species distribution model to investigate the importance of primary metacommunity structuring processes during recovery: selection, dispersal, and drift. Contrary to expectations, we found that beta diversity actually decreased among natural habitats over time after the flood or the creation of the ponds, instead of increasing. This result was despite environmental predictors showing contrasting patterns for explaining community variation over time in the natural habitats compared with the experimental ponds. Flood heterogeneity across the floodplain and spatial scale differences between the experimental ponds and the natural habitats seemingly constrained the balance between deterministic and stochastic processes driving the ecological convergence of assemblages over time. While environmental selection was the dominant structuring process in both groups, biotic interactions also had a prominent influence on community assembly. These findings have profound implications towards understanding metacommunity structuring in riverscapes that includes common linkages between disturbance heterogeneity, spatial scale properties, and community composition
Multiple Integrated Non-clinical Studies Predict the Safety of Lentivirus-Mediated Gene Therapy for \u3b2-Thalassemia
Gene therapy clinical trials require rigorous non-clinical studies in the most relevant models to assess the benefit-to-risk ratio. To support the clinical development of gene therapy for \u3b2-thalassemia, we performed in vitro and in vivo studies for prediction of safety. First we developed newly GLOBE-derived vectors that were tested for their transcriptional activity and potential interference with the expression of surrounding genes. Because these vectors did not show significant advantages, GLOBE lentiviral vector (LV) was elected for further safety characterization. To support the use of hematopoietic stem cells (HSCs) transduced by GLOBE LV for the treatment of \u3b2-thalassemia, we conducted toxicology, tumorigenicity, and biodistribution studies in compliance with the OECD Principles of Good Laboratory Practice. We demonstrated a lack of toxicity and tumorigenic potential associated with GLOBE LV-transduced cells. Vector integration site (IS) studies demonstrated that both murine and human transduced HSCs retain self-renewal capacity and generate new blood cell progeny in the absence of clonal dominance. Moreover, IS analysis showed an absence of enrichment in cancer-related genes, and the genes targeted by GLOBE LV in human HSCs are well known sites of integration, as seen in other lentiviral gene therapy trials, and have not been associated with clonal expansion. Taken together, these integrated studies provide safety data supporting the clinical application of GLOBE-mediated gene therapy for \u3b2-thalassemia
An integrated analysis of surface velocities induced by rainfall in the Séchilienne landslide (Western Alps, France)
International audienceAn integrated analysis on the relationship between rainfall and displacement in the most active area of the Séchilienne unstable slope was performed. This study combines several techniques and models to adequately reproduce the landslide movement induced by the rainfall. The analysis of available time series shows a long term trend and seasonal variations in the displacement, respectively independent and synchronous to precipitations. In particular wavelet analysis highlights that the movement is rather linked to groundwater recharge than to precipitation (rainfall + snowfall), involving then the importance of groundwater process in the area. A first and simple relationship between the water input and the fluctuations of displacements apart from the general trend is shown using a tank model. Moreover, a seasonal analysis of this relationship was performed, showing that displacement rate follows the behavior of the hydrological cycle. Two different models were applied to the long temporal series of extensometric and precipitation data: the FLAME model, from BRGM and the FORESEES model, from Univ. Lausanne. These tools are based on a combined statistical-mechanical approach to predict changes in landslide displacement rates from observed changes in precipitation amounts. The forecasting tool FLAME associates 1) a statistical impulse response (IR) model to simulate the changes in landslide rates by computing a transfer function between the rainfall and the displacements, and 2) a 1D mechanical (ME) model (e.g. visco-plastic rheology), in order to take into account changes in pore water pressures. The performance of different combinations of models was evaluated against observed displacement rates at the selected pilot study area. Our results indicate that both models are able to reproduce, with a high degree of accuracy, the observed displacement pattern in the general kinematic regime. Finally the variability of the results, depending in particular on the input data, is discussed
Col V siRNA Engineered Tenocytes for Tendon Tissue Engineering
The presence of uniformly small collagen fibrils in tendon repair is believed to play a major role in suboptimal tendon healing. Collagen V is significantly elevated in healing tendons and plays an important role in fibrillogenesis. The objective of this study was to investigate the effect of a particular chain of collagen V on the fibrillogenesis of Sprague-Dawley rat tenocytes, as well as the efficacy of Col V siRNA engineered tenocytes for tendon tissue engineering. RNA interference gene therapy and a scaffold free tissue engineered tendon model were employed. The results showed that scaffold free tissue engineered tendon had tissue-specific tendon structure. Down regulation of collagen V α1 or α2 chains by siRNAs (Col5α1 siRNA, Col5α2 siRNA) had different effects on collagen I and decorin gene expressions. Col5α1 siRNA treated tenocytes had smaller collagen fibrils with abnormal morphology; while those Col5α2 siRNA treated tenocytes had the same morphology as normal tenocytes. Furthermore, it was found that tendons formed by coculture of Col5α1 siRNA treated tenocytes with normal tenocytes at a proper ratio had larger collagen fibrils and relative normal contour. Conclusively, it was demonstrated that Col V siRNA engineered tenocytes improved tendon tissue regeneration. And an optimal level of collagen V is vital in regulating collagen fibrillogenesis. This may provide a basis for future development of novel cellular- and molecular biology-based therapeutics for tendon diseases
Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions
In order to identify and quantify key species associated with non-exhaust
emissions and exhaust vehicular emissions, a large comprehensive dataset of
particulate species has been obtained thanks to simultaneous near-road and
urban background measurements coupled with detailed traffic counts and
chassis dynamometer measurements of exhaust emissions of a few in-use
vehicles well-represented in the French fleet. Elemental carbon, brake-wear
metals (Cu, Fe, Sb, Sn, Mn), n-alkanes (C19-C26), light-molecular-weight
polycyclic aromatic hydrocarbons
(PAHs; pyrene, fluoranthene, anthracene) and two hopanes (17α21βnorhopane and
17α21βhopane) are strongly associated with the
road traffic. Traffic-fleet emission factors have been determined for all of
them and are consistent with most recent published equivalent data. When
possible, light-duty- and heavy-duty-traffic emission factors are also
determined. In the absence of significant non-combustion emissions, light-duty-traffic
emissions are in good agreement with emissions from chassis
dynamometer measurements. Since recent measurements in Europe including those
from this study are consistent, ratios involving copper (Cu∕Fe and Cu∕Sn)
could be used as brake-wear emissions tracers as long as brakes with Cu
remain in use. Near the Grenoble ring road, where the traffic was largely
dominated by diesel vehicles in 2011 (70 %), the OC∕EC ratio estimated for
traffic emissions was around 0.4. Although the use of quantitative data for
source apportionment studies is not straightforward for the identified
organic molecular markers, their presence seems to well-characterize fresh
traffic emissions.</p
- …
