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The dynamical exchange-correlation kernel fxc of a nonuniform electron gas is an essential input for

the time-dependent density-functional theory of electronic systems. The long-wavelength behavior of this

kernel is known to be of the form fxc ¼ �=q2 where q is the wave vector and � is a frequency-dependent

coefficient. We show that in the limit of weak nonuniformity the coefficient � has a simple and exact

expression in terms of the ground-state density and the frequency-dependent kernel of a uniform electron

gas at the average density. We present an approximate evaluation of this expression for Si and discuss its

implications for the theory of excitonic effects.
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Since its introduction in works of Runge, Gross, and
Kohn [1,2], the time-dependent density-functional theory
(TDDFT) has evolved into a powerful tool of investigation
of systems ranging from isolated atoms to bulk solids. In
the important linear-response regime, the key quantity of
TDDFT is the dynamical exchange-correlation (xc) kernel
fxc defined as the functional derivative

fxc½n0ðrÞ�ðr; r0; !Þ ¼ �Vxc½n�ðr; !Þ
�nðr0; !Þ

��������n¼n0ðrÞ

of the dynamical xc potential Vxc with respect to the
dynamical electron density n, taken at the ground-state
value n0 of the latter. With this definition, the density-
response function� can be represented in operator notation
as [2]

�ðr; r0; !Þ ¼ f½1� �KSðCþ fxcÞ��1�KSgðr; r0; !Þ; (1)

where �KS is the Kohn-Sham (KS) density-response func-
tion of independent electrons, C ¼ e2=jr� r0j is the
Coulomb interaction, and e is the absolute value of the
electron charge. While the density-response function of
noninteracting electrons �KS can be straightforwardly cal-
culated in many cases of interest [e.g., for homogeneous
electron gases (EG) in three and two dimensions it is given
by the analytical Lindhard’s [3] and Stern’s [4] formulas,
respectively], the construction of fxc, whose role is to
account for dynamical many-body correlations, is a very
challenging problem.

As an instructive specific case, let us consider the ex-
citonic effect [5] in a semiconductor, which would mani-
fest itself as an enhancement of the imaginary part of � for
frequencies close to the fundamental absorption edge. We
neglect for a moment local-field effects [6,7] and write
down the diagonal elements of the density response in
momentum space as of Eq. (1)

�ðq;q; !Þ ¼ �KSðq;q; !Þ
1� �KSðq;q; !Þ½4�e2

q2
þ fxcðq;q; !Þ� ; (2)

where 4�e2=q2 is the Fourier transform of the Coulomb
interaction. On the one hand, the excitonic enhancement of
� is a many-body effect and, therefore, it needs a nonzero
fxc to be accounted for within TDDFT. On the other hand,
because of the divergent Coulomb part 4�e2=q2 in Eq. (2),
any fxcðq;q; !Þ that remained finite at q ¼ 0 would give
no contribution in the long-wave limit q ! 0. This simple
observation shows that in order to include the exciton,
fxcðq;q; !Þ must be divergent in the long-wave limit at
least as strongly as the Coulomb term; i.e., it must have the
form

lim
q!0

fxcðq;q; !Þ ¼ e2�ð!Þ
q2

(3)

(we introduce the e2 so that � is dimensionless). And
indeed, when the q�2 divergence has been introduced
empirically in works dealing with the optical absorption
spectrum of semiconductors [8–10], it has yielded a good
TDDFT description of the excitonic effect.
From a theoretical standpoint the existence of the singu-

larity in fxcðq;q; !Þ has long been known for periodic
insulators both at zero frequency [11] and at finite fre-
quency [12,13]. In metallic systems the singularity is be-
lieved to be absent at zero frequency, but still present at
finite frequency [15]. Unfortunately, first-principle calcu-
lations of �ð!Þ have not been forthcoming. Kim and
Görling [12] have obtained a formal expression for �ð!Þ
for periodic insulators in the exact exchange approxima-
tion to the leading order in the Coulomb interaction—but
the evaluation of this expression remains a formidable task.
In this Letter we focus on weakly inhomogeneous elec-
tronic systems, and develop a theory that is exact to second
order in the amplitude of the density modulation. Thus, at
variance with the systems considered in Ref. [12], our
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system is a metal and many-body effects are included
beyond the exchange-only approximation to all orders in
the Coulomb interaction. In particular, we will derive a
simple and exact expression for �ð!Þ in terms of the
ground-state density and the dynamical xc kernel of a
homogeneous EG evaluated at the average density of the
inhomogeneous system.

