512 research outputs found

    CARET analysis of multithreaded programs

    Full text link
    Dynamic Pushdown Networks (DPNs) are a natural model for multithreaded programs with (recursive) procedure calls and thread creation. On the other hand, CARET is a temporal logic that allows to write linear temporal formulas while taking into account the matching between calls and returns. We consider in this paper the model-checking problem of DPNs against CARET formulas. We show that this problem can be effectively solved by a reduction to the emptiness problem of B\"uchi Dynamic Pushdown Systems. We then show that CARET model checking is also decidable for DPNs communicating with locks. Our results can, in particular, be used for the detection of concurrent malware.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Static Safety for an Actor Dedicated Process Calculus by Abstract Interpretation

    Get PDF
    The actor model eases the definition of concurrent programs with non uniform behaviors. Static analysis of such a model was previously done in a data-flow oriented way, with type systems. This approach was based on constraint set resolution and was not able to deal with precise properties for communications of behaviors. We present here a new approach, control-flow oriented, based on the abstract interpretation framework, able to deal with communication of behaviors. Within our new analyses, we are able to verify most of the previous properties we observed as well as new ones, principally based on occurrence counting

    Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact.

    Get PDF
    Residual malaria transmission can persist despite high coverage with effective long-lasting insecticidal nets (LLINs) and/or indoor residual spraying (IRS), because many vector mosquitoes evade them by feeding on animals, feeding outdoors, resting outdoors or rapidly exiting from houses after entering them. However, many of these behaviours that render vectors resilient to control with IRS and LLINs also make them vulnerable to some emerging new alternative interventions. Furthermore, vector control measures targeting preferred behaviours of mosquitoes often force them to express previously rare alternative behaviours, which can then be targeted with these complementary new interventions. For example, deployment of LLINs against vectors that historically fed predominantly indoors on humans typically results in persisting transmission by residual populations that survive by feeding outdoors on humans and animals, where they may then be targeted with vapour-phase insecticides and veterinary insecticides, respectively. So while the ability of mosquitoes to express alternative behaviours limits the impact of LLINs and IRS, it also creates measurable and unprecedented opportunities for deploying complementary additional approaches that would otherwise be ineffective. Now that more diverse vector control methods are finally becoming available, well-established entomological field techniques for surveying adult mosquito behaviours should be fully exploited by national malaria control programmes, to rationally and adaptively map out new opportunities for their effective deployment

    Impact of Community-Based Larviciding on the Prevalence of Malaria Infection in Dar es Salaam, Tanzania.

    Get PDF
    The use of larval source management is not prioritized by contemporary malaria control programs in sub-Saharan Africa despite historical success. Larviciding, in particular, could be effective in urban areas where transmission is focal and accessibility to Anopheles breeding habitats is generally easier than in rural settings. The objective of this study is to assess the effectiveness of a community-based microbial larviciding intervention to reduce the prevalence of malaria infection in Dar es Salaam, United Republic of Tanzania. Larviciding was implemented in 3 out of 15 targeted wards of Dar es Salaam in 2006 after two years of baseline data collection. This intervention was subsequently scaled up to 9 wards a year later, and to all 15 targeted wards in 2008. Continuous randomized cluster sampling of malaria prevalence and socio-demographic characteristics was carried out during 6 survey rounds (2004-2008), which included both cross-sectional and longitudinal data (N = 64,537). Bayesian random effects logistic regression models were used to quantify the effect of the intervention on malaria prevalence at the individual level. Effect size estimates suggest a significant protective effect of the larviciding intervention. After adjustment for confounders, the odds of individuals living in areas treated with larviciding being infected with malaria were 21% lower (Odds Ratio = 0.79; 95% Credible Intervals: 0.66-0.93) than those who lived in areas not treated. The larviciding intervention was most effective during dry seasons and had synergistic effects with other protective measures such as use of insecticide-treated bed nets and house proofing (i.e., complete ceiling or window screens). A large-scale community-based larviciding intervention significantly reduced the prevalence of malaria infection in urban Dar es Salaam

