235 research outputs found

    Epitaxial growth and the magnetic properties of orthorhombic YTiO3 thin films

    Full text link
    High-quality YTiO3 thin films were grown on LaAlO3 (110) substrates at low oxygen pressures (<10-8 Torr) using pulsed laser deposition. The in-plane asymmetric atomic arrangements at the substrate surface allowed us to grow epitaxial YTiO3 thin films, which have an orthorhombic crystal structure with quite different a- and b-axes lattice constants. The YTiO3 film exhibited a clear ferromagnetic transition at 30 K with a saturation magnetization of about 0.7 uB/Ti. The magnetic easy axis was found to be along the [1-10] direction of the substrate, which differs from the single crystal easy axis direction, i.e., [001].Comment: 14 pages, 4 figure

    Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors

    Full text link
    We fabricated Pt/NiO/Pt capacitor structures with various bottom electrode thicknesses, tBEt_{BE}, and investigated their resistance switching behaviors. The capacitors with tBE50t_{BE} \geq 50 nm exhibited typical unipolar resistance memory switching, while those with tBE30t_{BE} \leq 30 nm showed threshold switching. This interesting phenomenon can be explained in terms of the temperature-dependent stability of conducting filaments. In particular, the thinner tBEt_{BE} makes dissipation of Joule heat less efficient, so the filaments will be at a higher temperature and become less stable. This study demonstrates the importance of heat dissipation in resistance random access memory.Comment: 14 pages, 3 figure

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    Micro-morphologic changes around biophysically-stimulated titanium implants in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis may present a risk factor in achievement of osseointegration because of its impact on bone remodeling properties of skeletal phsiology. The purpose of this study was to evaluate micro-morphological changes in bone around titanium implants exposed to mechanical and electrical-energy in osteoporotic rats.</p> <p>Methods</p> <p>Fifteen 12-week old sprague-dowley rats were ovariectomized to develop osteoporosis. After 8 weeks of healing period, two titanium implants were bilaterally placed in the proximal metaphyses of tibia. The animals were randomly divided into a control group and biophysically-stimulated two test groups with five animals in each group. In the first test group, a pulsed electromagnetic field (PEMF) stimulation was administrated at a 0.2 mT 4 h/day, whereas the second group received low-magnitude high-frequency mechanical vibration (MECHVIB) at 50 Hz 14 min/day. Following completion of two week treatment period, all animals were sacrificed. Bone sites including implants were sectioned, removed <it>en bloc </it>and analyzed using a microCT unit. Relative bone volume and bone micro-structural parameters were evaluated for 144 μm wide peri-implant volume of interest (VOI).</p> <p>Results</p> <p>Mean relative bone volume in the peri-implant VOI around implants PEMF and MECHVIB was significantly higher than of those in control (<it>P </it>< .05). Differences in trabecular-thickness and -separation around implants in all groups were similar (<it>P </it>> .05) while the difference in trabecular-number among test and control groups was significant in all VOIs (<it>P </it>< .05).</p> <p>Conclusion</p> <p>Biophysical stimulation remarkably enhances bone volume around titanium implants placed in osteoporotic rats. Low-magnitude high-frequency MECHVIB is more effective than PEMF on bone healing in terms of relative bone volume.</p

    Aerosol Delivery of Small Hairpin Osteopontin Blocks Pulmonary Metastasis of Breast Cancer in Mice

    Get PDF
    Metastasis to the lung may be the final step in the breast cancer-related morbidity. Conventional therapies such as chemotherapy and surgery are somewhat successful, however, metastasis-related breast cancer morbidity remains high. Thus, a novel approach to prevent breast tumor metastasis is needed.Aerosol of lentivirus-based small hairpin osteopontin was delivered into mice with breast cancer twice a week for 1 or 2 months using a nose-only inhalation system. The effects of small hairpin osteopontin on breast cancer metastasis to the lung were evaluated using near infrared imaging as well as diverse molecular techniques. Aerosol-delivered small hairpin osteopontin significantly decreased the expression level of osteopontin and altered the expression of several important metastasis-related proteins in our murine breast cancer model.Aerosol-delivered small hairpin osteopontin blocked breast cancer metastasis. Our results showed that noninvasive targeting of pulmonary osteopontin or other specific genes responsible for cancer metastasis could be used as an effective therapeutic regimen for the treatment of metastatic epithelial tumors

    Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond.

    Get PDF
    Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of ‘self-eating’ where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis

    Social media and sensemaking patterns in new product development: demystifying the customer sentiment

    Get PDF
    Artificial intelligence by principle is developed to assist but also support decision making processes. In our study, we explore how information retrieved from social media can assist decision-making processes for new product development (NPD). We focus on consumers’ emotions that are expressed through social media and analyse the variations of their sentiments in all the stages of NPD. We collect data from Twitter that reveal consumers’ appreciation of aspects of the design of a newly launched model of an innovative automotive company. We adopt the sensemaking approach coupled with the use of fuzzy logic for text mining. This combinatory methodological approach enables us to retrieve consensus from the data and to explore the variations of sentiments of the customers about the product and define the polarity of these emotions for each of the NPD stages. The analysis identifies sensemaking patterns in Twitter data and explains the NPD process and the associated steps where the social interactions from customers can have an iterative role. We conclude the paper by outlining an agenda for future research in the NPD process and the role of the customer opinion through sensemaking mechanisms

    The interpretations and uses of fitness landscapes in the social sciences

    Get PDF
    __Abstract__ This working paper precedes our full article entitled “The evolution of Wright’s (1932) adaptive field to contemporary interpretations and uses of fitness landscapes in the social sciences” as published in the journal Biology & Philosophy (http://link.springer.com/article/10.1007/s10539-014-9450-2). The working paper features an extended literature overview of the ways in which fitness landscapes have been interpreted and used in the social sciences, for which there was not enough space in the full article. The article features an in-depth philosophical discussion about the added value of the various ways in which fitness landscapes are used in the social sciences. This discussion is absent in the current working paper. Th
    corecore