2,998 research outputs found
Is the first radial excitation of ?
We present a quantitative analysis of the observed by
SELEX mainly focusing on the assumption that is the first
radial excitation of the ground state . By solving the
instantaneous Bethe-Salpeter equation, we obtain the mass MeV for
the first excited state, which is about 26 MeV heavier than the experimental
value MeV. By means of PCAC and low-energy theorem we calculate
the transition matrix elements and obtain the decay widths:
MeV, MeV, and
the ratio as well. This ratio is quite different from the
SELEX data . The summed decay width of those three channels is
approximately 21.7 MeV, already larger than the observed bound for the full
width ( MeV). Furthermore, assuming is state,
we also explore the possibility of wave mixing to explain the SELEX
observation. Based on our analysis, we suspect that it is too early to conclude
that is the first radial excitation of the ground
state . More precise measurements of the relative ratios and
the total decay width are urgently required especially for wave mixing.Comment: 12 pages, 8 figure
Transport spectroscopy in a time-modulated open quantum dot
We have investigated the time-modulated coherent quantum transport phenomena
in a ballistic open quantum dot. The conductance and the electron dwell
time in the dots are calculated by a time-dependent mode-matching method. Under
high-frequency modulation, the traversing electrons are found to exhibit three
types of resonant scatterings. They are intersideband scatterings: into
quasibound states in the dots, into true bound states in the dots, and into
quasibound states just beneath the subband threshold in the leads. Dip
structures or fano structures in are their signatures. Our results show
structures due to 2 intersideband processes. At the above
scattering resonances, we have estimated, according to our dwell time
calculation, the number of round-trip scatterings that the traversing electrons
undertake between the two dot openings.Comment: 8 pages, 5 figure
PHP61 The Financial Impacts of Pharmacist Intervention in Inpatient Department of a Local Hospital in Taiwan
Morphometric analysis of S. mortenseni. (DOC 44Â kb
condensate for light quarks beyond the chiral limit
We determine the condensate for quark masses from zero up to
that of the strange quark within a phenomenologically successful modelling of
continuum QCD by solving the quark Schwinger-Dyson equation. The existence of
multiple solutions to this equation is the key to an accurate and reliable
extraction of this condensate using the operator product expansion. We explain
why alternative definitions fail to give the physical condensate.Comment: 13 pages, 8 figure
Classification and nondegeneracy of Toda system with singular sources
We consider the following Toda system \Delta u_i + \D \sum_{j = 1}^n
a_{ij}e^{u_j} = 4\pi\gamma_{i}\delta_{0} \text{in}\mathbb R^2, \int_{\mathbb
R^2}e^{u_i} dx -1\delta_0a_{ij}\gamma_i=0\forall \;1\leq i\leq n\gamma_i+\gamma_{i+1}+...+\gamma_j \notin \mathbb Z1\leq i\leq
j\leq nu_i$ is \textit{radially symmetric} w.r.t. 0.
(iii) We prove that the linearized equation at any solution is
\textit{non-degenerate}. These are fundamental results in order to understand
the bubbling behavior of the Toda system.Comment: 28 page
A renormalizable SO(10) GUT scenario with spontaneous CP violation
We consider fermion masses and mixings in a renormalizable SUSY SO(10) GUT
with Yukawa couplings of scalar fields in the representation 10 + 120 + 126
bar. We investigate a scenario defined by the following assumptions: i) A
single large scale in the theory, the GUT scale. ii) Small neutrino masses
generated by the type I seesaw mechanism with negligible type II contributions.
iii) A suitable form of spontaneous CP breaking which induces hermitian mass
matrices for all fermion mass terms of the Dirac type. Our assumptions define
an 18-parameter scenario for the fermion mass matrices for 18 experimentally
known observables. Performing a numerical analysis, we find excellent fits to
all observables in the case of both the normal and inverted neutrino mass
spectrum.Comment: 16 pages, two eps figure
Minimal SUSY SO(10) model and predictions for neutrino mixings and leptonic CP violation
We discuss a minimal Supersymmetric SO(10) model where B-L symmetry is broken
by a {\bf 126} dimensional Higgs multiplet which also contributes to fermion
masses in conjunction with a {\bf 10} dimensional superfield. This minimal
Higgs choice provides a partial unification of neutrino flavor structure with
that of quarks and has been shown to predict all three neutrino mixing angles
and the solar mass splitting in agreement with observations, provided one uses
the type II seesaw formula for neutrino masses. In this paper we generalize
this analysis to include arbitrary CP phases in couplings and vevs. We find
that (i) the predictions for neutrino mixings are similar with as before and other parameters in a somewhat bigger range and (ii) that
to first order in the quark mixing parameter (the Cabibbo angle), the
leptonic mixing matrix is CP conserving. We also find that in the absence of
any higher dimensional contributions to fermion masses, the CKM phase is
different from that of the standard model implying that there must be new
contributions to quark CP violation from the supersymmetry breaking sector.
Inclusion of higher dimensional terms however allows the standard model CKM
phase to be maintained.Comment: 22 pages, 6 figure
CP Violation from Dimensional Reduction: Examples in 4+1 Dimensions
We provide simple examples of the generation of complex mass terms and hence
CP violation through dimensional reduction.Comment: 6 pages, typos corrected, 1 reference adde
Granular discharge and clogging for tilted hoppers
We measure the flux of spherical glass beads through a hole as a systematic
function of both tilt angle and hole diameter, for two different size beads.
The discharge increases with hole diameter in accord with the Beverloo relation
for both horizontal and vertical holes, but in the latter case with a larger
small-hole cutoff. For large holes the flux decreases linearly in cosine of the
tilt angle, vanishing smoothly somewhat below the angle of repose. For small
holes it vanishes abruptly at a smaller angle. The conditions for zero flux are
discussed in the context of a {\it clogging phase diagram} of flow state vs
tilt angle and ratio of hole to grain size
Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation
We compute the axial and pseudoscalar form factors of the nucleon in the
Dyson-Schwinger approach. To this end, we solve a covariant three-body Faddeev
equation for the nucleon wave function and determine the matrix elements of the
axialvector and pseudoscalar isotriplet currents. Our only input is a
well-established and phenomenologically successful ansatz for the
nonperturbative quark-gluon interaction. As a consequence of the axial
Ward-Takahashi identity that is respected at the quark level, the
Goldberger-Treiman relation is reproduced for all current-quark masses. We
discuss the timelike pole structure of the quark-antiquark vertices that enters
the nucleon matrix elements and determines the momentum dependence of the form
factors. Our result for the axial charge underestimates the experimental value
by 20-25% which might be a signal of missing pion-cloud contributions. The
axial and pseudoscalar form factors agree with phenomenological and lattice
data in the momentum range above Q^2 ~ 1...2 GeV^2.Comment: 17 pages, 7 figures, 1 tabl
- …