    Subsumer-First: Steering Symbolic Reachability Analysis

    Full text link
    Abstract. Symbolic reachability analysis provides a basis for the veri-fication of software systems by offering algorithmic support for the ex-ploration of the program state space when searching for proofs or coun-terexamples. The choice of exploration strategy employed by the anal-ysis has direct impact on its success, whereas the ability to find short counterexamples quickly and—as a complementary task—to efficiently perform the exhaustive state space traversal are of utmost importance for the majority of verification efforts. Existing exploration strategies can optimize only one of these objectives which leads to a sub-optimal reach-ability analysis, e.g., breadth-first search may sacrifice the exploration ef-ficiency and chaotic iteration can miss minimal counterexamples. In this paper we present subsumer-first, a new approach for steering symbolic reachability analysis that targets both minimal counterexample discovery and efficiency of exhaustive exploration. Our approach leverages the re-sult of fixpoint checks performed during symbolic reachability analysis to bias the exploration strategy towards its objectives, and does not require any additional computation. We demonstrate how the subsumer-first ap-proach can be applied to improve efficiency of software verification tools based on predicate abstraction. Our experimental evaluation indicates the practical usefulness of the approach: we observe significant efficiency improvements (median value 40%) on difficult verification benchmarks from the transportation domain.

    Testing real-time systems using TINA

    Get PDF
    The paper presents a technique for model-based black-box conformance testing of real-time systems using the Time Petri Net Analyzer TINA. Such test suites are derived from a prioritized time Petri net composed of two concurrent sub-nets specifying respectively the expected behaviour of the system under test and its environment.We describe how the toolbox TINA has been extended to support automatic generation of time-optimal test suites. The result is optimal in the sense that the set of test cases in the test suite have the shortest possible accumulated time to be executed. Input/output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Test cases selection is based either on using manually formulated test purposes or automatically from various coverage criteria specifying structural criteria of the model to be fulfilled by the test suite. We discuss how test purposes and coverage criterion are specified in the linear temporal logic SE-LTL, derive test sequences, and assign verdicts

    Nck enables directional cell migration through the coordination of polarized membrane protrusion with adhesion dynamics

    Get PDF
    Directional migration requires the coordination of cytoskeletal changes essential for cell polarization and adhesion turnover. Extracellular signals that alter tyrosine phosphorylation drive directional migration by inducing reorganization of the actin cytoskeleton. It is recognized that Nck is an important link between tyrosine phosphorylation and actin dynamics; however, the role of Nck in cytoskeletal remodeling during directional migration and the underlying molecular mechanisms remain largely undetermined. In this study, a combination of molecular genetics and quantitative live cell microscopy was used to show that Nck is essential in the establishment of front-back polarity and directional migration of endothelial cells. Time-lapse differential interference contrast and total internal reflection fluorescence microscopy showed that Nck couples the formation of polarized membrane protrusions with their stabilization through the assembly and maturation of cell-substratum adhesions. Measurements by atomic force microscopy showed that Nck also modulates integrin α5β1-fibronectin adhesion force and cell stiffness. Fluorescence resonance energy transfer imaging revealed that Nck depletion results in delocalized and increased activity of Cdc42 and Rac. By contrast, the activity of RhoA and myosin II phosphorylation were reduced by Nck knockdown. Thus, this study identifies Nck as a key coordinator of cytoskeletal changes that enable cell polarization and directional migration, which are crucial processes in development and disease

    An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns.

