42 research outputs found

    Surface pasteurisation of food packages by the inversion method

    Get PDF
    Thermal processing is the most widely used and well established preservation method used in the food industry for ensuring food safety and extending the shelf life of food products. Besides from the food product, the package needs also to be decontaminated to achieve the required safety goals. This research is concerned with surface pasteurisation treatments in food packages by the method of inversion, primarily for hot-filled food products. Starch solutions and tomato soup, used as model fluids in the current work, were hot-filled in glass jars, were sealed and then inverted for thirty seconds at a filling temperature of 80oC for achieving a target process equivalent of 5 min at 70oC; the inversion step was used as a thermal treatment of the headspace and the lid. The inverted jars showed significantly higher process values for the headspace and the lid with the filling temperature being the most important parameter. The effectiveness of the inversion step during hot-fill treatments was quantified by the use of two monitoring techniques, the traditional temperature sensors and the alternative, enzymic based (Bacillus amyloliquefaciens α-amylase) Time Temperature Integrators (TTIs). TTIs are small devices with kinetics similar to the microorganisms, whose level of degradation is measured at the end of the thermal process. The enzyme activity obtained is integrated and the temperature history can be quantified. TTIs were tested for their reliability and accuracy under isothermal and non-isothermal conditions, and were then used for validating the hot-fill process

    Very fast motion planning for highly dexterous-articulated robots

    Get PDF
    Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    Smaller classes promote equitable student participation in STEM

    Get PDF
    Under embargo until: 2020-07-24As science, technology, engineering, and mathematics (STEM) classrooms in higher education transition from lecturing to active learning, the frequency of student interactions in class increases. Previous research documents a gender bias in participation, with women participating less than would be expected on the basis of their numeric proportions. In the present study, we asked which attributes of the learning environment contribute to decreased female participation: the abundance of in-class interactions, the diversity of interactions, the proportion of women in class, the instructor's gender, the class size, and whether the course targeted lower division (first and second year) or upper division (third or fourth year) students. We calculated likelihood ratios of female participation from over 5300 student–instructor interactions observed across multiple institutions. We falsified several alternative hypotheses and demonstrate that increasing class size has the largest negative effect. We also found that when the instructors used a diverse range of teaching strategies, the women were more likely to participate after small-group discussions.acceptedVersio

    Identification, structure, orientation et accessibité au solvant du peptide transmembranaire de la glycophorine A

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
    corecore