4,030 research outputs found

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor

    Aerial dissemination of Clostridium difficile spores

    Get PDF
    Background: Clostridium difficile-associated diarrhoea (CDAD) is a frequently occurring healthcare-associated infection, which is responsible for significant morbidity and mortality amongst elderly patients in healthcare facilities. Environmental contamination is known to play an important contributory role in the spread of CDAD and it is suspected that contamination might be occurring as a result of aerial dissemination of C. difficile spores. However previous studies have failed to isolate C. difficile from air in hospitals. In an attempt to clarify this issue we undertook a short controlled pilot study in an elderly care ward with the aim of culturing C. difficile from the air. Methods: In a survey undertaken during February (two days) 2006 and March (two days) 2007, air samples were collected using a portable cyclone sampler and surface samples collected using contact plates in a UK hospital. Sampling took place in a six bedded elderly care bay (Study) during February 2006 and in March 2007 both the study bay and a four bedded orthopaedic bay (Control). Particulate material from the air was collected in Ringer's solution, alcohol shocked and plated out in triplicate onto Brazier's CCEY agar without egg yolk, but supplemented with 5 mg/L of lysozyme. After incubation, the identity of isolates was confirmed by standard techniques. Ribotyping and REP-PCR fingerprinting were used to further characterise isolates. Results: On both days in February 2006, C. difficile was cultured from the air with 23 samples yielding the bacterium (mean counts 53 – 426 cfu/m3 of air). One representative isolate from each of these was characterized further. Of the 23 isolates, 22 were ribotype 001 and were indistinguishable on REP-PCR typing. C. difficile was not cultured from the air or surfaces of either hospital bay during the two days in March 2007. Conclusion: This pilot study produced clear evidence of sporadic aerial dissemination of spores of a clone of C. difficile, a finding which may help to explain why CDAD is so persistent within hospitals and difficult to eradicate. Although preliminary, the findings reinforce concerns that current C. difficile control measures may be inadequate and suggest that improved ward ventilation may help to reduce the spread of CDAD in healthcare facilities

    Promoter polymorphisms of DNMT3B and the risk of colorectal cancer in Chinese: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA-methyltransferase-3B (DNMT3B), which plays a role in DNA methylation, is usually aberrant expression involved in carcinogenesis. Polymorphisms of the DNMT3B gene may influence DNMT3B activity on DNA methylation in several cancers, thereby modulating the susceptibility to cancer.</p> <p>Methods</p> <p>DNMT3B -579G>T genotypes and -149C>T were determined by PCR-RFLP and sequencing in 137 colorectal cancer patients and 308 controls matched for age and sex, who did not receive radiotherapy or chemotherapy for newly diagnosed and histopathologically confirmed colorectal cancer. The association between two SNPs of the <it>DNMT3B </it>promoter and the risk of the development of colorectal cancer was analyzed in a population of Chinese.</p> <p>Results</p> <p>The allele frequency of -149C >T among patients and controls was 0.73% versus 0.65%, respectively. The allele frequency of -597G>T for patients and controls was 6.57% versus 11.53%, respectively. Individuals with at least one -149C>T allele were no at a significantly increase risk of colorectal cancer compared with those having a -149TT genotype. However, Individuals with at least one 579G>T allele were decreased risk of colorectal cancer compared with those having a -579TT genotype.</p> <p>Conclusion</p> <p>The relative distribution of -149C>T <it>DNMT3B </it>SNPs among a Chinese population can not be used as a stratification marker to predict an individual's susceptibility to colorectal cancer. However, the DNMT3B -579G>T polymorphism may contribute to the genetic susceptibility to colorectal cancer.</p

    Verticalization of bacterial biofilms

    Full text link
    Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically-aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modeling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an "inverse domino effect". The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.Comment: Main text 10 pages, 4 figures; Supplementary Information 35 pages, 15 figure

    Safety and feasibility of switching from phenytoin to levetiracetam monotherapy for glioma-related seizure control following craniotomy: a randomized phase II pilot study