Our approach is based on the general method recently
derived from the time-dependent current-density-
functional theory (TDCDFT) for constructing fxc from
the current-current response function [16]. This method
is based on the exact relation that connects the scalar
density-response function � (density response to a scalar
potential) to the tensor current-density-response function �̂
(current-density response to a vector potential):

�ðq;q0; !Þ ¼ c

e!2
q � �̂ðq;q0; !Þ � q0: (4)

Both response functions are expressed in terms of the
corresponding Kohn-Sham response functions and xc ker-
nels in the following manner:

��1ðq;q0;!Þ¼��1
KSðq;q0;!Þ�fxcðq;q0;!Þ�4�e2

q2
�qq0

(5)

and

�̂�1ðq;q0;!Þ¼ �̂�1
KSðq;q0;!Þ� f̂xcðq;q0;!Þ�4�ec

!2
L̂q�qq0 ;

(6)

where L̂q;ij � qiqj=q
2, i, and j are Cartesian indices.

Equations (4)–(6) establish a connection between fxc
and its tensor counterpart f̂xc. The usefulness of this con-
nection stems from the fact that the tensor quantities �̂KS

and f̂xc satisfy a broader set of exact sum rules than the
corresponding scalar quantities. These sum rules were
derived in Ref. [17]. Specializing to the case of periodic
systems, the two most important sum rules for our purposes
are

�̂KS;ijðG; 0; !Þ ¼ e

mc
n0ðGÞ�ij � 1

m!2

� X
G0;k

�̂KS;ikðG;G0; !ÞG0
kG

0
jVKSðG0Þ; (7)

and

X
G0
f̂xc;ijðG;G0; !Þn0ðG0Þ ¼ c

e!2
GiGjVxcðGÞ; (8)

where G are reciprocal lattice vectors. These sum rules
connect three different types of components of, say,
�̂KSðG;G0; !Þ: the (0, 0) (head), the (0, G � 0) and (G �
0, 0) (wing), and the (G � 0, G0 � 0) (body) components.

Let us further restrict our attention to the case of a
weakly inhomogeneous system: jn0ðGÞj�n0ð0Þ� �n0, and
jVKSðGÞj � @

2G2=2m for G � 0. Then Eq. (7) leads to

�̂KS;ijðG�0;G0�0;!Þ¼
�
e!2

cG2
LG;ij�

hL
KSðG;!Þ

þTG;ij�
hT
KSðG;!Þ

�
�GG0 ; (9)

�̂KS;ijðG�0;0;!Þ¼ �̂KS;jið0;�G;!Þ

¼en0ðGÞ
mc

�
�ij��hL

KSðG;!Þ
�hL
KSðG;0Þ

LG;ij

�
; (10)

�̂ KS;ijð0; 0; !Þ ¼ e �n0
mc

�ij þ e

m2!2c

X
G�0

jn0ðGÞj2
�hL
KSðG; 0Þ2

�½�hL
KSðG;!Þ � �hL

KSðG; 0Þ�GiGj; (11)

to the zeroth, first, and second order in n0ðG � 0Þ, respec-
tively. Here �hL

KS and �hT
KS are, respectively, the longitu-

dinal and transverse KS density-response functions of
the homogeneous EG of density �n0, and TG;ij ¼
�ij � LG;ij. Equation (10) is obtained by the substitu-

tion for
P

k�̂KS;ikðG � 0;G0 � 0; !ÞGk in the right-hand

side of Eq. (7) of its homogeneous value of
ðe!2Gi=cG

2Þ�hL
KSðG;!Þ�GG0 . Equation (11) is obtained

by the substitution of Eq. (10) into the right-hand side of
Eq. (7) after setting G ¼ 0. Equation (9) just replaces
�̂KSðG � 0;G0 � 0; !Þ by its homogeneous value. The
relation VKSðG � 0Þ ¼ n0ðGÞ=�hL

KSðG; 0Þ valid to the first

order in n0ðG � 0Þ has been used. Similarly, for f̂xc we
have from Eq. (8)

f̂xc;ijðG�0;G0�0;!Þ¼ c

e!2
G2½fhLxc ðG;!ÞLG;ij

þfhTxc ðG;!ÞTG;ij��GG0 ; (12)

f̂xc;ijðG � 0; 0; !Þ ¼ f̂xc;jið0;�G; !Þ

¼ � cG2

e!2 �n0
n0ðGÞf½fhLxc ðG;!Þ

� fhLxc ðG; 0Þ�LG;ij þ fhTxc ðG;!ÞTG;ijg;
(13)

f̂ xc;ijð0; 0; !Þ ¼ c

e!2 �n20

X
G�0

G2jn0ðGÞj2f½fhLxc ðG;!Þ

� fhLxc ðG; 0Þ�LG;ij þ fhTxc ðG;!ÞTG;ijg;
(14)

where fhLxc and fhTxc are the longitudinal and transverse,
respectively, xc kernels of the homogeneous EG of den-
sity �n0.
The following steps, which involve repeated inversions

of infinite matrices, rely on the mathematical fact that to
find the head, wing, and body elements of the inverse
matrix to the second, first, and zeroth order in the inhomo-
geneity, respectively, it is sufficient to know the corre-
sponding elements of the original matrix to the same
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orders, and then the inversion can be performed in a closed
form (cf., Ref. [18]). The complete procedure is schemati-
cally illustrated in Fig. 1. Starting from Eqs. (9)–(14) for

�̂KS and f̂xc we (i) invert Eqs. (9)–(11) to get �̂�1
KS ;

(ii) combine �̂�1
KS and f̂xc to get �̂�1 by virtue of Eq. (6);

(iii) invert �̂�1 to get �̂; (iv) use Eq. (4) and its KS
analogue to find the scalar response function � from �̂
and �KS from �̂KS; (v) invert � and �KS to get ��1 and
��1
KS ; and, (vi) apply Eq. (5) to find fxc. We note that in our

analysis we are remaining within the domain of the equiva-
lence between TDCDFT and TDDFT, keeping q small but
finite [19]. The final result of this procedure is

fxcðG � 0;G0 � 0; !Þ ¼ fhLxc ðG;!Þ�GG0 ; (15)

lim
q!0

fxcðG � 0;q; !Þ ¼ fxcð�q;�G; !Þ

¼ � ðG � q̂Þ
�n0q

½fhLxc ðG;!Þ
� fhLxc ðG; 0Þ�n0ðGÞ; (16)

lim
q!0

fxcðq;q; !Þ ¼ 1

�n20q
2

X
G�0

ðG � q̂Þ2½fhLxc ðG;!Þ

� fhLxc ðG; 0Þ�jn0ðGÞj2; (17)

where q̂ is the unit vector parallel to q. It should be noted at
this point that the above expression for the scalar kernel
fxcðq;q; !Þ differs from what one would get by simply

taking the longitudinal component of f̂xc;ijðq;q; !Þ, i.e.,
fxcðq;q; !Þ � e!2

cq2
P

i;jq̂if̂xc;ijðq;q; !Þq̂j. The implication

is that the scalar xc potential (Vxc) of time-dependent
DFT is not equivalent to the longitudinal component of
the vector potential (Axc) of time-dependent CDFT: rather,
it should be constructed through the careful inversion
procedure described above. A recent interesting attempt
to construct Vxc fromAxc [20] should be reexamined in the
light of this result.

From the result of the step (iv) for � we obtain a formula
for the macroscopic dielectric function of a crystal

lim
q!0

�Mðq;!Þ¼1�4�e2 �n0
m!2

� e2

m2!4

X
G�0

jV0ðGÞj2G2ðq̂ �GÞ2

�
�

1

�hLðG;!Þ�
1

�hLðG;0Þ
�
; (18)

where V0 is the bare crystalline potential and �hLðq;!Þ is
the longitudinal dielectric function of the homogeneous
electron liquid. Equation (18) is in agreement with the
Hopfield’s formula for optical conductivity [21], and re-
duces to the corresponding results of Refs. [7,18] in the
random phase approximation [fhxc;LðG;!Þ ¼ 0].

