59,811 research outputs found

    Exact dynamical exchange-correlation kernel of a weakly inhomogeneous electron gas

    Get PDF
    The dynamical exchange-correlation kernel fxcf_{xc} of a non-uniform electron gas is an essential input for the time-dependent density functional theory of electronic systems. The long-wavelength behavior of this kernel is known to be of the form fxc=α/q2f_{xc}= \alpha/q^2 where qq is the wave vector and α\alpha is a frequency-dependent coefficient. We show that in the limit of weak non-uniformity the coefficient α\alpha has a simple and exact expression in terms of the ground-state density and the frequency-dependent kernel of a {\it uniform} electron gas at the average density. We present an approximate evaluation of this expression for Si and discuss its implications for the theory of excitonic effects.Comment: 5 pages, 2 figure

    The effect of barriers on wave propagation phenomena: With application for aircraft noise shielding

    Get PDF
    The frequency spectrum was divided into high and low frequency regimes and two separate methods were developed and applied to account for physical factors associated with flight conditions. For long wave propagation, the acoustic filed due to a point source near a solid obstacle was treated in terms of an inner region which where the fluid motion is essentially incompressible, and an outer region which is a linear acoustic field generated by hydrodynamic disturbances in the inner region. This method was applied to a case of a finite slotted plate modelled to represent a wing extended flap for both stationary and moving media. Ray acoustics, the Kirchhoff integral formulation, and the stationary phase approximation were combined to study short wave length propagation in many limiting cases as well as in the case of a semi-infinite plate in a uniform flow velocity with a point source above the plate and embedded in a different flow velocity to simulate an engine exhaust jet stream surrounding the source

    Hadronic production of the PP-wave excited BcB_c-states (BcJ,L=1∗B_{cJ,L=1}^*)

    Full text link
    Adopting the complete αs4\alpha_s^4 approach of the perturbative QCD (pQCD) and updated parton distribution functions, we have estimated the hadronic production of PP-wave excited BcB_c-states (BcJ,L=1∗B_{cJ,L=1}^*). In the estimate, special care on the relation of the production amplitude to the derivative of wave function at origin of the potential model is payed. For experimental references, main uncertainties are discussed, and the total cross sections and the distributions of the production with reasonable cuts at the energies of Tevatron and LHC are computed and presented. The results show that PP-wave production may contribute to the BcB_c-meson production indirectly by a factor about 0.5 of the direct production, and with such a big cross section, it is worth further to study the possibility to observe the PP-wave production itself experimentally.Comment: 23 pages, 9 figures, to replace for revising the misprints ec

    Fitting Precision Electroweak Data with Exotic Heavy Quarks

    Get PDF
    The 1999 precision electroweak data from LEP and SLC persist in showing some slight discrepancies from the assumed standard model, mostly regarding bb and cc quarks. We show how their mixing with exotic heavy quarks could result in a more consistent fit of all the data, including two unconventional interpretations of the top quark.Comment: 7 pages, no figure, 2 typos corrected, 1 reference update

    Shifting RbR_b with AFBbA^b_{FB}

    Get PDF
    Precision measurements at the ZZ resonance agree well with the standard model. However, there is still a hint of a discrepancy, not so much in RbR_b by itself (which has received a great deal of attention in the past several years) but in the forward-backward asymmetry AFBbA^b_{FB} together with RbR_b. The two are of course correlated. We explore the possibilty that these and other effects are due to the mixing of bLb_L and bRb_R with one or more heavy quarks.Comment: 11 pages, 1 Figure, LaTex fil

    Prospects for the Bc Studies at LHCb

    Get PDF
    We discuss the motivations and perspectives for the studies of the mesons of the (bc) family at LHCb. The description of production and decays at LHC energies is given in details. The event yields, detection efficiencies, and background conditions for several Bc decay modes at LHCb are estimated.Comment: 20 pages, 5 eps-figure

    The BcB_c Decays to PP-wave Charmonium by Improved Bethe-Salpeter Approach

    Full text link
    We re-calculate the exclusive semileptonic and nonleptonic decays of BcB_c meson to a PP-wave charmonium in terms of the improved Bethe-Salpeter (B-S) approach, which is developed recently. Here the widths for the exclusive semileptonic and nonleptonic decays, the form factors, and the charged lepton spectrums for the semileptonic decays are precisely calculated. To test the concerned approach by comparing with experimental measurements when the experimental data are available, and to have comparisons with the other approaches the results obtained by the approach and those by some approaches else as well as the original B-S approach, which appeared in literature, are comparatively presented and discussed.Comment: 33 pages, 5 figures, 3 table

    Parametric frequency mixing in the magneto-elastically driven FMR-oscillator

    Get PDF
    We demonstrate the nonlinear frequency conversion of ferromagnetic resonance (FMR) frequency by optically excited elastic waves in a thin metallic film on dielectric substrates. Time-resolved probing of the magnetization directly witnesses magneto-elastically driven second harmonic generation, sum- and difference frequency mixing from two distinct frequencies, as well as parametric downconversion of each individual drive frequency. Starting from the Landau-Lifshitz-Gilbert equations, we derive an analytical equation of an elastically driven nonlinear parametric oscillator and show that frequency mixing is dominated by the parametric modulation of FMR frequency
    • 

    corecore