    Get PDF
    Seizures are common in patients with gliomas, and phenytoin (PHT) is frequently used to control tumor-related seizures. PHT, however, has many undesirable side effects (SEs) and drug interactions with glioma chemotherapy. Levetiracetam (LEV) is a newer antiepileptic drug (AED) with fewer SEs and essentially no drug interactions. We performed a pilot study testing the safety and feasibility of switching patients from PHT to LEV monotherapy for postoperative control of glioma-related seizures. Over a 13-month period, 29 patients were randomized in a 2:1 ratio to initiate LEV therapy within 24 h of surgery or to continue PHT therapy. 6 month follow-up data were available for 15 patients taking LEV and for 8 patients taking PHT. In the LEV group, 13 patients (87%) were seizure-free. In the PHT group, 6 patients (75%) were seizure-free. Reported SEs at 6 months was as follows (%LEV/%PHT group): dizziness (0/14), difficulty with coordination (0/29), depression (7/14) lack of energy or strength (20/43), insomnia (40/43), mood instability (7/0). The pilot data presented here suggest that it is safe to switch patients from PHT to LEV monotherapy following craniotomy for supratentorial glioma. A large-scale, double-blinded, randomized control trial of LEV versus PHT is required to determine seizure control equivalence and better assess differences in SEs

    The Transcription Factor PU.1 Regulates γδ T Cell Homeostasis

    Get PDF
    T cell development results in the generation of both mature αβ and γδ T cells. While αβ T cells predominate in secondary lymphoid organs, γδ T cells are more abundant in mucosal tissues. PU.1, an Ets family transcription factor, also identified as the spleen focus forming virus proviral integration site-1 (Sfpi1) is essential for early stages of T cell development, but is down regulated during the DN T-cell stage.In this study, we show that in mice specifically lacking PU.1 in T cells using an lck-Cre transgene with a conditional Sfpi1 allele (Sfpi1(lck-/-)) there are increased numbers of γδ T cells in spleen, thymus and in the intestine when compared to wild-type mice. The increase in γδ T cell numbers in PU.1-deficient mice is consistent in γδ T cell subsets identified by TCR variable regions. PU.1-deficient γδ T cells demonstrate greater proliferation in vivo and in vitro.The increase of γδ T cell numbers in Lck-Cre deleter strains, where deletion occurs after PU.1 expression is diminished, as well as the observation that PU.1-deficient γδ T cells have greater proliferative responses than wild type cells, suggests that PU.1 effects are not developmental but rather at the level of homeostasis. Thus, our data shows that PU.1 has a negative influence on γδ T cell expansion

    Adjusting a cancer mortality-prediction model for disease status-related eligibility criteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Volunteering participants in disease studies tend to be healthier than the general population partially due to specific enrollment criteria. Using modeling to accurately predict outcomes of cohort studies enrolling volunteers requires adjusting for the bias introduced in this way. Here we propose a new method to account for the effect of a specific form of healthy volunteer bias resulting from imposing disease status-related eligibility criteria, on disease-specific mortality, by explicitly modeling the length of the time interval between the moment when the subject becomes ineligible for the study, and the outcome.</p> <p>Methods</p> <p>Using survival time data from 1190 newly diagnosed lung cancer patients at MD Anderson Cancer Center, we model the time from clinical lung cancer diagnosis to death using an exponential distribution to approximate the length of this interval for a study where lung cancer death serves as the outcome. Incorporating this interval into our previously developed lung cancer risk model, we adjust for the effect of disease status-related eligibility criteria in predicting the number of lung cancer deaths in the control arm of CARET. The effect of the adjustment using the MD Anderson-derived approximation is compared to that based on SEER data.</p> <p>Results</p> <p>Using the adjustment developed in conjunction with our existing lung cancer model, we are able to accurately predict the number of lung cancer deaths observed in the control arm of CARET.</p> <p>Conclusions</p> <p>The resulting adjustment was accurate in predicting the lower rates of disease observed in the early years while still maintaining reasonable prediction ability in the later years of the trial. This method could be used to adjust for, or predict the duration and relative effect of any possible biases related to disease-specific eligibility criteria in modeling studies of volunteer-based cohorts.</p
    corecore