Equations (15)–(17) are the main result of this Letter. In
the inhomogeneous case they replace the grossly inaccu-
rate LDA formula [2,22–24] which does not contain the
singularity in q. Identifying the (0, 0) element of the
microscopic matrix of the xc kernel in Eq. (17) as the
averaged fxc, we see that fxc diverges for q ! 0 as de-
scribed by Eq. (3), wherein �ð!Þ is given by [25]

�ð!Þ ¼ X
G�0

ðG � q̂Þ2
e2 �n20

½fhLxc ðG;!Þ � fhLxc ðG; 0Þ�jn0ðGÞj2:

(19)

We notice that�ð!Þ ¼ 0 in the uniform limit and�ð0Þ ¼ 0
up to second order in n0ðG � 0Þ. This shows that the q�2

singularity is absent at zero frequency in systems that are
perturbatively connected to the homogeneous electron liq-
uid, i.e., metals [26].
In order to calculate �ð!Þ from Eq. (19) we need the

Fourier amplitudes of the ground-state electron density and
the wave vector and frequency-dependent fhLxc of the ho-
mogeneous EG, evaluated at reciprocal lattice vectors. The
first ingredient is straightforwardly obtained from standard
electronic structure calculations. Unfortunately, the same
cannot be said of the second ingredient fhLxc ðq;!Þ: A reli-
able q- and!-dependent xc kernel of the homogeneous EG
which reproduces, at small q, what is presently believed to
be the qualitatively correct form of the frequency depen-
dence is not known to us. In spite of these difficulties, it
must be emphasized that the calculation of fhLxc ðq;!Þ is still
a much simpler problem than the calculation of the dynam-
ical xc kernel of the nonuniform system. Thus, our Eq. (19)
does not simply express an unknown quantity in terms of
another unknown quantity, but actually opens the way to
systematic calculations of � based on the many-body
theory of the homogeneous EG. Further, Eqs. (15)–(17)
for fxc offer a promising alternative to the widespread
practice of treating the dynamical xc effects in the LDA.
In Fig. 2, we plot �ð!Þ from Eq. (19) vs frequency for

crystalline silicon. The Fourier coefficients of the electron
density were calculated with the code FHI98MD [27], and
we approximated fhLxc ðq;!Þ ’ fhLxc ð0; !Þ, taking the latter
from Ref. [24]. In the range 0–22 eV, the real part of �ð!Þ
is negative, changing sign for positive above 22 eV. It
reaches its minimum of � � �0:1 at ! � 14 eV. In the
range 3–5 eV of the main absorption in silicon, Re �

χKS χ

ˆ χ 

ˆ χ KS , ˆ f xc( ) ˆ χ KS
−1 , ˆ χ −1( )

χKS
−1 − χ−1

fxc

FIG. 1. Scheme of the procedure for calculating the xc kernel
fxc starting from the expressions (9)–(14) for �̂KS and f̂xc.
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changes from �0:01 to �0:03, which is an order of mag-
nitude smaller than the empirical value of � � �0:2 found
as the best fit to the experimental spectrum in Ref. [8]. This
large difference may simply indicate that the nearly free
electron model, while being adequate for simple metals
and even for semiconductors in the high-frequency regime
[18], is not sufficiently accurate for semiconductors at
frequency lower than or comparable to the band gap.
Another probable source of discrepancy is that our ap-
proach is a pure TDDFT, whereas the value of � � �0:2
was obtained in Refs. [8,9] with the use of TDDFT together
with the self-energies incorporated in the Green’s function
via the GW approximation.

In conclusion, we wish to comment on the relation
between the present exact results and the approximate
nonlocal fxc that can be derived from the Vignale-Kohn
(VK) local density approximation to TDCDFT [15,17,28].
The VK approximation is applicable in principle to
strongly inhomogenous systems (e.g., insulators), pro-
vided the density is slowly varying on the scale of the
interparticle distance and ! � maxðqvF;GvFÞ where vF

is the local Fermi velocity. In contrast, our Eq. (17) is
only valid when the inhomogeneity is weak. When the in-
homogeneity is both weak and slowly varying and ! �
maxðqvF;GvFÞ, then our formula (17) is indeed equivalent
to the VK approximation as it should.

A clear advantage of our formula is that it is based on
controlled approximations. We believe that this formula
will be useful in the study of the dynamical response of
metals at all frequencies, and of insulators at not too low
frequencies, provided the nonuniformity of the valence
electron density is small.
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FG02-05ER46203.
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