    Get PDF
    ABSTRACT: BACKGROUND: More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB) system for trapping adult mosquito densities to monitor programme performance. Methodology An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C) was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA) surveys using either ITT-C or human landing catches (HLC), as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. RESULTS: Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR) [95% Confidence Interval (CI)] = 0.079 [0.051, 0.121], P < 0.001 for Anopheles gambiae s.l. and 0.153 [0.137, 0.171], P < 0.001 for Culicines) but only moderately differed from QA surveys with the same trap (0.536 [0.406,0.617], P = 0.001 and 0.747 [0.677,0.824], P < 0.001, for An. gambiae or Culex respectively). Despite the poor sensitivity of the ITT per night of sampling, when CB-ITT was compared with QA-HLC, it proved at least comparably sensitive in absolute terms (171 versus 169 primary vectors caught) and cost-effective (153USversus187US versus 187US per An. gambiae caught) because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141). Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year), CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI] = 4.43[3.027,7. 454] per An. gambiae or Anopheles funestus caught per night, P =0.0373). Discussion and conclusion CB trapping approaches could be improved with more sensitive traps, but already offer a practical, safe and affordable system for routine programmatic mosquito surveillance and clusters could be distributed across entire countries by adapting the sample submission and quality assurance procedures accordingly

    Window screening, ceilings and closed eaves as sustainable ways to control malaria in Dar es Salaam, Tanzania.

    Get PDF
    BACKGROUND\ud \ud Malaria transmission in Africa occurs predominantly inside houses where the primary vectors prefer to feed. Human preference and investment in blocking of specific entry points for mosquitoes into houses was evaluated and compared with known entry point preferences of the mosquitoes themselves.\ud \ud METHODS\ud \ud Cross-sectional household surveys were conducted in urban Dar es Salaam, Tanzania to estimate usage levels of available options for house proofing against mosquito entry, namely window screens, ceilings and blocking of eaves. These surveys also enabled evaluation of household expenditure on screens and ceilings and the motivation behind their installation.\ud \ud RESULTS\ud \ud Over three quarters (82.8%) of the 579 houses surveyed in Dar es Salaam had window screens, while almost half (48.9%) had ceilings. Prevention of mosquito entry was cited as a reason for installation of window screens and ceilings by 91.4% (394/431) and 55.7% (127/228) of respondents, respectively, but prevention of malaria was rarely cited (4.3%, 22/508). The median cost of window screens was between US 2130whilethatofceilingswasbetweenUS 21-30 while that of ceilings was between US 301-400. The market value of insecticide-treated nets, window screening and ceilings currently in use in the city was estimated as 2, 5 and 42 million US$. More than three quarters of the respondents that lacked them said it was too expensive to install ceilings (82.2%) or window screens (75.5%).\ud \ud CONCLUSION\ud \ud High coverage and spending on screens and ceilings implies that these techniques are highly acceptable and excellent uptake can be achieved in urban settings like Dar es Salaam. Effective models for promotion and subsidization should be developed and evaluated, particularly for installation of ceilings that prevent entry via the eaves, which are the most important entry point for mosquitoes that cause malaria, a variety of neglected tropical diseases and the nuisance which motivates uptake

    Software Model Checking with Explicit Scheduler and Symbolic Threads

    Full text link
    In many practical application domains, the software is organized into a set of threads, whose activation is exclusive and controlled by a cooperative scheduling policy: threads execute, without any interruption, until they either terminate or yield the control explicitly to the scheduler. The formal verification of such software poses significant challenges. On the one side, each thread may have infinite state space, and might call for abstraction. On the other side, the scheduling policy is often important for correctness, and an approach based on abstracting the scheduler may result in loss of precision and false positives. Unfortunately, the translation of the problem into a purely sequential software model checking problem turns out to be highly inefficient for the available technologies. We propose a software model checking technique that exploits the intrinsic structure of these programs. Each thread is translated into a separate sequential program and explored symbolically with lazy abstraction, while the overall verification is orchestrated by the direct execution of the scheduler. The approach is optimized by filtering the exploration of the scheduler with the integration of partial-order reduction. The technique, called ESST (Explicit Scheduler, Symbolic Threads) has been implemented and experimentally evaluated on a significant set of benchmarks. The results demonstrate that ESST technique is way more effective than software model checking applied to the sequentialized programs, and that partial-order reduction can lead to further performance improvements.Comment: 40 pages, 10 figures, accepted for publication in journal of logical methods in computer scienc
    corecore