19 research outputs found

    Sunlight-Active BiOI Photocatalyst as an Efficient Adsorbent for the Removal of Organic Dyes and Antibiotics from Aqueous Solutions

    No full text
    A bismuth oxyiodide (BiOI) photocatalyst with excellent sunlight-driven performance was synthesized by a solvothermal route without the addition of surfactants or capping agents. The prepared photocatalyst exhibited a tetragonal phase with an energy band gap of 2.15 eV. The efficiency of the photocatalyst was elucidated by monitoring the photodegradation of organic dyes and antibiotics. The BiOI photocatalyst provided a 95% removal of norfloxacin (NOR) antibiotics under visible light illumination. Interestingly, the complete removal of Rhodamine B (RhB) dye was achieved after 80 min of natural sunlight irradiation. The photodegradation reaction followed the first-order reaction. Both photo-generated holes and electrons play vital roles in the photodegradation of the pollutant. The BiOI photocatalyst remains stable and still shows a high efficiency even after the fifth run. This confirms the great cycling ability and high structural stability of the photocatalyst. The prepared BiOI catalyst, with a high surface area of 118 m2 g−1, can act as an excellent adsorbent as well. The synergistic effect based on both adsorption and photocatalysis is a key factor in achieving a very high removal efficiency. The photoactivity under sunlight is higher than that observed under visible light, supporting the practical use of the BiOI photocatalyst for the removal of organic pollutants in wastewater through the utilization of abundant solar energy

    Ag-Modified ZnO for Degradation of Oxytetracycline Antibiotic and Reactive Red Azo Dye

    No full text
    It is known that low electron-hole separation efficiency is the major disadvantage influencing low photoactivity of the UV-active ZnO photocatalyst. To solve this drawback, the excellent fabrication technique has been used to disperse silver metal on ZnO surface. In this study, an addition of silver content up to 15 wt% was carried out. The 5Ag-ZnO sample, comprising 5 wt% of silver metal, displayed a hexagonal wurtzite structure, and a band gap of 3.00 eV, with high sunlight-active photocatalytic performance of 99–100% and low photo-corrosion problem. The complete degradation of oxytetracycline (OTC) antibiotic and reactive red dye 141 (RR141) dye under natural sunlight was achieved. The highest rate constant of 0.061 min−1 was detected. The enhancement of the performance is mainly due to lowering of the electron-hole recombination rate. Dispersion of silver on ZnO causes the generation of the Schottky barrier at the interface between Ag and ZnO, so that improvement of quantum efficiency and enhancement of the resultant photoactivity could be expected. Furthermore, good distribution of metallic silver also causes a red shift in absorption of light toward the visible spectrum. This is strongly attributed to the surface plasmon resonance effect, which occurred after successful decoration of the noble metal on ZnO. The photocatalyst, with great structural stability, still maintains high photocatalytic efficiency even after five times of use, implying its excellent cycling ability. The present finding offers a new road to generate a silver decorated ZnO photocatalyst for the complete removal of dye and antibiotics contaminated in the environment
    corecore