80 research outputs found

    Evaluation of cetane values of glycerolipids extracted from algae Scenedesmus dimorphus grown in various salinity concentrations using gas chromatography and mass spectrometry (GC-MS)

    Get PDF
    Algae\u27s ability to store lipids, renewability, and potentially safer for the environment has made it a promising alternative fuel source. An industry rating for a biofuel\u27s potential is the cetane value, which is a measure of a fuel\u27s quality related to various glycerolipid concentrations. Growing conditions will affect lipid profile in algae, thereby affecting the cetane value. This project will attempt to identify changes in the centane value of the algae Scenedesmus dimorphus grown in various salinity concentrations. Scenedesmus dimorphus is the algae chosen for this experiment because of its ability to rapidly grow under harsh conditions. In this experiment the growth conditions were controlled in bioreactors and shaker baths. Total lipids were extracted from dry mass algae with the Bligh-Dyer method, which allows for the extraction of the glycerolipids with the solid phase extraction method. Upon the final extraction, a transesterification reaction is carried out in order to convert the glycerolipids into FAME (fatty acid methyl esters), which allows the GC- MS (gas chromatography and mass spectrometry) instrument to better quantify the lipid concentration.https://engagedscholarship.csuohio.edu/u_poster_2017/1044/thumbnail.jp

    Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury

    Get PDF
    This paper describes a neuro-musculo-skeletal model of the human lower body which has been developed with the aim of studying the effects of spinal cord injury on locomotor abilities. The model represents spinal neural control modules corresponding to central pattern generators, muscle spindle based reflex pathways, golgi tendon organ based pathways and cutaneous reflex pathways, which are coupled to the lower body musculo-skeletal dynamics. As compared to other neuro-musculo-skeletal models which aim to provide a description of the possible mechanisms involved in the production of locomotion, the goal of the model here is to understand the role of the known spinal pathways in locomotion. Thus, while other models focus primarily on functionality at the overall system level, the model here emphasizes functional and topological correspondance with the biological system at the level of the subcomponents representing spinal pathways. Such a model is more suitable for the detailed investigation of clinical questions related to spinal control of locomotion. The model is used here to perform preliminary experiments addressing the following issues: (1) the significance of spinal reflex modalities for walking and (2) the relative criticality of the various reflex modalities. The results of these experiments shed new light on the possible role of the reflex modalities in the regulation of stance and walking speed. The results also demonstrate the use of the model for the generation of hypothesis which could guide clinical experimentation. In the future, such a model may have applications in clinical diagnosis, as it can be used to identify the internal state of the system which provides the closest behavioral fit to a patient's pathological conditio

    Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease

    Get PDF
    OBJECTIVE: People with Parkinson disease (PD) frequently develop dementia, which is associated with neocortical deposition of alpha-synuclein (α-syn) in Lewy bodies and Lewy neurites. In addition, neuronal loss and deposition of aggregated α-syn also occur in multiple subcortical nuclei that project to neocortical, limbic, and basal ganglia regions. Therefore, we quantified regional deficits in innervation from these PD-affected subcortical nuclei, by measuring the neurotransmitters and neurotransmitter transporter proteins originating from projections of dopaminergic neurons in substantia nigra pars compacta, serotonergic neurons in dorsal raphé nuclei, noradrenergic neurons in locus coeruleus, and cholinergic neurons in nucleus basalis of Meynert. METHODS: High-performance liquid chromatography and novel enzyme-linked immunosorbent assays were performed to quantify dopaminergic, serotonergic, noradrenergic, and cholinergic innervation in postmortem brain tissue. Eight brain regions from 15 PD participants (with dementia and Braak stage 6 α-syn deposition) and six age-matched controls were tested. RESULTS: PD participants compared to controls had widespread reductions of dopamine transporter in caudate, amygdala, hippocampus, inferior parietal lobule (IPL), precuneus, and visual association cortex (VAC) that exceeded loss of dopamine, which was only significantly reduced in caudate and amygdala. In contrast, PD participants had comparable deficits of both serotonin and serotonin transporter in caudate, middle frontal gyrus, IPL, and VAC. PD participants also had significantly reduced norepinephrine levels for all eight brain regions tested. Vesicular acetylcholine transporter levels were only quantifiable in caudate and hippocampus and did not differ between PD and control groups. INTERPRETATION: These results demonstrate widespread deficits in dopaminergic, serotonergic, and noradrenergic innervation of neocortical, limbic, and basal ganglia regions in advanced PD with dementia

    Deletion of the s2m RNA Structure in the Avian Coronavirus Infectious Bronchitis Virus and Human Astrovirus Results in Sequence Insertions

    Get PDF
    Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3′ untranslated region (3′ UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3′ UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence.publishedVersio

    Object Search and Localization for an Indoor Mobile Robot

    Get PDF
    In this paper we present a method for search and localization of objects with a mobile robot using a monocular camera with zoom capabilities. We show how to overcome the limitations of low resolution images in object recognition by utilizing a combination of an attention mechanism and zooming as the first steps in the recognition process. The attention mechanism is based on receptive field cooccurrence histograms and the object recognition on SIFT feature matching. We present two methods for estimating the distance to the objects which serves both as the input to the control of the zoom and the final object localization. Through extensive experiments in a realistic environment, we highlight the strengths and weaknesses of both methods. To evaluate the usefulness of the method we also present results from experiments with an integrated system where a global sensing plan is generated based on view planning to let the camera cover the space on a per room basis

