60,237 research outputs found
Exact dynamical exchange-correlation kernel of a weakly inhomogeneous electron gas
The dynamical exchange-correlation kernel of a non-uniform electron
gas is an essential input for the time-dependent density functional theory of
electronic systems. The long-wavelength behavior of this kernel is known to be
of the form where is the wave vector and is a
frequency-dependent coefficient. We show that in the limit of weak
non-uniformity the coefficient has a simple and exact expression in
terms of the ground-state density and the frequency-dependent kernel of a {\it
uniform} electron gas at the average density. We present an approximate
evaluation of this expression for Si and discuss its implications for the
theory of excitonic effects.Comment: 5 pages, 2 figure
The effect of barriers on wave propagation phenomena: With application for aircraft noise shielding
The frequency spectrum was divided into high and low frequency regimes and two separate methods were developed and applied to account for physical factors associated with flight conditions. For long wave propagation, the acoustic filed due to a point source near a solid obstacle was treated in terms of an inner region which where the fluid motion is essentially incompressible, and an outer region which is a linear acoustic field generated by hydrodynamic disturbances in the inner region. This method was applied to a case of a finite slotted plate modelled to represent a wing extended flap for both stationary and moving media. Ray acoustics, the Kirchhoff integral formulation, and the stationary phase approximation were combined to study short wave length propagation in many limiting cases as well as in the case of a semi-infinite plate in a uniform flow velocity with a point source above the plate and embedded in a different flow velocity to simulate an engine exhaust jet stream surrounding the source
Hadronic production of the -wave excited -states ()
Adopting the complete approach of the perturbative QCD (pQCD)
and updated parton distribution functions, we have estimated the hadronic
production of -wave excited -states (). In the estimate,
special care on the relation of the production amplitude to the derivative of
wave function at origin of the potential model is payed. For experimental
references, main uncertainties are discussed, and the total cross sections and
the distributions of the production with reasonable cuts at the energies of
Tevatron and LHC are computed and presented. The results show that -wave
production may contribute to the -meson production indirectly by a factor
about 0.5 of the direct production, and with such a big cross section, it is
worth further to study the possibility to observe the -wave production
itself experimentally.Comment: 23 pages, 9 figures, to replace for revising the misprints ec
Fitting Precision Electroweak Data with Exotic Heavy Quarks
The 1999 precision electroweak data from LEP and SLC persist in showing some
slight discrepancies from the assumed standard model, mostly regarding and
quarks. We show how their mixing with exotic heavy quarks could result in a
more consistent fit of all the data, including two unconventional
interpretations of the top quark.Comment: 7 pages, no figure, 2 typos corrected, 1 reference update
Shifting with
Precision measurements at the resonance agree well with the standard
model. However, there is still a hint of a discrepancy, not so much in by
itself (which has received a great deal of attention in the past several years)
but in the forward-backward asymmetry together with . The two
are of course correlated. We explore the possibilty that these and other
effects are due to the mixing of and with one or more heavy quarks.Comment: 11 pages, 1 Figure, LaTex fil
Prospects for the Bc Studies at LHCb
We discuss the motivations and perspectives for the studies of the mesons of
the (bc) family at LHCb. The description of production and decays at LHC
energies is given in details. The event yields, detection efficiencies, and
background conditions for several Bc decay modes at LHCb are estimated.Comment: 20 pages, 5 eps-figure
The Decays to -wave Charmonium by Improved Bethe-Salpeter Approach
We re-calculate the exclusive semileptonic and nonleptonic decays of
meson to a -wave charmonium in terms of the improved Bethe-Salpeter (B-S)
approach, which is developed recently. Here the widths for the exclusive
semileptonic and nonleptonic decays, the form factors, and the charged lepton
spectrums for the semileptonic decays are precisely calculated. To test the
concerned approach by comparing with experimental measurements when the
experimental data are available, and to have comparisons with the other
approaches the results obtained by the approach and those by some approaches
else as well as the original B-S approach, which appeared in literature, are
comparatively presented and discussed.Comment: 33 pages, 5 figures, 3 table
Parametric frequency mixing in the magneto-elastically driven FMR-oscillator
We demonstrate the nonlinear frequency conversion of ferromagnetic resonance
(FMR) frequency by optically excited elastic waves in a thin metallic film on
dielectric substrates. Time-resolved probing of the magnetization directly
witnesses magneto-elastically driven second harmonic generation, sum- and
difference frequency mixing from two distinct frequencies, as well as
parametric downconversion of each individual drive frequency. Starting from the
Landau-Lifshitz-Gilbert equations, we derive an analytical equation of an
elastically driven nonlinear parametric oscillator and show that frequency
mixing is dominated by the parametric modulation of FMR frequency
- âŠ