    Inkjet‐Printed Self‐Hosted TADF Polymer Light‐Emitting Diodes

    Get PDF
    Thermally activated delayed fluorescent (TADF) materials are extensively investigated as organic light-emitting diodes (OLEDs) with TADF emitting layers demonstrating high efficiency without the use of heavy metal complexes. Therefore, solution-processable and printable TADF emitters are highly desirable, moving away from expensive vacuum deposition techniques. In addition, using emissive materials not requiring an external host simplifies the fabrication process significantly. Herein, OLEDs using a solution-processable TADF polymer that do not need an external host are introduced. The non-conjugated TADF polymer features a TADF emitter (4-(9H-carbazol-9-yl)-2-(3′-hydroxy-[1,1′-biphenyl]-3-yl)-isoindoline-1,3-dione) as a side chain, as well as a hole-transporting side chain and an electron-transporting side chain on an inactive polymer backbone. All organic layers of the OLEDs are fabricated using solution processing methods. The OLEDs with inkjet-printed emissive layers have comparable maximum current and external quantum efficiency as their spin-coated counterparts, exceeding luminance of 2000 cd m2^{-2}. The herein-explored strategy is a viable route toward self-hosted printable TADF OLEDs

    Multiple novel non-canonically transcribed sub-genomic mRNAs produced by avian coronavirus infectious bronchitis virus

    Get PDF
    Funding: This work was supported by Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/L003988/1 and 1645891, and strategic funding to The Pirbright Institute, BBS/E/I/00007035, BBS/E/I/00007034, BBS/E/I/00007037 and BBS/E/I/00007039.Coronavirus sub-genomic mRNA (sgmRNA) synthesis occurs via a process of discontinuous transcription involving complementary transcription regulatory sequences (TRSs), one (TRS-L) encompassing the leader sequence of the 5' untranslated region (UTR), and the other upstream of each structural and accessory gene (TRS-B). Several coronaviruses have an ORF located between the N gene and the 3'-UTR, an area previously thought to be non-coding in the Gammacoronavirus infectious bronchitis virus (IBV) due to a lack of a canonical TRS-B. Here, we identify a non-canonical TRS-B allowing for a novel sgmRNA relating to this ORF to be produced in several strains of IBV: Beaudette, CR88, H120, D1466, Italy-02 and QX. Interestingly, the potential protein produced by this ORF is prematurely truncated in the Beaudette strain. A single nucleotide deletion was made in the Beaudette strain allowing for the generation of a recombinant IBV (rIBV) that had the potential to express a full-length protein. Assessment of this rIBV in vitro demonstrated that restoration of the full-length potential protein had no effect on viral replication. Further assessment of the Beaudette-derived RNA identified a second non-canonically transcribed sgmRNA located within gene 2. Deep sequencing analysis of allantoic fluid from Beaudette-infected embryonated eggs confirmed the presence of both the newly identified non-canonically transcribed sgmRNAs and highlighted the potential for further yet unidentified sgmRNAs. This HiSeq data, alongside the confirmation of non-canonically transcribed sgmRNAs, indicates the potential of the coronavirus genome to encode a larger repertoire of genes than has currently been identified.Publisher PDFPeer reviewe

    Quantifying regional α -synuclein, amyloid β, and tau accumulation in Lewy body dementia

    Get PDF
    OBJECTIVE: Parkinson disease (PD) is defined by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies and Lewy neurites. It affects multiple cortical and subcortical neuronal populations. The majority of people with PD develop dementia, which is associated with Lewy bodies in neocortex and referred to as Lewy body dementia (LBD). Other neuropathologic changes, including amyloid β (Aβ) and tau accumulation, occur in some LBD cases. We sought to quantify α-syn, Aβ, and tau accumulation in neocortical, limbic, and basal ganglia regions. METHODS: We isolated insoluble protein from fresh frozen postmortem brain tissue samples for eight brains regions from 15 LBD, seven Alzheimer disease (AD), and six control cases. We measured insoluble α-syn, Aβ, and tau with recently developed sandwich ELISAs. RESULTS: We detected a wide range of insoluble α-syn accumulation in LBD cases. The majority had substantial α-syn accumulation in most regions, and dementia severity correlated with neocortical α-syn. However, three cases had low neocortical levels that were indistinguishable from controls. Eight LBD cases had substantial Aβ accumulation, although the mean Aβ level in LBD was lower than in AD. The presence of Aβ was associated with greater α-syn accumulation. Tau accumulation accompanied Aβ in only one LBD case. INTERPRETATION: LBD is associated with insoluble α-syn accumulation in neocortical regions, but the relatively low neocortical levels in some cases suggest that other changes contribute to impaired function, such as loss of neocortical innervation from subcortical regions. The correlation between Aβ and α-syn accumulation suggests a pathophysiologic relationship between these two processes

    Eosinophils in glioblastoma biology

    Get PDF
    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore